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Preface

Modern undergraduate courses in physics invariably include a good deal of

material on basic atomic physics, including discussions of atomic structure, the

optical and X-ray spectra of atoms, the interaction of atoms with electric and

magnetic fields, the theory of simple molecules and some atomic scattering

theory. As a rule, part of this material is given in a course on quantum

mechanics, and some separately. Correspondingly, most books on quantum

mechanics deal with some of these topics, usually in a rather sketchy fashion,

while texts on ‘Atomic Spectra’, ‘Collision Theory’ and the like, deal with

individual topics at considerably greater length than the undergraduate re-

quires.

The aim of this book is to present a unified account of the physics of atoms

and molecules, from a modern viewpoint, in adequate detail, but keeping within

the undergraduate framework. It is based on courses given by the authors at the

Universities of Durham, Glasgow, California (Berkeley), Brussels and Louvain-

la-Neuve, and is suitable for study at second or third year level of an

undergraduate course following some study of elementary quantum theory.

Following a brief historical introduction in Chapter 1 , Chapter 2 contains an

outline of the ideas and approximation methods of quantum mechanics, which

are used later in the book. This is in no sense intended as a substitute for a

proper study of quantum mechanics, but serves to establish notation and as a

convenient summary of results. In Chapters 3 to 8, the structure of atoms and

the interaction of atoms with radiation are discussed, followed in Chapters 9 and

10 by an account of the structure and spectra of molecules. Selected topics

dealing with the scattering of electrons by atoms, and of atoms by atoms, are

given in Chapters 11 to 13 while in the final chapter, a few of the many

important applications of atomic physics are considered. Various special topics

and derivations are given in the appendices together with useful tables ot units.

For a full understanding, the reader should work through the problems given at

the end of the chapters. Hints at the solutions of selected problems are given at

the end of the book.

We wish to thank our colleagues and students for numerous helpful

discussions and suggestions. It is also a pleasure to thank Mme E. Fean and

Mrs M. Raine for their patient and careful typing of the manuscript.

B. H. Bransden, Durham
C. J. Joachain, Brussels

July 1980
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Electrons, photons and atoms

The physics of atoms and molecules which constitutes the subject matter of this

book rests on a long history of discoveries, both experimental and theoretical. A
complete account of the historical development of atomic and molecular physics

lies far outside the scope of this volume. Nevertheless, it is important to

recognise the key steps which have occurred in this evolution. In the present

chapter we shall briefly describe the major experiments and discuss the basic

theoretical concepts which are at the root of modern atomic and molecular

physics.

I. 1 THE ATOMIC NATURE OF MATTER

The first recorded speculations as to whether matter is continuous, or is

composed of discrete particles, were made by the Greek philosophers. In

particular, following ideas of Anaxagoras (500-428 bc) and Empedocles (484-

424 bc), Leucippus (circa 450 bc) and his pupil Democritus (460-370 bc)

argued that the universe consists of empty space and of indivisible particles, the

atoms [1], differing from each other in form, position and arrangement. The

atomic hypothesis, however, was rejected by Aristotle (384-322 bc) who

strongly supported the concept of the continuity of matter.

In modern times, the question was re-opened following the experimental

discovery of the gas laws by R. Boyle in 1662, and the interpretation of these

laws in terms of a kinetic model by D. Bernoulli in 1738. The kinetic theory of

gases developed throughout the nineteenth century, notably by R. Clausius,

J. C. Maxwell and L. Boltzmann, was able to explain the physical properties

of gases by assuming that:

1. A gas consists of a large number of particles called molecules which make

elastic collisions with each other and with the walls of the container.

2. The molecules of a particular substance are all identical and are small

compared with the distances that separate them.

1 1 ]
The Greek word ‘atomos' (atom) means ‘indivisible’.
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Electrons, photons and atoms 1.1

3. The temperature of a gas is proportional to the average kinetic energy of the

molecules.

In parallel with the development of the kinetic theory, the laws of chemical

combination were being discovered, which again could be interpreted by

making hypotheses about the atomic nature of matter. In 1801, J. L. Proust

formulated the law of definite proportions which states that when chemical

elements combine to form a given compound, the proportion by weight of each

element is always the same. This was followed in 1807 by J. Dalton s law of

multiple proportions, according to which when two elements combine in

different ways, to form different compounds, then for a fixed weight of one

element, the weights of the other element are in the ratio of small integers.

These laws were explained by Dalton in 1808, who made the hypothesis that the

elements are composed of discrete atoms. For a given element these atoms are

all identical and each atom has the same weight. Compounds are formed when

atoms of different elements combine in a simple ratio.

Also in 1808, J. L. Gay-Lussac discovered that when two gases combine to

form a third, the volumes are in the ratio of simple integers. This result was

explained by A. Avogadro in 1811. He was the first to make a clear distinction

between atoms, the discrete particles of the elements, and molecules, which are

the discrete particles of compounds, composed of two or more atoms bound

together. Avogadro was able to show that the Gay-Lussac law is satisfied if equal

volumes of different gases, at the same pressure and temperature, contain equal

numbers of molecules.

It is interesting that the atomic explanation of chemistry was not fully

accepted until late in the nineteenth century [2], largely because chemists

tended to ignore the compelling evidence from kinetic theory [3]. In addition to

the properties of gases, the kinetic theory was able to explain other phenomena,

for example the random motion of small particles suspended in a fluid. This

motion, discovered by R. Brown in 1827, is due to the collisions of the

molecules of the fluid with the suspended particles.

From the chemical laws the relative weights of atoms can be established.

Originally, Dalton proposed a scale in which hydrogen was given, by definition,

the atomic weight 1. Later, this was superseded by a scale in which naturally

occurring oxygen was assigned the atomic weight 16. On this scale, known as

the chemical scale ,
atomic hydrogen has the atomic weight 1.008.

A mole is defined as a quantity of a substance weighing /x grams, where ^ is

the atomic (or molecular) weight of that substance. Avogadro’s numberNA is the

number of atoms (or molecules) in one mole of any substance. The first estimate

ofNA was made by J. Loschmidt in 1865. In fact, MA can be found in several

ways, one of the most interesting being from observations of Brownian motion.

[2] The nineteenth-century controversies are described in an interesting book by Knight (1967),

while a collection of original papers covering the early history of the atomic theory, translated

into English, has been given by Borse and Motz (1966).

[3J An account of the kinetic theory and its applications can be found in the text by Morse (1966).
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1.2 Thi tUctrm

The number deduced in this way in 1907 by J. Perrin, who performed

experiments on the motion of suspended particles, was close to the best modem
value of

Na = 6.022 x 10
23 mole

-1
[1.1]

1.2 THE ELECTRON

The first experimental evidence that electric charge was not infinitely divisible,

but existed in discrete units, was obtained by M. Faraday, who discovered the

laws of electrolysis in 1833. In his experiments Faraday passed a current through

conducting (electrolytic) solutions of chemical compounds. He found that the

massM of a substance (for example, hydrogen, oxygen or metals) liberated at an

electrode during a certain time interval was proportional to the quantity of

electricity, Q, passed through the solution during that time. He also found that

a given quantity of electricity always liberated the same mass of a given

substance, and that this mass was proportional to the equivalent weight of the

substance, where the equivalent weight is defined as the atomic (or molecular)

weight /a divided by the valency v. Faraday’s laws of electrolysis can be

summarised by the formula:

M = Q m
F v

[ 1 .2]

where F is a constant called Faraday’s constant. Its value in SI units is given by:

F = 9.648 46 x 10
4 coulombs/mole [1.3]

Thus, sinceM = /j, grams for one mole, we see from [1.2] and [1.3] that it takes

96484.6 C (sometimes called one Faraday) to liberate for example 1.008 g of

hydrogen, 107.9 g of silver, 23 g of sodium, 35.5 g of chlorine (which are all

monovalent), 8 g of oxygen (having a valency of 2) and so on.

Faraday interpreted his results by assuming that a given amount of electricity

is carried by each atom (or group of atoms) during electrolysis. The charged

atoms (or groups of atoms) he called ions. In electrolysis, the electric current is

the result of the motion of the ions through the solution, the positively charged

ions (or cations) moving towards the cathode and the negatively charged ions (or

anions) moving towards the anode. At the electrodes, the ions are converted to

neutral atoms (or radicals) which are liberated or which give rise to secondary

reactions.

Faraday’s results implied the existence of an elementary unit of electricity,

some types of ion carrying one unit, others two units and so on. Indeed, as

H. Helmholtz emphasised in 1881 during a speech in honour of Faraday: ‘If we

assume the existence of atoms of chemical elements, we cannot escape from

drawing the further inference that electricity also, positive as well as negative, is

divided into definite elementary charges that behave like atoms of electricity’.

However, at the time of Faraday’s experiments the idea, that electrical charge

3



Electrons, photons and atoms l £

existed in discrete units, did not seem to agree with the evidence from other

electrical phenomena, such as metallic conduction, and both Faraday and

Maxwell were reluctant to accept it. In fact, the hypothesis that there is a

‘natural unit of electricity’ was only put forward by C. I. Stoney m 1874, who

proposed that this unit should be taken to be the quantity of electricity which

must pass through an electrolytic solution in order to liberate one atom of a

monovalent substance. Since one Faraday (96484.6 C) liberates one mole of a

monovalent substance and because one mole contains A/a atoms, where NA is

Avagadro’s number, the ‘natural unit of electricity ,
e, is given by

Stoney suggested the word ‘electron’ for this unit, and he obtained for e an

approximate value of 1(T
20 C, using the rough estimates of NA that were

available from kinetic theory. In 1880, Helmholtz pointed out that it is

apparently impossible to obtain electricity in smaller amounts than e. The first

direct measurements of this smallest possible charge were initiated by

J. J. Thomson and carried out by his student J. S. Townsend in 1897, and the

first accurate value was found in the famous oil-drop experiment of R. M.

Millikan in 1909, to which we shall return below.

Cathode rays and Thomson's measurement of e/m

When electrodes are placed in a gas at normal atmospheric pressure no current

passes and the gas acts as an insulator until the electric field is increased to above

3 or 4 MV/m when sparking takes place. In contrast, at low pressures, a steady

current can be maintained in a gas. At pressures of about 1 mm of mercury, the

discharge is accompanied by the emission of light, but at still lower pressures a

dark region forms near the cathode. The dark region, called the Crookes dark

space, increases in size as the pressure falls, filling the discharge tube at

pressures of ICC
3 mm and below. If, under these low pressure conditions, a

small hole is made in the anode (see Fig. 1.1), a green glow is observed on the

glass wall of the discharge tube.
,

The causative agents of this phenomenon were termed ‘cathode rays’. The

properties of these rays were studied in the latter part of the nineteenth century

Cathode Anode,

+

Green glow

1.1 Low-pressure discharge tube. Cathode rays passing through a hole in the anode cause a green

glow on the glass wall of the tube.

4



1.2 Th$ tltctron

by W. Crookes and P. Lenard, who showed that the rays travelled in straight

lines, cast ‘shadows’ and also carried sufficient momentum to set in motion a

light paddle wheel. In 1895, J. Perrin demonstrated that the rays carried

negative charge by collecting the charge on an electrometer. At that time very

differing views were expressed as to the nature of the cathode rays, but

J. J. Thomson set out the hypothesis that the rays consisted of a stream of

particles each of mass m and charge —e, originating in the cathode of the

discharge tube. Since the earlier investigations showed that the properties of the

cathode rays were independent of the material of the cathode and of the gas in

the tube, the particles could be assumed to be constituents of all matter.

In Thomson’s experiments the deflection of the cathode rays by static electric

and magnetic fields was investigated, which allowed the determination of the

‘specific charge’, the ratio e/m, of the constituent particles. The cathode rays

were passed between parallel plates, a distance D apart, to which a potential

difference V could be applied, as in Fig. 1.2. The cathode rays emerging from

the region of the electric field were detected on a screen S, and the deflection

measured as a function of V. Neglecting end effects, the electric field strength %
between the plates can be taken to be uniform and equal to V/D, and in this

field the charged particle experiences a constant acceleration of magnitude eft/m

in the Y direction (see Fig. 1.2). If the initial velocity of a particle is v, the time

taken to traverse the region between the plates, of length Xj , is /] = X\/v. The

subsequent time to reach the screen, placed at distance x2 from the plates, is

h = x2/v.

S

O X
Direction of axes

1.2 Schematic diagram of Thomson’s apparatus to measure e/m. A stream of cathode rays, passing

through a small hole in the anode A of a discharge tube, is deflected by being passed between the

plates of a condenser P to which a potential is applied.

5



Electrons, photons and atoms

After the time tu the deflection in the Y direction is

On leaving the region between the plates, the component of the particle

velocity in the Y direction is

from which the total deflection in reaching the screen is

y2 = vy t2 + y\ = — —

Y

(i*i + *2)
y m v

Thus, a measurement of the deflection^ provides a value of the combination

(e/mv
2
), if %, X! and x2 are known.

To determine e/m, an independent measurement is required from which v

can be found. By placing the apparatus within a Helmholtz coil, Thomson could

apply a constant magnetic field &, directed in the Z direction, at right angles

both to the electric field and to the undeflected path of the cathode rays. 1 he

magnetic force on the charged particles is of magnitude ev<3l and is perpendicu-

lar to the particle trajectory, being initially in the Y direction. If both electric

and magnetic fields are applied simultaneously, the net force on the particles

vanishes provided % and 2ft are adjusted so that

ev'M = e% [1-8]

Two experiments can now be performed. In the first, the values of 2& and %

are measured for which the cathode rays are undeflected and this provides the

value of©, since from [1.8] we have v = %/ <
S)>. In the second, the magnetic field

is switched off and the deflection due to the electric field alone is measured |4J.

Knowing v, the specific charge e/m can be calculated from [1.7].

Thomson found a value for the specific charge somewhat smaller than

the modern value of 1.76 x 10
11 C/kg. The specific charge for the lightest

known positive ion (the hydrogen ion) is smaller by a factor of approximate y

1840, so either the cathode ray particles are much lighter or they carry a very

large charge. Thomson assumed that the charge on a cathode ray particle was

equal in magnitude (but opposite in sign) to that on the hydrogen ion, so that

each particle was lighter than a hydrogen ion by a factor of about 1840. Particles

with this property are now called electrons, thus changing the original meaning

of the word electron which was applied by Stoney to the magnitude e of the

charge carried by a hydrogen ion or a cathode ray particle.

r41 If the electric field is switched off the cathode rays move along an arc of a circle of radius R,

where (mv
2/R )

= From this the deflection by a magnetic field extending over a region of

length x, can be calculated.

6



1.2 Thi tUctron

Millikan and the charge of the electron

Following his determination of an accurate value for the charge to mass ratio

of the electron, J. J. Thomson, together with his student J. S. Townsend,

attempted to measure the electronic charge itself. The method employed was to

produce clouds of charged water droplets and to estimate the number of

droplets in a cloud from a knowledge of its total mass and the rate at which the

cloud settles. The total charge of the cloud couid be measured with an

electrometer and hence the charge on each drop estimated. In an extension of

the method due to H. A. Wilson, the charge on the cloud was measured by

applying an electric field in the opposite direction to gravity, and adjusting the

strength of the field until the cloud ceased to settle, but remained suspended at

rest. Both these methods failed to provide accurate results because of the

evaporation of the droplets during the experiment. However, a brilliant

modification of Wilson’s method, by R. A. Millikan in 1909, gave the first

accurate value for the magnitude, e, of the electronic charge.

In Millikan’s experiments very small oil droplets a few microns in diameter

were formed by spraying mechanically from a nozzle. The droplets became

charged by friction as they were formed. They also acquired charges from the

surrounding air, which could be ionised by passing X-rays through the

apparatus. Some droplets were allowed to fall through a small hole into a region

between two parallel plates of a condenser to which an electrostatic potential V
could be applied. The motion of the drops was viewed by a microscope with

a micrometer eyepiece, and the velocity of fall was measured. The whole

apparatus, a schematic diagram of which is shown in Fig. 1.3, was enclosed in a

thermostat to avoid convection currents of the air between the condenser plates,

which were 22 cm in diameter and separated by about 15 mm.
If the condenser is uncharged (V = 0), a droplet of effective mass M falls

under gravity, reaching a terminal velocity v x when the gravitational force Mg is

balanced by the viscous drag of the air. According to Stokes’s law this occurs

1.3 Millikan’s experiment for the determination of the charge of the electron.
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when

2.2

Mg = 6irr)rv\ [1-9]

where 77 is the coefficient of viscosity of air and r the radius of the drop. The

mass of the drop is 47rr
3
p0/3 where p0 is the density of the oil, and allowing for

the buoyancy of the air the effective mass is

M = 3 7rr
3
( po ~ Pa) [ 1 . 10]

where pA is the density of the air.

The potential V (of the order of 5 kV) can now be applied. If it is sufficiently

large and in the correct direction, the drop will move upwards until a new

terminal velocity ©2 is reached. If D is the distance between the plates and q is

the charge on the drop

q — — Mg = 6vr)rv 2

Thus, from [1.9] and [1.11], the charge on the drop is

q = 677177/—j(»! + v 2)

[ 1 . 11 ]

[ 1 . 12 ]

which can be determined by measuring Vi , v2 and (D/V), since the radius of the

drop is given by [1.9] and [1.10], provided 17, p0 and pA are known.

The same drop could be observed for a period of some hours, during which

time the charge q varied because positive or negative ions were acquired from

the surrounding air. From many thousands of observations, Millikan found that

as q altered, it always changed in integral units of a basic charge and in general

the magnitude of q was given by

\q\
= 1.59 n x 10~ 19 C [1-13]

where n was an integer usually between 3 and 30. Thus the basic charge, which

he identified with the magnitude of the electronic charge e, was found to have

the value 1.59 x 10
-19

C. Later measurements in which better values of the

viscosity 17 were used gave an improved value,

e = 1.60 x 10“ 19 C [1-14]

Combining these results with the modern value of e/m, a value for the mass of

the electron is obtained,

m = 9.11 x 10" 31 kg [ 1 - 15]

which is approximately 1840 times lighter than a hydrogen ion, as postulated by

Thomson.

8



1.3 Black body radiation

1.3 BLACK BODY RADIATION

During the later part of the nineteenth century, and in the early years of this

century, evidence accumulated that the classical physics, represented by

Newton’s laws of motion and Maxwell’s electromagnetic equations, is in-

adequate to describe atomic phenomena. The first clues to a new physics, based

on the quantisation of energy, came from a study of the properties of radiation

from hot bodies. It is a matter of common experience that a hot body radiates

electromagnetic energy in the form of heat. In fact, at any temperature, a body

emits radiation of all wavelengths, but the distribution in wavelength, the

spectral distribution, depends on temperature. At low temperature, most of

the energy is in the form of low frequency infra-red radiation, but as the

temperature increases more energy is radiated at higher frequencies, until by

~500°C radiation of visible light is observed. At still higher temperatures, such

as that of an incandescent lamp filament the spectral distribution has shifted

sufficiently to the higher frequencies for the body to be white hot. Not only the

spectral distribution changes with temperature, but the total energy radiated

also changes, increasing as a body becomes hotter.

In 1879, J. Stefan showed that the power emitted per unit area, R, from a

body at the absolute temperature T (K), called the total emittance, could be

represented by the empirical law

R = eaT4
[1.16J

where e is called the emissivity with e *£ 1 . The emissivity varies with the nature

of the surface, but the constant a, known as Stefan’s constant, is independent of

the nature of the radiating surface and is given by

a = 5.67 x 10“ 8 W m' 2 K“ 4
[1.17|

When radiation falls on a body some is reflected and some is absorbed. For

example, dark bodies absorb most of the radiation falling on them, while light

coloured bodies reflect most of it. The absorptivity, a, of a surface is defined as

the fraction of the energy of the radiation falling on unit area which is absorbed,

and a black body is defined as a body with a surface having an absorptivity equal

to unity, that is a body which absorbs all the radiant energy falling upon it.

If a body is in thermal equilibrium with its surroundings, and therefore is at

constant temperature, it must emit and absorb the same amount of radiant

energy per unit time, for otherwise its temperature would rise or fall. The
radiation emitted or absorbed under these circumstances is called thermal

radiation. By considering the thermal equilibrium between objects made of

different substances G. R. Kirchhoff in 1859 proved, using the laws of thermo-

dynamics, that the absorptivity of a surface is equal to its emissivity, e ~ a ,

independently of its temperature, and that this holds for radiation of each

particular wavelength. Kirchhoff’s law thus shows that the emissivity of a black

body is unity and that a black body is the most efficient radiator of electro-

magnetic energy. In 1884, L. Boltzmann derived the relation [1.16] from

9
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thermodynamics for the case of a black body (e = 1). It is now known as the

Stefan—Boltzmann law. It follows, from the Stefan—Boltzmann law, that the

energy radiated by a black body depends only on the temperature. The spectral

distribution of this radiation is of a universal nature and is of particular interest.

A perfect black body is an idealisation, but it can be very closely realised in

the following way. Consider a cavity kept at a constant temperature of which the

interior walls are blackened. A small hole made in the wall of such a cavity

behaves like a black body, because any radiation falling on the hole from outside

will pass through it and after multiple reflections will eventually be absorbed by

the interior surfaces and the opening has an effective absorptivity of unity . Since

the cavity is in thermal equilibrium, the radiation within it and the radiation

from the small opening are characteristic of the thermal radiation from a black

body. This radiation was studied experimentally as a function of the tempera-

ture of the enclosure, and the spectral distribution at each temperature was

measured by O. Lummer and E. Pringsheim in 1899.

The power emitted per unit area, from a black body, at wavelengths between

A and A + dA is denoted by R(A) dA, so that the total power emitted per unit

area is

R =
|

R(\) dA [1.18]

and by the Stefan-Boltzmann law R = oT4
. The observed spectral distribution

function R(A) is shown plotted against A, for a number of different tempera-

tures in Fig. 1.4. We see that, for fixed A, R(\) increases with increasing T. At

each temperature, there is a wavelength A max , for which R(A) has its maximum

value. Using general thermodynamical arguments it had been predicted in 1893

by W. Wien that A max would vary inversely with T and this was confirmed by

the later experiments. The relation

Amaxr = & [1.19]

is known as Wien’s displacement law ,
and the constant b has the value

b = 2.898 x 1(T 3 mK.
The spectral distribution function R(A), for the power emitted, is related by a

geometrical factor to the spectral distribution function p(A) for the energy

density within the cavity. In fact, if p(A) dA is defined as the energy density of

the radiation with wavelengths between A and A + dA, it can be shown [5] that

p(X) = 4f?(A)/c, consequently measurements of R(A) determine the spectral

distribution of the energy density within the cavity. It is also interesting to

consider the energy density as a function of the frequency v = c/A, in which

case a distribution function p(v) is defined so that

pO) = p(A)
dA

dv
= \ 2p(\)/c [ 1 .20]

[5] The details of the calculation are given in the book by Richtmyer, Kennard and Cooper (1969).

10



1.3 Black body radiation

1.4 Spectral distribution of radiation from a black body at different temperatures.

Again, using very general thermodynamical arguments, Wien was able to show
in 1893 that p(\) had to be of the form

p(A) = A^/fAT)
[
1.21

1

where /(AT ) was some function, which could only be determined by going

beyond thermodynamical reasoning to a more detailed theoretical model. After

some attempts by Wien, Lord Rayleigh and J. Jeans derived a distribution

function p(A) (and hence /(AT)) in the following way.

The number of standing electromagnetic waves (modes) per unit volume
within a cavity, with wavelengths within the interval A to A + dA, is given by
8 7r dA/

A

4 (Problem 1 .2). This number is independent of the size and shape of a

sufficiently large cavity. The energy density can then be written as

87T
P(A) = -T ?

[ 1 . 22 ]

11
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or alternatively as

Sirv
2

_ r ,

p(v) =
^
3
— e [1-23]

where £ is the average energy in the mode with wavelength A. Rayleigh and

Jeans then suggested that each standing wave of radiation could be considered to

be due to an assemblage of a large number of oscillating electric dipoles of

frequency v = c/A. The energy, e, of each oscillator can take any value,

0 =£ e < sc, independently of the frequency v, but since the system is in thermal

equilibrium, the average energy £ can be obtained by weighting each value of e

with the Boltzmann factor exp(— e/kT), where k is Boltzmann’s constant.

Setting f3
= 1/kT, we have

e

ee e

e
Pe de

d
log e de kT [1.24]

Inserting this value of £ into [1.22] or [1.23] gives the Rayleigh-Jeans

distribution law

p(A) = -^j- (kT) [1.25]
A

from which, using [1.21], we see that /(AT) = 8vk(\T).

In the limit of long wavelengths the Rayleigh-Jeans result [1.25] approaches

the experimental results, as shown in Fig. 1.5. However, as can be seen from

the figure, p(A) does not show the observed maximum, and diverges as A —> 0.

This behaviour at short wavelengths is known as the ‘ultra-violet catastrophe’,

and as a consequence the total energy per unit volume

Ptot =
|

p(A) dA [1-26]

is seen to be infinite.

Planck's quantum theory

No solution to these difficulties can be found using classical physics. However,

in December 1900, M. Planck presented a new form of the black body radiation

spectral distribution, based on a revolutionary hypothesis. He postulated that

the energy of an oscillator of a given frequency v cannot take arbitrary values

between zero and infinity, but can only take on the discrete values ne0 , where n

12



1.3 Black body radiation

1.5 The Rayleigh-Jeans and Planck distributions at 1646 K. The dots represent the experimental

points of Lummer and Pringsheim.

is a positive integer or zero, and is a finite amount, or quantum, of energy,

which may depend on the frequency. In this case the average energy of an

assemblage of oscillators, each of frequency v, in thermal equilibrium is given

by

x.

11-27]

Substituting this value of e in [1.22], we find

p(A) =
87t e o

HF c
tn/kr - 1

[1.28|

In order to satisfy Wien’s law [1.21], e0 must be taken to be proportional to the

frequency p:

t0 = hv [1.29]

where h is a fundamental physical constant, called Planck's constant. Planck’s

13
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distribution law then can be written as

1.3

8-7rhc 1

p(A) = -

^5 e
hc/\kT _ j

so that /(AT) = 8 Trhc[exp(hc/\kT) - 1]
_1

. In terms of frequency,

8tthv3
1

PW ~
c 3 t

hv/kT _
j

[1.30]

[1.31]

By expanding the denominator in [1.30], it is easy to show that at long

wavelengths p(A) -» 8TrkT/\4 in agreement with the Rayleigh-Jeans formula

[1.25], On the other hand, for short wavelengths, the presence of the exponen-

tial in the denominator of [1.30] ensures that p(A) —* 0 as A —* 0. The value of A

for which the Planck distribution [1.30] is a maximum can also be evaluated

(Problem 1.3) and it is found that

he
Amaxr =

4365k
= b [1.32]

where b is Wien’s displacement constant.

In Planck’s theory, the total energy density is finite and we find from [1.30]

and [1.26] (see Problem 1.4) that

Act = aT4
[1.33]

where

8rr
5

k
4

[1-34]

Since ptot is related to the emittance R by ptot = 4R/c, where R is given by the

Stefan-Boltzmann law [1.16], with e —
1, we see that Stefan’s constant <j is

given by

= 277f
k*_

15 h
3
c
2

[1.35]

Equations [1.32] and [1.35] relate a and b to the three fundamental physical

constants c, h and k. In 1901, the velocity of light, c, was known accurately and

the experimental values of b and cr were also known. Using this data, Planck

calculated both the values of h and k, which he found to be

h = 6.55 x 10
- 34

J s and k = 1.346 x 10
-23

J K_1
. Not only was this the

first calculation of Planck’s constant, but it was, at that time, the most accurate

value of Boltzmann’s constant available. The modern values of h and k are given

by (Appendix 11)

14

h = 6.62618 x 10' 34
J s

k = 1.38066 x 10" 23
J K” 1

[1-36]
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Using his values of h and k ,
Planck obtained very good agreement with the

experimental data for p(A) over the entire range of wavelengths (see Fig. 1.5).

The idea of quantisation of energy, in which the energy of a system can only

take certain discrete values, was totally at variance with classical physics, and

Planck’s theory was not accepted readily. However it was not long before the

quantum concept was used to explain other phenomena. Indeed in 1905,

A. Einstein was able to interpret the photoelectric effect by introducing the idea

of photons , or light quanta, and in 1907 he used the Planck formula for the

average energy of an oscillator [1.27] to derive the law of Dulong and Petit

concerning the specific heat of solids. Subsequently N. Bohr, in 1913, was able

to invoke the idea of quantisation of atomic energy levels to explain the existence

of line spectra.

I.4 THE PHOTOELECTRIC EFFECT

In the course of experiments investigating the properties of electromagnetic

waves, H. Hertz discovered in 1887 that ultra-violet light falling on metallic

electrodes facilitates the passage of a spark. Further work by W. Hallwachs,

M. Stoletov, P. Lenard and others showed that charged particles are ejected

from metal surfaces irradiated by high frequency electromagnetic waves. This

phenomenon is called the photoelectric effect. In 1900, Lenard measured the

charge to mass ratio of the charged particles in experiments similar to those of

J. J. Thomson, and in this way he was able to identify the particles as electrons.

In his experiments to establish the mechanism of the photoelectric effect,

Lenard used the apparatus shown in schematic form in Fig. 1.6. Electrons

liberated by light striking a cathode C could pass through a small hole in an

anode A and be detected by an electrometer connected to a collecting plate P.

The anode current was studied as a function of the voltage difference V between

anode and cathode. The variation of the photoelectric current with V is shown

in Fig. 1.7. As V is increased, so that the electrons are attracted towards the

anode, the current increases until it saturates when V is of the order of 20 V. If

1.6 Lcnard's apparatus for investigating the photoelectric effect.
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1.7 The variation of the photoelectric current with voltage, for different intensities of light,

A < B < C.

V is decreased, and then reversed, so that the cathode is positive with respect to

the anode, there is a definite voltage V0 at which the current ceases and the

emission of electrons from the cathode stops. From this result it follows that the

electrons are emitted with velocities up to a maximum t>max and the stopping

voltage V0 is just enough to repel an electron with kinetic energy , giving

eV0 = irnvi^ [1.37]

The most important features of the experimental data are the following:

1. There is a minimum, or threshold frequency v
l
of the radiation, below which

no emission of electrons takes place, no matter what the intensity of the

incident radiation, or for how long it falls on the surface.

2. Electrons emerge with a range of velocities from zero up to a maximum vmax

and the maximum kinetic energy, \mv 2
max , is found to depend linearly on the

frequency of the radiation and to be independent of its intensity.

3. For incident radiation of a given frequency, the number of electrons emitted

per unit time is proportional to the intensity of the radiation.

4. Electron emission takes place immediately the light shines on the surface,

with no detectable time delay.

According to classical, pre-quantum, physics it would be natural to suppose

that the maximum kinetic energy of the emitted electrons would increase with

the energy density (or intensity) of the incident radiation, independently of

the frequency. In fact, this is not in accord with what is observed. Another

important aspect of classical theory is that the incident energy is spread

uniformly over the illuminated surface. To eject an electron from an atom, this

energy would have to be concentrated over an area of atomic dimensions, and to

achieve such a concentration would require a certain time delay. Experiments

can be arranged for which the predicted time delay is minutes, or even hours,

and yet no detectable time delay is actually observed.

In 1905, Einstein offered an explanation for these seemingly strange aspects of

the photoelectric effect, based on an extension of Planck’s idea of the quantisa-

tion of black body radiation. In Planck’s theory, the oscillators representing the

source of the electromagnetic field could only vibrate with energies given by

16
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E = nhv. In contrast, Einstein supposed that the electromagnetic field itself w>»

quantised and that light consists of corpuscles, called light quanta or photons and

that each photon travels with the velocity of light c and carries a quantum of

energy of magnitude

E = hv = hc/X [1-38]

The photons are sufficiently localised, so that the whole quantum of energy can

be absorbed by a single atom at one time. When a photon falls on a metallic

surface, its entire energy hv is used to eject an electron from an atom. Because

of the interaction of the ejected electron with other atoms it requires a certain

minimum energy to escape from the surface. The minimum energy required to

escape depends on the metal and is called the work function W. It follows that the

maximum kinetic energy of a photoelectron is given by

2^max = hv ~ W [ 1 - 39]

This relation is called Einstein’s equation. The threshold frequency v, is

determined by the work function since in this case vmax = 0, from which

hvt
= W [ 1 .40]

The number of electrons emerging from the metal surface per unit time is

proportional to the number of photons striking the surface per unit time, but

the intensity of the radiation is also proportional to the number of photons

falling on a certain area per unit time, since each photon carries a fixed energy

hv. It follows that the photoelectric current is proportional to the intensity of the

radiation and that all the experimental observations are explained by Einstein’s

theory.

A series of very accurate measurements carried out between 1914 and 1916 by

Millikan provided further confirmation of Einstein’s theory. Combining [1.37J

with [1.39], we see that the stopping voltage satisfies

«T0 = hv-W [1.41]

Millikan measured, for a given surface, Vo as a function of v, and showed that

his results fell on a straight line (see Fig. 1.8) of slope h/e. Knowing e, Millikan

obtained the value 6.56 x 10“ 34
J s for h, which agreed well with Planck’s

results. It is interesting that Millikan was able to use visible, rather than

ultra-violet light for this experiment by using surfaces of lithium, sodium and

potassium which have small values of the work function W.

Although the photoelectric effect provides compelling evidence for a cor-

puscular theory of light, it must not be forgotten that the existence of diffraction

and interference phenomena demonstrate that light also exhibits a wave

behaviour. The particle and the wave aspects of light are contained within

modern quantum electrodynamics, which is capable of predicting both types of

phenomena.
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1.8 Millikan’s results (dots) for the stopping potential V0 as a function of frequency v.

Photons and the electromagnetic spectrum

The electromagnetic spectrum extends from radio waves with low frequencies

up to gamma rays of high frequency (see Fig. 1.9). At each particular

frequency, the radiation consists of photons, each of energy E = hv = he/A. In

Fig. 1 .9 we show the photon energy corresponding to each part of the spectrum.

The energies are given in electron volts (eV), which is a particularly convenient

unit to use in atomic and nuclear physics. It is defined to be the energy acquired

by an electron passing through a potential difference of one volt. Since the

electronic charge has the absolute value e = 1.602 x 10
19

C, we have that

1 eV = 1.602 x 10~ 19 Coulomb-Volts

= 1.602 x 10" 19
J [1.42]

1.5 X-RAYS AND THE COMPTON EFFECT

The corpuscular nature of electromagnetic radiation was exhibited in a spec-

tacular way in a quite different experiment performed in 1923 by A. H.

Compton, in which a beam of X-rays was scattered through a block of material.

X-rays had been discovered by W. K. Rontgen in 1895 and were known to be

electromagnetic radiation of high frequency (see Fig. 1.9). The scattering of

X-rays by various substances was first studied by C. G. Barkla in 1909, who

interpreted his results with the help of J. J. Thomson’s classical theory,

developed around 1900. According to this theory, the oscillating electric field of

the radiation acts on the electrons contained in the atoms of the target material.

This interaction forces the atomic electrons to vibrate with the same frequency

as the incident radiation. The oscillating electrons, in turn, radiate electro-

magnetic waves of the same frequency. The net effect is that the incident

radiation is scattered with no change in wavelength and this is called Thomson

scattering.

18
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1.9 The electromagnetic spectrum.

In general, Barkla found that the scattered intensity predicted by Thomson’s

theory agreed well with his experimental data. However, he found that some of

his results were anomalous, particularly in the region of ‘hard’ X-rays, which

correspond to shorter wavelengths. At the time of Barkla s work, it was not

possible to measure the wavelengths of X-rays and a further advance could not

be made until M. von Laue in 1912, and later W. L. Bragg had shown that the
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Crystal

wavelengths could be determined by studying the diffraction of X-rays by

crystals. The experiment of Compton, which we shall now describe, was only

possible because a precise determination of wavelength could be made using a

crystal spectrometer.

The experimental arrangement used by Compton is sketched in Fig. 1 . 10. He

irradiated a graphite target with a nearly monochromatic beam of X-rays, of

wavelength A0 . He then measured the intensity of the scattered radiation as a

function ofwavelength. His results, illustrated in Fig. 1.1 1 , showed that although

part of the scattered radiation had the same wavelength A0 as the incident

radiation, there was also a second component of wavelength A! , where Aj > A0 .

This phenomenon, called the Compton effect, could not be explained by the

classical Thomson model. The shift in wavelength between the incident and

scattered radiation, the Compton shift AA = Ai - A0 ,
was found to vary with the

angle of scattering (see Fig. 1.11) and to be proportional to sin
2
(0/2) where 0is

the angle between the incident and scattered beams. Further investigation

showed AA to be independent of both A0 and of the material used as the

scatterer, and that the value of the constant of proportionality was

0.048 x 10~ 10 m.

To interpret these results, Compton suggested that the modified line at

wavelength A! could be attributed to scattering of the X-ray photons by loosely

bound electrons in the atoms of the target. In fact, such electrons can be treated

as free since their binding energies of a few electron volts are small compared

with the energy of an X-ray photon and this explains why the results are

independent of the nature of the material used for the target.

Let us then consider the scattering of an X-ray photon by a free electron,

which can be taken to be at rest initially. Since the energies involved in the

collision may be large, we need to use relativisitic kinematics and we shall first

outline the results required [6]. The total energy of a particle having a rest mass

m and a velocity v is given by

E =
Jl- v

2
/c

2 [ 1 .43 ]

[6] A good account of the theory of special relativity is given in the text of Taylor and Wheeler

( 1966).
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The kinetic energy T of the particle is defined as the difference between E and
the rest mass energy me 2

, so that

T = E - me 2
[1.44]

The corresponding momentum of the particle is

m\

7T - v
2
/c

2 [1.45]

and from [1.43] and [1.45] we see that the energy and momentum are related by

E 2 = m2
c
4 + p

2
c
2

[1.46]

Since the velocity of a photon is c and its energy E = hv = he/

A

is finite, we
see from [1 .43] that we must take the mass of a photon to be zero, in which case

we observe from [1.46], that the magnitude of its momentum is

p = E/c = h/A [1.47]

Let us now consider the situation depicted in Fig. 1.12, where a photon of

energy E0 = he/A0 and momentum p0(p0 = E0/c) collides with an electron

initially at rest. After the collision, the photon has an energy E l = he/A, and a

momentum pApi = E x/c) in a direction making an angle 0 with the direction

of incidence, while the electron recoils with a momentum p2 making an angle </>

1.12 A photon of momentum p0 collides with a stationary electron c, and is scattered with
momentum p,, while the electron recoils with momentum p,

.
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with the incident direction. Conservation of momentum yields

PO = Pi + P2 f 1 - 48]

from which

pi = pi + pi ~ 2PoPi cos Q [i- 49l

Conservation of energy then gives

E0 + me 2 =Ei + (m
2
c
4 + p

2
2c

2
)

2
[1.50]

and defining the kinetic energy of the electron after the collision as T2 we have

T2 = (m2
c
4 + p 2c

2
)
2 - me 2

= E0 - Ei - c(p 0 ~ pi)

From [1.51] we have that

pi = (po - pi)
2 + 2mc(p0 ~ p\)

and combining [1.52] with [1.49] we find that

mc(po ~ P\)
= PoPi(l - cos 9) = 2/>0pisin

2
(<9/2)

Since A0 = h/p0 and Ai = h/p x
this can be written in the form

AA = Ai - A0 = 2Ac sin
2
{9/2)

where the constant Ac is given by

h
Ac
= —

me

and is called the Compton wavelength of the electron. Equation [1.54] is known

as the Compton equation. The calculated value of (2AC) is 0.04852 x 10 m,

and this agrees very well with the experimental data.

The existence of the unmodified component of the scattered radiation, which

has the same wavelength Ao as the incident radiation, can be explained by

assuming that it results from scattering by electrons so tightly bound that the

entire atom recoils. In this case, the mass to be used in [1.55] is M, the mass of

the entire atom, and since M > m, the Compton shift AA is negligible. For the

same reason, there is no Compton shift for light in the visible region, because

the photon energy in this case is not large compared with the binding energy of

even the loosely bound electrons. In contrast, for very energetic -y-rays only the

shifted line is observed, since the photon energies are large compared with the

binding energies of even the tightly bound electrons.

The recoil electrons predicted by Compton’s theory were observed in 1923 by

W. Bothe and also by C. T. R. Wilson. A little later, in 1925, W. Bothe and

H. Geiger demonstrated that the scattered photon and the recoiling electron

appear simultaneously. Finally, in 1927 A. A. Bless measured the energy of the

ejected electrons, which he found to be in agreement with the prediction of

Compton’s theory.

[1.51]

[1.52]

[1.53]

[1.54]

[1.55]
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1.6 THE NUCLEAR ATOM

By the early years of this century, the atomic nature of matter had been well

established. It was known that atoms contained electrons and that an electron

was much lighter than even the lightest atom. It had also been shown that

electrons could be removed from atoms of a given species, producing positively

charged ions, but that only a finite number of electrons could be obtained from
each atom. This number is characteristic of the atoms of each element and is

called the atomic number Z. In the normal state an atom is electrically neutral so

that it must contain positive charge of an amount Ze , where —e is the charge on
the electron, and the mass of an atom must be associated with this positive

charge.

jrrjiii,

Atomic sizes

Information about atomic sizes can be found from simple arguments about the
nature of solids. Let us assume that in a solid the atoms are packed as closely as

possible. If the diameter of each atom is D, then a length L of material contains

L/D atoms, and a volume Z.
3
contains (L/D'f atoms. Now the number of atoms

in one mole of substance is equal to Avagadro’s number A/a , given by [1.1]. If

the density in kg/m3
is p, one mole will occupy a volume of (10

-3
p/p) m 3 where

p is the atomic weight. It follows that a unit volume contains (10
3
p/p) 6 x 1023

atoms. This is to be equated with 1/D3
, with the result

1/3

[1.56]

In Table 1.1 some values of D obtained from this formula are shown for a

number of elements. It is seen that ail the atoms concerned have diameters of
about 2 X 10“ 10 m, and this can be taken to be representative of atomic sizes,

which do not vary greatly from element to element.

D = P~ 10
6p

26

Table 1.1 Atomic sizes

lUement Atomic weight
fj. p(in kg/m 3

) D(in m)

Lithium 6.94 0.53 X 10
3

2.8 x 10
10

Carbon (diamond) 12.00 3.5 X 10
3

1.8 x 10
10

Iron 55.8 7.9 X 10’ 2.3 x 10
10

Silver 107.9 10.5 X 103
2.6 x 10

10

Gold 197.0 19.3 X 10
3

2.6 x 10
IO

Lead 207.2 11.35 X 10
3

3.1 x 10
10

The experiments of Geiger, Marsden and Rutherford

The question now arises as to how the mass and positive charge are distributed

within the atom. The answer was provided by a series of experiments by
H. Geiger, E. Marsden and E. Rutherford, carried out between 1906 and
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191 B, on the scattering of a particles by metallic foils of various thicknesses.

Alpha particles are emitted by many radioactive substances, for example

uranium. By measuring the deflection of a particles by electric and magnetic

fields, Rutherford found that a particles had a charge to mass ratio q/M (that

is, a specific charge) which was the same as that of the doubly ionised helium

atom. Spectroscopic measurements subsequently confirmed that a particles

were fully ionised helium atoms, with a mass about four times that of a hydro-

gen atom and a positive charge equal to +2e. The kinetic energies of the a par-

ticles employed in the experiments were several million electron volts (MeV).

A schematic diagram of the experiments of Geiger and Marsden is shown in

Fig. 1.13. The a particles emitted from a source are collimated and then

scattered from thin metallic foils, for example gold foils of thickness —10 6 m.

Alpha particles produce scintillations in zinc sulphide and can be detected by

observing a screen, coated with this substance, with a microscope. Most of the a

particles are deflected through very small angles (<1°), but some are deflected

through large angles; about 1 in 8000 being deflected through angles greater

than 90°. The measurements established that:

1. For a fixed angle of scattering and fixed energy, the number of particles

scattered within an element of solid angle dfl is proportional to the thickness

of the foil, except at very small angles of scattering (<1°).

2. At a fixed angle and for a given foil, the number of particles scattered within

an element of solid angle dfl is inversely proportional to E2
, where E is the

kinetic energy of the a particles.

3. For a given energy and a given foil, the number of particles scattered within

an element of solid angle dfl is proportional to (sin 0/2)
4
, where 0 is the

angle of scattering.

4. At a fixed energy and for a foil of given thickness, the number of particles

scattered within an element of solid angle dfl in a given direction is

proportional to Z 2
,
where Z is the atomic number of the atoms in the foil.

1.13 The scattering experiments of Geiger and Marsden. S represents a radioactive source emitting

a particles, which are collimated by slits Cj and C2 . The a particles fall on to a fixed foil F and those

particles scattered through an angle 6 are detected at D on a screen coated with a scintillating

material. The apparatus is enclosed in an evacuated chamber to avoid scattering of the a particles by

the air.
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To understand what is meant by scattering in a certain direction, within Ml
element of solid angle dfl we refer to Fig. 1.14. Consider a particle travelling

along the Z axis and being deflected along the direction OD after a collision with

an atom situated at O. The direction OD is defined by the angle of scattering 9
between OD and the Z axis and by the azimuthal angle <j>, which is the angle

between OX and the projection of OD on the XY plane. The element of solid

angle dfl subtended at O by a small area of the detecting screen, placed at D at

right angles to OD is given by dfl = sin 0 dd d<t>.

The number of atoms, n, encountered by a beam of particles of unit

cross-sectional area, traversing a thin foil is proportional to the thickness of the

foil. Since the intensity of scattering in a given direction is found to be

proportional to the thickness of the foil, and hence to n , it can be inferred that

each particle makes at most one collision with an atom within the foil. If

multiple scattering occurred then the number of particles deflected through a

certain angle would increase much more rapidly with n. The incident flux N is

defined as the number of particles crossing a unit area normal to the direction of

the beam, per unit time. The number of a particles scattered within an element

of solid angle dfl in the direction (6, <b) (see Fig. 1.14) will be denoted by dN',
and this quantity is proportional both to n dfl and to the flux N. Thus

dN‘-(m)Nnda t, - 57)

The constant of proportionality (da/dfl) is called the differential cross-section and

determines the intensity of scattering from a single isolated atom. Clearly the

cross-section is characteristic of the particular type of atom and it is a function

1.14 The geometry of scattering. The detector D subtends an element of solid angle dll at the

scattering centre O. The polar coordinates ofOD are (8, </>)• The incident beam is directed along the

Z axis so that 8 and <t> are the scattering angles.
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Electrons, photons and atoms 1.6

both of the energy of the incident particles and of the scattering angles. The

experiments of Geiger and Marsden have axial symmetry about the direction of

incidence (the Z axis), so in this case der/dG depends on 6 only and not on the

azimuthal angle <f>.

In explaining the experimental data, we can neglect the influence of the

electrons within the atom and assume that the scattering is due to the positive

charge alone. This is because the a particles are about 8000 times as heavy as an

electron and the kinematics of a collision with an electron will allow a maximum

deflection of much less than 0.1° (see Problem 1 . 10). It can also be shown that if

the positive charge is spread uniformly throughout the atom, as in a model

proposed by J. J. Thomson, there would be no appreciable scattering at large

angles, and even at 1° the number of scattered a particles would be negligible.

The data can be fully explained by a model proposed in 1911 by Rutherford,

who suggested that all the positive charge and almost all the mass of an atom is

concentrated at the centre ofthe atom in a nucleus ofvery small dimensions. By treating

the nucleus as a point charge, Rutherford obtained the differential scattering

cross-section of a beam of a particles of charge 2e by the Coulomb force of a

nucleus of charge (Ze). It is given in the centre of mass (CM) system by (see

Appendices 1 and 2)

do- (2Ze 2
\
2

1 1

r , S8]
dfl \477£0 / 4/x

2
©
4
sin

4
6/2

Here v is the initial relative velocity of the a particle and the nucleus and fx is the

reduced mass /x = MaM^/(Ma + MN) where M„ and AfN are the masses of the

a particle and of the nucleus, respectively. The Geiger and Marsden experi-

ments were performed for heavy targets, in which case the CM and laboratory

system nearly coincide. Since E ~ v
2

, the formula [1.58] completely explains

each of the experimental findings 2, 3 and 4.

The nucleus

The nucleus, although small compared with the atom, is finite in size. This can

be demonstrated by the departure of the cross-section from the Rutherford

scattering formula, at a given angle of scattering, when the energy of the

incident a particle is raised to make the distance of closest approach comparable

to the nuclear radius. For a head-on collision at zero impact parameter, the

distance of closest approach r0 is given by (see Appendix 1)

/ 2Ze 2

\ 4-n-eo

1

to

[1.59]

Departures from Rutherford scattering occur when r0 becomes less than

— 10“ 14 m and this distance is characteristic of nuclear sizes. The structure of

the nucleus is the subject of the text by Burcham (1979), where it is shown that

nuclei are composed of protons, of positive charge e and neutrons which are
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1.7 Atomic spectra and the Bohr model of hydrogen

uncharged. Both protons and neutrons have approximately the same nut

M

(which is about 1840 times as large as the mass of the electron), and are referral 1

to collectively as nucleons. The chemical properties of an atom are determined by

the charge of the nucleus, Ze, where Z is the atomic number. It is found that,

in general ,
several nuclei exist for each value of Z differing in the number of

neutrons N they contain. Atoms with the same Z but with different mass

numbers A = N + Z are called isotopes. Many naturally occurring elements are

mixtures of two or more different isotopes. For example oxygen is a mixture of

three stable isotopes
16
0,

l70 and 1S
0, where the notation is such that the

superscript indicates the mass number A. The isotope
160 occurs with a relative

abundance of 99.759 per cent. The atomic weight of an element on the chemical

scale, defined in Section 1

.

1 , is therefore based on a mixture of oxygen isotopes.

Because of this a new scale has been introduced recently, in which the isotope of

carbon
12C is assigned a mass of 12 atomic mass units (a.m.u. or u). The

absolute value of the atomic mass unit is

1 a.m.u. = 1.661 x 10~ 27 kg [1.60]

and differs very slightly from the previous unit based on the chemical scale.

Limitations of the Rutherford model

In the Rutherford model, the electrons move in the Coulomb field of the nucleus

in orbits, like a planetary system. A particle moving on a curved trajectory is

accelerating and an accelerating charged particle radiates electromagnetic waves

and loses energy. The laws of classical physics - Newton’s laws of motion and

Maxwell’s electromagnetic equations - if applied to the Rutherford atom, show

that in a time of the order 10
10

s all the energy of the atom would be radiated

away and the electrons would collapse into the nucleus. This is clearly contrary

to experiment and is another piece of evidence to suggest that the laws of motion

need to be modified when applied to phenomena on the atomic scale. Another

fact not explained by the Rutherford model is the existence of atomic line

spectra, to which we now turn our attention.

1.7 ATOMIC SPECTRA AND THE BOHR MODEL OF HYDROGEN

Isaac Newton was the first person to resolve white light into separate colours by

dispersion with a prism, but it was not until 1752 that Th. Melvill first showed

that light from incandescent gas was composed of a large number of discrete

frequencies called emission lines. It was subsequently discovered that atoms

exposed to white light can only absorb light at certain discrete frequencies called

absorption lines. With the development of diffraction gratings, much greater

resolving powers could be obtained and towards the end of the last century

much progress was made in the empirial analysis of line spectra. G. R. Kirchhoff

was the first to show that only certain definite frequencies can be radiated or

absorbed by a given element and that the emission frequencies coincide with the
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Electrons, photons and atoms 1.7

absorption frequencies. The fact that each element has its own characteristic

line spectrum is of the greatest importance and is, for example, the only means

by which the presence of particular elements in the sun and stars can be

determined.

The most important discovery in the search for regularities in the line spectra

of atoms was made by J. Balmer in 1885, who showed that the frequencies of a

series of lines in the visible part of the spectrum of atomic hydrogen were among

those given by the empirical formula

n„ - 2, 3 . . . .
C1.61]

where vab is the frequency of either an emission or absorption line, n a and n h

are positive integers with n b > « a and ^ is a constant, known as Rydberg’s

constant. It is usual in the spectroscopy of the visible and ultra-violet regions to

give the frequencies in terms of inverse wavelengths, or wave numbers

The corresponding Rydberg constant for hydrogen then has the value

R = 109677.58 cm" 1
[1.63]

However, in the infra-red or microwave region, frequencies are usually

expressed in megahertz (MHz). The wave number given in units of cm’ 1

is

related to the frequency given in MHz by

i>(cm *)
10

14— KMHz) [1.64]

where we have taken the velocity of light to be 3.00 x 10
8
m/s.

It was subsequently discovered that Balmer’s formula is not only applicable to

the visible region, but in fact describes the complete spectrum of atomic

hydrogen. In spectroscopy, wavelengths are generally given in Angstrom units,

where 1 A = 10
_10

m, so that if the wave number i>ab of a particular line is

given in cm 1
the wavelength in Angstrom units is

Aab = 10
8Mb [1.65]

In atomic hydrogen, the series of lines with na = 1 is known as the Lyman

series and lies in the ultra-violet part of the spectrum. The lines are labelled a,

(3, y ... in order of decreasing wavelengths; the wavelength of the Lyman a

line (nb = 2) is 1216 A, while the series limit (nb = °°) is 912 A. The Balmer

series (na = 2) (the first to be discovered) lies in the visible region. The Balmer

lines are denoted by H„, Up , HT . . . . The Balmer Ha Ime (nb = 3) was first

discovered by J. von Fraunhofer in the solar spectrum and was called by him the C
line. It is a strong red line with a wavelength of 6563 A. The next members of
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1.7 Atomic spectra and the Bohr model of hydrogen

1.15 The Balmer series of atomic hydrogen.

the series (nb = 4 and nb = 5) at 4861 and 4340 A are blue and violet

respectively and the series limit is 3646 A (see Fig. 1.15).

Further series of lines are found in the infra-red part of the spectrum: the

Paschen series (na = 3) starts with a line at 18751 A; the Brackett series

(«„ = 4) starts at 40500 A and the Pfund series (na = 5) at 74000 A.

The set of quantities i?/na , are called terms. J. R. Rydberg showed that for

other atoms, particularly the alkalis, the frequencies of lines could be repre-

sented approximately as differences of terms Tn ,
where

Tn = R/(n + a)
2

, n =
1, 2, 3 . . . [ 1 .66]

and where a was a constant for each particular series. Subsequently it was

discovered by W. Ritz that the frequencies of all lines can be represented by the

difference of terms, even if the terms cannot be represented by a simple formula

such as [1.66]. This has the consequence that if lines of frequencies v\ 2 and v2 )

can be represented as

vu = T\ ~ T2 ; v2i = T2 — T3 [1-67]

then a line of frequency yt3 will exist, where

vii = (Fi - T2) + (T2 - T3)
= Ty -T2 [ 1 .68]

This is an example of the Ritz combination principle , which states that if lines at

frequencies v
l}
and vjk exist in a spectrum with; > i and k > j then there will

usually be a line at v ik where

vik =vij
+vjk [ 1 .69]

However, not all combinations of frequencies are observed because certain

selection rules operate which will be discussed in Chapters 4 and 8.

Bohr's model of the hydrogen atom

A major step forward was taken by N. Bohr in 1913. Working in Rutherford’s

laboratory, he was able to combine the concepts of Rutherlord’s nuclear atom,

Planck’s quanta and Einstein’s photons to explain the observed spectrum of

atomic hydrogen.

Bohr assumed that an electron in an atom moves in an orbit about the

nucleus under the influence of the electrostatic attraction of the nucleus.
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Electrons, photons and atoms 1.7

Circular of elliptical orbits are allowed by classical mechanics, and Bohr elected

to consider circular orbits for simplicity. He then postulated that instead of the

infinity of orbits which are possible in classical mechanics, only a certain set of

stable orbits, which he called stationary states are allowed. As a result, atoms can

only exist in certain allowed energy levels, with energies Ea , Eb , Ec , . . .

Bohr further postulated that an electron in a stable orbit does not radiate

electromagnetic energy, and that radiation can only take place when a transition

is made between the allowed energy levels. To obtain the frequency of the

radiation, he made use of the idea that the energy of electromagnetic radiation is

quantised and carried by photons, each photon associated with the frequency v

carrying an energy hv. Thus, if a photon of frequency vis absorbed by an atom,

conservation of energy requires that

hv = Eb - Ea [1.70]

where Ea and Eb are the energies of the atom in the initial and final orbits, with

Eb > Ea . Similarly, if the atom passes from a state of energy Eb to another state

of lower energy £a , the frequency of the emitted photon must be given by the

Bohr frequency relation [1.70].

The terms of spectroscopy can then be interpreted as being the energies of the

various allowed energy levels of an atom. It is important to note that because of

the existence of the energy-frequency relationship, we can use frequency (or

wave number) units of energy where convenient, and in this book we shall often

use Hertz or inverse centimeters as energy units. In terms of electron volts, we

have

1 eV = 2.41797 x 10
14 Hz

= 8065.48 cnT 1

[1.71]

Other conversions of units are given in Appendix 1 1

.

For the case of one-electron atoms Bohr was able to modify the classical

planetary model to obtain the quantisation of energy levels by making the

additional postulate that the angular momentum of the electron moving in a

circular orbit can only take one of the values L = nh/2rr = nh, where n is a

positive integer, n = 1,2,3, . . . and the commonly occurring quantity h/2rr is

conventionally denoted by h. The allowed energy levels can then be determined

in the following way.

We shall make the approximation (which we shall remove later) that the

nucleus is infinitely heavy compared with the bound electron and is therefore at

rest. The electron will be taken to be moving in a circular orbit of radius r, in

which case the Coulomb attractive force acting on the electron, due to its

electrostatic interaction with the nucleus of charge Ze , can be equated with the

electron mass m times the centripetal acceleration (v
2
/r):

Ze 2 mv

(4Tre0)r
2

r

[1.72]
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1.7 Atomic spectra and the Bohr model of hydrogen

where v is the velocity of the electron. A second equation is obtained from

Bohr’s postulate that the orbital angular momentum is quantised:

L = mvr = nh, n = 1, 2, 3, . . . [1.73]

From [1.72] and [1.73], we obtain the possible values of v and r

Ze 1

{4ir£o)hn
[1.74]

(47J-£o)^
2
H
2

Ze2m

The kinetic energy of the electron T, is then found to be

T=I; m Ze„2 \ 2

2hl
\47reo/ n

1

and the potential energy V is, correspondingly,

Ze 2 m
I

Ze 2 V 1

^ (477£0)r h
2

\4ire0/ «
2

from which the total energy En of the system is

E„ = T + V =
m ( Ze„2 \ 2

2h \47reo/ n

1

[1.75J

[1-76]

[1.77]

[1.78]

Taking Z - 1 for atomic hydrogen and using the Bohr frequency relation

1 1 .70], the frequencies of light emitted in a transition between two levels a and b

are

.2 \ 2m
^ab

1 1

~ZJ
~ Zl}’ ”b > ”a

i /4nA 3
\ 47re0

in agreement with [1.61] provided R is taken to be

m ( e
2

\
2

[1.79J

[1.80]

I lere we have written R(^) to recall that we are using the infinite nuclear mass

approximation.

It instead of frequencies we use wave numbers vab we have

where

nb > n.

R («) =
m

Airch
3

[1-81]

[1.82]
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Evaluating R(°°) we find

1.7

£(«) = 109 737 cm 1

[1.83]

in good, but not perfect, agreement with the experimental value [1.63].

Returning to equation [1.78], we see that the energy levels of a one-electron

atom are given by

En = —

7

p /k
2

,
n = 1, 2, 3... [1.84]

where 7P is given by

1 m ( Ze 2
\
2

, r" B6Z eV [1 - 85]

The level with the lowest energy is known as the ground state and has n = 1

.

If the atom absorbs an energy greater than IP , the energy of the electron

becomes positive and the electron is ejected from the atom. The quantify /^is

known as the ionisation potential, and the value (13.6 eV) can be verified by

experiments in which hydrogen atoms are ionised either by absorbing photons

or in collision processes. An energy level diagram for hydrogen, showing series

of spectral lines is shown in Fig. J. r6. The quantum number n is called the

principal quantum number to distinguish it from other quantum numbers that we
shall meet later. A commonly used notation is one in which an electron in a level

with n = 1 is said to be in the K shell. Correspondingly if rl = 2 or n = 3, the

electron is said to be in the L or M shells respectively.

Atomic units

The radius of the orbit of the electron in the ground state of hydrogen is known
as the first Bohr radius of hydrogen and is denoted by the symbol a0

=
(4ireo)h

_ = $ 29 x ]Q
n m [T86]

me

In atomic physics, it has proved to be extremely useful to introduce a set of

units, called atomic units (a.u.) in which a0 is taken as the unit of length.

Correspondingly the mass of the electron is employed as the unit of mass and h

as the unit of angular momentum. To complete the system the unit of charge

is taken to be the absolute magnitude e of the electronic charge and the

permittivity of free space e0 is 1/477. In atomic units (m = h = e — 1,

4t7£0 = 1), we have

En = — \Z2jn
2
a.u. [1-87]

The ground state energy of hydrogen (Z = 1 ,n = 1) is —4 a.u., from which we

see that the atomic unit of energy is equivalent to 27.2 eV. The atomic unit of
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velocity is equal to the velocity v0 of the electron in the first Bohr orbit of

hydrogen. From [1.74] we see that

v0 =
{fijTEffih

ac [1.881

where we have introduced the dimensionless constant

(47T£o)^C
[1.89]

which is known as the fine-structure constant and has the value a — 1/137.

Thus we see that in atomic units the velocity of light is c — 137 a.u. Further

details concerning atomic units can be found in Appendix 1 1

.
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Finite nuclear mass

1.7

Although the approximation, in which the nucleus is assumed to be infinitely

heavy and at rest, is good enough for many purposes, a distinct improvement

can be made if we allow the nucleus to move. In this case, both the nucleus A of

mass M and the electron B of mass m rotate about the centre of mass of the

system C as in Fig. 1.17. In the absence of forces external to the atom, the

centre of mass will either be at rest, or in uniform motion, according to Newton’s

law. The distance AB is again denoted by r and the angular velocity of the line

AB about an axis through C by a>. Since C is the centre of mass

M x AC = m x CB

from which

AC = 1
m

\Af+m

CB =
/ M '

\Af+m

The total angular momentum of the system is

L = mcoCB2 + McuAC2 = /xcur
2

where

[1.90]

[1.91]

[1.92]

mM
m + M [1.93]

is the reduced mass. Putting rco = v, where v is the velocity of the electron with

respect to the nucleus, we have

L = jj.vr = nfi , n = 1, 2, 3, . . . [1-94]

which is the same as equation [1.73] but with /x replacing m.
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The centripetal force acting on the electron B is of magnitude

mCBaj2 — H(o
2
r

and this is to be equated with the Coulomb force

-2 / Ze2
\ 1

2
ficj

r

=
r Attsq

[l.W]

[1.96]

This is the same equation of motion as before, but with p replacing m.

The kinetic energy of the system is

T = \(_M + m)v2
CfA +W = TCm + Tj [1.97]

where vCm is the velocity of the centre of mass, and Ty is the internal (or relative)

kinetic energy. A bound state energy En is defined as the difference between the

total energy and the kinetic energy 7cm of the centre of mass,

(Ze2
_)l_

r
Ty + V = ifiv

2 -
[Attso

so that E„ is given by [1.78] with /x replacing m

[1.98]

E = -—fx l Ze 2 \ 2

2h \ATreo) n

1

[1.99]

Similarly the allowed values of r are given by [1.75] with, again, /x replacing m

(4 ireo)h
2n2 _

" 2 — ~2

Z /x

where we have defined

n

~Z
[ 1 . 100]

m
a». = <2o — [1.101]

The Rydberg constant for a nucleus of mass M can be written immediately in

terms of /?(») and RC30
) by

R(M) = — RM and R(M) = — R(*) [1.102]
m m

Tor hydrogen M = Mp , where Afp is the mass of the proton and

R(MP) = 109681 cm 1 which agrees with the experimental value
[

1 .63
1
to

better than 4 parts in 10
5

.

Because of the nuclear mass effect there is an isotopic shift between the spectral

lines of different isotopes of the same atom. For example, there is such a shift

between the spectrum of atomic deuterium, which has a nucleus with Z = 1 but

containing a proton and a neutron (so that its mass M — 2MP) and that of

atomic hydrogen. The ratio of frequencies of corresponding lines is 1.00027,

which is easily detectable, and in fact through this the discovery of the deuteron

was made.
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One-electron atoms

1.7

By taking Z = 2, 3, 4, . . . , the Bohr model predicts the energy levels (and

hence the line spectra) of all the ions containing one electron with a nucleus of

charge Ze. The observed frequencies agree closely with the Bohr formula [1.79]

until Z becomes large (Z > 20). The orbital velocity of the electron in the

ground state divided by the velocity of light is such that (see [1.74] and [1.89])

- = «Z - [1.103]
C 13/

so it is to be expected that, for large Z, relativistic effects will be significant. In

Table 1.2, the values ofR(M) are shown for a few hydrogenic ions together with

the wavelengths of the lines corresponding to the n = 2 to n = 1 transition,

which are known as resonance lines.

Table 1.2 Rydberg constants for some hydrogenic systems and the wavelengths of the resonance

lines n = 2 —» n = 1

Wavelength of the transition (A) R(Af)(cm )

H 1+ 1215.664 109 677.58

DI 1215.336 109 707.19

He II 303.779 109 722.26

H jn 134.994 109 728.72

C VI 33.734 109 732.29

O VIII 18.967 109 733.54

t The Roman numeral indicates the degree of ionisation. I denotes the neutral atom, II an atom from

which one electron has been ionised and so on.

The Franck and Hertz experiment

The Bohr model predicts that the energy levels of atoms are quantised and only

certain discrete values of the total energy are allowed. This can be confirmed

rather directly by an experiment originally devised by J. Franck and G. Hertz in

1914. A schematic diagram of the apparatus is shown in Fig. 1.18. In the first

1.18 Schematic diagram of Franck and Hertz’s experiment.
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1.7 Atomic spectra and the Bohr model of hydrogen

stage of the experiment, the apparatus is evacuated. A filament F is heated to

that it emits electrons, which are attracted to and pass through a wire grid, A,

which is maintained at a positive potential V
i
with respect to the filament. The

electrons accelerated by the potential V
{
attain a kinetic energy mv 2

/2 = eV\.

After passing through the grid they are collected by a plate C and cause a current

I to flow in the circuit. The plate C is maintained at a small negative voltage Vi ,

where
\

V2 \

< V, , with respect to the grid A. The small voltage V2 has the effect

of reducing the kinetic energy of the electrons slightly, but not enough to stop

them being collected.

The apparatus is now filled with mercury vapour. The electrons collide with

the atoms of mercury, and if the collisions are elastic, so that there is no transfer

of energy from the electrons to the internal structure of the atoms, the current /

will be unaffected by the introduction of the gas. This follows because mercury

atoms are too heavy to gain appreciable kinetic energy when struck by an

electron. The electrons are deflected but retain the same kinetic energy. In

contrast, if an electron makes an inelastic collision with a mercury atom in

which it loses an energy E, exciting the mercury atom to a level of greater

internal energy, then its final kinetic energy will be mv\/2 = (eV
\
— E ). If eV

\

is equal to E, or is only a little larger, the retarding potential V2 will be sufficient
|

to prevent the electron from reaching the collecting plate and it will no longer

contribute to the current I.

The experiment is carried out by gradually increasing V x from zero and

measuring the current I as a function of V x
. The result obtained is shown

diagrammatically in Fig. 1.19. The current / is seen to fall sharply at a potential

l/R ,
which is known as the resonance potential, and which is (for Hg) 4.9 V.

The results can be interpreted by supposing that for eVi < 4.9 eV the atom

cannot absorb the energy of the electrons and the collisions are elastic, while

exactly 4.9 eV above its ground state, mercury atoms possess another discrete

energy level. When eV

\

reaches this value, a large number of the colliding

electrons excite atoms to this level, losing their energy in the process, and

reducing the current / sharply.

If the voltage V
t
is increased the current again increases, and further sharp

falls are seen. Some of these are due to electrons having sufficient energy to

1.19 The current variation with voltage in a Franck-Hertz experiment.
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excite two or more atoms to the 4.9 eV level; but others are due to the excita-

tion ofhigher discrete levels. We have seen that 1 eV corresponds to a wave number

of8065 cm-1
, so ifthis interpretation is correct, a line would be expected in the mercury

spectrum corresponding to a transition from the first excited state at 4.9 eV to the

ground state, with a wave number of 4.9 x 8065 cm"1 = 39 500 cm" 1
. Franck and

Hertz were indeed able to verify the existence of such a line, and also to show that

radiation of this wave number was only emitted from the mercury vapour when

V\ exceeded 4.9 V.

This experiment, and corresponding experiments using other gases and

vapours, provide excellent confirmation of the discrete nature of bound state

energy levels. It can also be demonstrated that when sufficient energy is

available to ionise an atom, the energy of the ejected electron can take any

positive value, so we can say that the energy level spectrum of an atom consists of

two parts: discrete negative energies corresponding to bound states and a continuum of

positive energies corresponding to unbound (ionised) states.

Limitations of the Bohr model

Although the planetary model of the hydrogen atom is rather successful, and the

idea of quantised atomic energy is correct, the model is unsatisfactory in many

respects. Firstly, it cannot be generalised to deal with systems containing two or

more electrons. In addition, the assumptions made, and in particular, the

hypothesis that only circular orbits are allowed, are inexplicable and arbitrary.

Among other objections are the lack of any method to calculate the rate of

transitions between the different energy levels when radiation is emitted or

absorbed, and the inability to handle unbound systems. In later work, W.
Wilson and A. Sommerfeld showed how to remove the restriction to circular

orbits and Sommerfeld also obtained relativistic corrections to the Bohr model.

However, the other objections still persisted, and the theory - called the old

quantum theory - remained restricted in scope. It was eventually superseded by

the quantum mechanics developed by E. Schrodinger, W. Heisenberg and

others, following the ideas of L. de Broglie.

X-ray spectra and Moseley's law

Despite the general inability of the Bohr model to describe many-electron

systems, it was able to provide an illuminating explanation of the regularities in

X-ray spectra observed by H. Moseley in 1913. In an X-ray tube the radiation is

emitted from a target bombarded by high energy electrons. The X-ray region

may be taken to be in the range of wavelengths from 0.1 to 10 A corresponding

to photon energies from a few keV to several hundred keV (see Fig. 1.9). The

spectrum observed is characteristic of the material used as the target in the tube

and consists of a continuous spectrum upon which is superimposed a line

spectrum. Moseley studied the line spectra of 39 elements from aluminium (the

lightest) to gold (the heaviest). All the spectra were remarkably similar. In most
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1.7 Atomic spectra and the Bohr model of hydrogen

cases, the spectrum consisted of two groups of lines, the K series and the L
series; for a given element the L lines being at lower frequencies than the K
lines. For heavier elements other series of lines appeared at still lower

frequencies.

Moseley found that the frequency vn of the nth line of each series varied

smoothly with the atomic number of the target element, Z. By plotting Jvn

against Z, he established the law

Jjn = Cn{Z - a) [1.104]

where C„ is independent of Z, and cr is in the range 1 to 2 for the K series and is

in the range 7.4 to 9.4 for the L series. An example is the K line of lowest

frequency, the Ka line, for which the Moseley plot is shown in Fig. 1.20. Since

plots of Jvn against Z were smoother than those against the atomic weight /x,

this suggested that Z had a fundamental significance. At this time the atomic

number had no significance other than giving the position of an element in

Mendeleev’s periodic table. In the main the ordering of the elements of the table

was given by their atomic weights p, although Mendeleev found that certain

pairs had to be reversed in order to preserve the periodicity of the chemical

properties. For example in order of weights the 18th element is potassium

(p = 39.102) and the 19th argon (p = 39.948). This arrangement puts potas-

sium in the rare gas column and argon in the alkali metal column and to preserve

the chemical periodicity argon has to be assigned the atomic number 18 and

potassium 19.

An explanation of the significance ofZ was given by Moseley in terms of the

Bohr model, which had been published a year before. He first argued that iq the

high energy electron bombardment of the target atoms, the inner (tightly

bound) electrons are ejected leaving vacancies. The X-rays are emitted when a

less tightly bound electron makes a transition, filling a vacancy. Since the

(Hz)
l/: (keV)v'

1.20 A Moseley plot of J~v against Z for the K„ line in the X-ray spectrum. A scale in JE, with E
in keV, is shown on the right-hand side of the figure.
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transitions concern tightly bound electrons in orbits close to the nucleus, the

effective potential experienced by these electrons is due mainly to the Coulomb

field of the nucleus, screened to a small extent by the other electrons. The

atomic number Z was known to be approximately equal to ft/2 and the

experiments of Geiger and Marsden had shown that the nuclear charge was also

approximately ft/2. This suggested the identification of Z with the nuclear

charge and (Z - cr) as an effective charge, cr allowing for screening of the

nucleus by other electrons. Using the Bohr formula for the energy levels of one

electron moving in a Coulomb field with charge (Z — cr), the frequencies of the

spectrum are given by

vmn = R(Z - o-)
2 Up - J?) [1-105]

where n and m are both integers and n > m. The K series of lines can be

attributed to transitions in which the final energy level has m = 1 (the K shell).

The line of longest wavelength in the K series is the K„ line, and for this n = 2.

The L series of lines are those in which the vacancy occurs in the m = 2 level

(the L shell) and the line of longest wavelength corresponds to n = 3.

By interpreting the regularities he had observed in the X-ray spectra in this

way, Moseley was able to establish the critical identification of Z, the atomic

number, with the nuclear charge, and to show that the Bohr model could be

applied to the most tighdy bound inner electrons of an atom, which move in a

potential dominated by the nuclear Coulomb field. It is interesting to note that

in plotting his results Moseley found that to avoid breaks in his curve, he had

to postulate the existence of four, hitherto unknown, elements with Z = 43,

61, 72 and 75. These were discovered subsequently.

A further discussion of X-ray spectra is given in Chapter 8. The optical

spectra of many-electron atoms are much more complicated and cannot be

interpreted so easily, since the outer electrons move in potentials which are not

strongly dominated by the nuclear potential.

1.8 THE STERN-GERLACH EXPERIMENT - ANGULAR
MOMENTUM AND SPIN

We shall now discuss an experiment of fundamental importance, carried out by

O. Stern and W. Gerlach in 1922, to measure the magnetic dipole moments of

atoms. The results demonstrated, once more, the inability of classical mechanics

to describe atomic phenomena and confirmed the necessity of a quantum theory

of angular momentum, which had been suggested by Bohr’s model.

Let us first understand how an atom comes to possess a magnetic moment. In

the Bohr model of a hydrogenic atom, an electron occupies a circular orbit,

rotating with an orbital angular momentum L. A moving charge is equivalent to

an electric current, so that an electron moving in a closed orbit forms a current

loop, and this in turn creates a magnetic dipole (Duffin, 1968). In fact whatever
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model of atomic structure we make, the electrons can be expected to posseii

angular momentum and accordingly atoms possess magnetic moments.

A circulating current of magnitude / enclosing a small plane area dA gives rise

to a magnetic dipole moment

M = I dA [1.106]

where the direction of dA is along the normal to the plane of the current loop, as

shown in Fig. 1.21.

When the current is due to an electron moving with a velocity v in a circle of

radius r, / is given by

/ =
ev

2rrr
LI- 107]

Since the area enclosed is nrz
,
we have M = evr/2 = eL/2m ,

and as the

direction of the current is opposite to the direction of rotation of the electron

M = - L [1.108]

The Bohr quantisation rule [1.73] suggests that h is a natural unit of angular

momentum, so we can write

M = -/tB(L/ft) [1.109J

where

=
eh

2m [
1 . 110

]

Because (L/h) is dimensionless, mb has the dimensions of a magnetic moment.

It is known as the Bohr magneton and has the numerical value

= 9.27 x 10“ 24 JT 1

[1.111]
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Quite generally, a system of electrons possessing a total angular momentum J

has a magnetic moment M antiparallel to J, and it is usual to write

M = -gnb(JM) [1.112]

where g is a dimensionless constant called a gyromagnetic ratio.

Interaction with a magnetic field

If an atom with a magnetic moment M is placed in a magnetic field ® , the

energy of interaction (potential energy) is (see Duffin, 1968)

W = -M • 98

The system experiences a torque T, where

T = M x a

and a net force F, where

[1.113]

\

[1.114]

F = -V1F [1.115]

Combining [1.113] with [1.115] we see that the components of F are

[1.116]

In a magnetic field that is uniform, no net force is experienced by a magnetic

dipole, which precesses with a constant angular frequency. For an orbiting

electron this angular frequency is

wl = -^2& [1.117]

It is called the Larmor angular frequency. On the other hand, in an inhomo-

geneous field an atom experiences a net force proportional to the magnitude of

the magnetic moment.

The Stern-Gerlach experiment

In 1921, Stern suggested that magnetic moments of atoms could be measured by

detecting the deflection of an atomic beam by such an inhomogeneous field. The
experiment was carried out a year later by Stern and Gerlach. The apparatus is

shown in schematic form in Fig. 1.22.

The first experiments were made using atoms of silver. A beam is produced

by heating the metallic vapour in an enclosure, which is situated in an evacuated

region into which the silver atoms stream through a small hole. The beam can be

collimated with a system of slits and passed between the poles of a magnet

shaped to produce an inhomogeneous field, as shown in the figure. The beam is

then detected by allowing it to fall on a cool plate. The density of the deposit is

proportional to the intensity of the beam and to the length of time for which the

beam falls on the plate.
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1.22 The Stern-Gerlaeh apparatus.

Taking the shape of the magnets as shown in Fig. 1.22, the force on each

atom is given by (see [1.116])

Fx = Mz
dx ’

[ 1 . 118]

The magnet is symmetrical about the XZ plane and the beam is confined to this

plane. It follows that d3lz ldy = 0. Also, apart from edge effects, d$ftt ldx
“ 0 ,

so that the only force on the atoms in the beam is in the Z direction.

In the incident beam, the direction of the magnetic moment M of the atoms

will be completely at random and in the Z direction it would be expected that

every value of Mz would occur in the interval —M Mz =£ M, with the

consequence that the deposit on the collecting plate would be spread over a

region symmetrically disposed about the point of no deflection. The surprising

result that Stern and Gerlach obtained in their experiments on silver, was that

two distinct and separate lines were formed on the plate (see Fig. 1.23),

symmetrically about the point of no deflection. Similar results were found for

atoms of copper and gold, and in later work, for sodium, potassium and

hydrogen.

1.23 Results of the Stern-Gerlach experiment for silver.
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The quantisation of the component of the magnetic moment along the

direction defined by the magnetic field is termed space quantisation. This implies

that the component of the angular momentum in a certain direction is quantised

so that it can only take certain values. In general for each type of atom, the

values ofMz will range from (d/f2 )max to -(il0)max and correspondingly L z will

range from -(L2)max to (LJmax . Ifwe denote the observed multiplicity of values

ofMz (and hence Lz) by a we can try to interpret a and to deduce the allowed

value's of L using the Bohr model. Indeed, the Bohr quantisation of angular

momentum suggests that orbital angular momentum only occurs in integral

units of ft. We may postulate that the magnitude of orbital angular momentum

can only take values L - Ih, where / is a positive integer or zero. Thus the

mavimnm value ofLz is +/ft and its minimum value -/ft. IfLz is also quantised

in the form

Lz
= mh [1-119]

where m is a positive or negative integer or zero, then m must take on the values

-1,-1 + 1,. . . ,
/ - 1,/ and the multiplicity a must be equal to (21 + 1). The

number m is known as a magnetic quantum number. In fact as we shall see in the

next chapter, this result turns out to be correct in quantum mechanics, with the

difference that the possible values of the total orbital angular momentum are of

the form L = + h with / = 0, 1, 2, . . . rather than of the form L = /ft

suggested by the Bohr model. However the results of Stern and Gerlach for

silver do not fit with this scheme, since the multiplicity of values of the Z

component of the angular momentum for silver is 2. This implies that (2/ + 1)

= 2 giving / = |, a non-integral value.

Electron spin

The explanation of this result for silver came in 1925, when S. Goudsmit and

G. E. Uhlenbeck showed that the splitting of spectral lines occurring when

atoms are placed in a magnetic field (the Zeeman effect) could be explained if

electrons possess an intrinsic magnetic moment Ms in addition to the magnetic

moment produced by orbital motion, where the component of Ms
in a given

direction can take the two values ±Tt s
only. We can postulate that this magnetic

moment is due to an intrinsic angular momentum, or spin, of the electron, which

we denote by S. By analogy with [1.112], we then have

Ms
= -g

sp.BS/h [1.120]

where gs
is the spin gyromagnetic ratio. If we introduce a spin quantum number s,

analogous to /, so that the multiplicity of the spin component in a given direction

is (2s + 1), we must have s = 2 and the possible values of the component of the

spin S in the Z direction are ±ft/2, while the magnitude of the spin is

Js(s + ij ft = Jl ft. The Stern-Gerlach results are then explained ifwe assume

that the orbital angular momentum of a silver atom is zero, but its spin angular

momentum is given by s = i.
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We have seen that the magnetic moment of an electron is due partly to it!

orbital angular momentum and partly to its spin angular momentum, and w$

can write

M = -mb(L + gs
S)/h [ 1 . 121 ]

Measurements of the magnitude of M. for atomic hydrogen have shown that the

electron spin gyromagnetic ratio is gs
= 2. The discovery of this intrinsic

property of the electron is of fundamental importance. In fact, it is now known

that all particles can be assigned an internal angular momentum. In some cases,

such as the pion ( 7r meson) it is zero, but in others, such as the electron, the

proton, the neutron, it is one-half (i.e. s = and for other elementary particles

it may be s = 1 , s = f, . . .

1.24 Precession of the angular momentum J about the axis of quantisation for the case; - 2.
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Angular momentum

In general the total angular momentum of an atom is the result of adding

vectorially all spin and orbital angular momenta of the electrons it contains. If

the total angular momentum is J, then a measurement of the component of J in

the Z direction can only provide (2j + 1) values, given by m-h, , where the

magnetic quantum number m
}
can take the values -j, —j + 1, . . .j — 1, 7 . It is

found that j can take integral or half-integral values only; j = 0 , -£, 1 , \ . . . .

For an angular momentum whose component in a given direction has the

multiplicity (2/ + 1 ), a measurement of the magnitude of the angular momen-
tum produces the value Jj(j + 1 )h. Thus, in a Stern-Gerlach experiment, a

beam of atoms with angular momentum of magnitude Jj(j + 1 ) h will produce

(2j + 1 ) spots on the detecting screen, symmetrically disposed about the point

of zero deflection.

Another property of angular momentum in quantum mechanics (which will

be discussed in Chapter 2), is that there is a limitation on the precision with

which simultaneous measurements of two (or three) components of an angular

momentum can be measured. In fact, if the value of the Z component is known
precisely, the values of the x andjy components are indefinite, but on the average

are zero. This situation is often represented by a vector model in which the

angular momentum vector J of length Jj(j + 1 )h, precesses about the Z axis

such that Jz has one of the (27 + 1) values mfi

.

This is shown in Fig. 1.24 for

the particular case 7 = 2 .

1.9 DE BROGLIE'S HYPOTHESIS AND THE GENESIS
OF WAVE MECHANICS

In our brief historical survey, we have seen how, as knowledge of atomic

structure increased, evidence accumulated that a description in terms of

classical physics - Newton’s laws of mechanics and Maxwell’s electromagnetic

equations - was inadequate. Electromagnetic radiation displays particle as well

as wave characteristics; the energy of the field being quantised, each packet of

energy hv being carried by a photon. On the other hand, the energy levels and

angular momenta of bound electrons in atoms are also quantised; in contrast

beams of electrons moving under electric and magnetic fields, as in Thomson’s
experiments, behave like classical charged particles.

In 1924, L. de Broglie made a great unifying, but speculative, hypothesis,

that just as radiation has particle-like properties, electrons and other material

particles possess wave-like properties. The energy of a photon is given by

E = hv, where v is the frequency and the corresponding momentum is

p — hv/c = A/A where A is the wavelength. For free material particles, de

Broglie assumed that the associated wave also has a frequency v and a

wavelength A, related to the energy E and the momentum p of the particle by
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and

A = - [1.123]
P

In particular, for a particle of mass m moving at a non-relativistic speed v,

one has p = mv so that A = h/mv.

This idea immediately gives a qualitative explanation of the quantum condi-

tion [1.73], used in the Bohr model of the hydrogen atom. Indeed, let us

suppose that an electron in a hydrogenic atom moves in a circular orbit of radius

r, with velocity v. If this is to be a stable stationary state, the wave associated

with the electron must be a standing wave and a whole number of wavelengths

must fit into the circumference 2vr. Thus

nA = 2 77T n = 1, 2, 3, . . . [1.124]

Since A = h/p and L = rp, we immediately find the condition

L = nh/I-rr = nh [1.125]

which is identical with [1.73]. Later, in 1925, these qualitative ideas were

incorporated into the systematic theory of quantum mechanics developed by

Schrodinger, which will be discussed in the next chapter.

When waves are scattered or pass through slits, which have dimensions

comparable to their wavelength, interference and diffraction effects are

observed. Now, as seen from [1.123], the de Broglie wavelengths associated

with electrons of energy 1, 10 and 100 eV are, respectively, 12, 3.9 and 1.2 A
(where 1 A = 10“ 10

m). Thus, in macroscopic situations, as in Thomson's

experiments, the de Broglie electron wavelengths are exceedingly small com-

pared with the dimensions of any obstacles or slits in the apparatus and no

interference or diffraction effects can be observed. However, the spacing of

atoms in a crystal lattice is of the order of a few angstroms and in 1927 C. J.

Davisson and L. H. Germer showed that electron beams could be diffracted

when scattered from crystals, and displayed the predicted wave properties.

Electron diffraction

In the Davisson and Germer experiment, a beam of monenergetic electrons is

directed to strike the surface of a crystal of nickel normally, and the number of

electrons N(d) scattered at an angle 6 to the incident direction are measured (sec

Fig. 1.25). The electron beam energy employed was 54 eV. The scattered

intensity is shown in Fig. 1.26. It falls from a maximum at 6 - 0° to a minimum

near 35°, then rises to a peak near 50°. The strong scattering at 0 = 0° is

expected from either a particle or a wave theory, but the peak at 50° can only be

explained by constructive interference of the waves scattered by the regular

crystal lattice.
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1.25 Schematic diagram of Davisson and Germer’s experiment on the diffraction of electrons when
scattered by a crystal of nickel.

1.26 Polar diagram of the scattered intensity against angle of scattering for electrons of 54 eV in the

Davisson-Germer experiment.

If the atoms in the crystal are spaced at a distance d, then the Bragg condition

for constructive interference at a scattering angle 9 is (see Fig. 1.27)

nX = d sin 6 with n =
1, 2, 3 . . . [1.126]

Experiments in which X-rays were diffracted established that for nickel, the

atomic spacing is d = 2.15 A. Assuming that the peak at 50° corresponds to

first-order diffraction (

n

= 1), the corresponding electron wavelength must be

A = (2.15 sin 50°) A = 1.65 A. The wavelength of a 54 eV electron is 1.67 A,

which agrees with the value of 1.65 A within the experimental error.

Subsequent experiments have confirmed the variation of A with momentum
predicted by the de Broglie formula [1.123]. Diffraction has also been demon-

strated when atoms and neutrons are scattered by crystals. In all cases

agreement has been found with de Broglie’s hypothesis.
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1.27 The Bragg condition. Low energy electrons are omy scattered by atoms in the surface plane.

The difference in path length for scattering angle 8 is d sin 8 which must equal a whole number of

wavelengths for constructive interference.

PROBLEMS

1.1 Consider a Thomson apparatus with the following dimensions

Length of the condenser plates: x x
= 0.1 m

Distance from the plates to the screen: x2 = 0.45 m
Distance between the plates: d = 0.03 m

When a voltage of 1500 V is applied between the plates, a deflection

y2 = 0.2 m is observed. This deflection is reduced to zero if a magnetic

field SB = 1.1 x 10- 3 T is applied.

(a) Find the velocity v of the electrons.

(b) Determine the value of e/m given by this experiment.

Show that the number 2V(A) dA of standing electromagnetic waves

(modes) in a large cube of volume V with wavelengths within the interval

A to A + dA is given by Af(A) dA = HttV dA/A4
.

Using Planck’s radiation law [1.30] for p(A), prove that

1.2

1.3

1.4

T =
v 1

he

4.965 k

where Amax is the wavelength at which p(A) is a maximum. From this

result and the values of h, c and k given in Appendix 11, obtain the

constant b which occurs in Wien’s displacement law [1.19].

Using Planck’s radiation law [1.30] forp(A), prove that the total energy

density p [ot
is given by pm = aT*, where a = 8tt5£4/15/)U3 .

Hint:
X 77

^T dx 'T?
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1.5 The photoelectric work function W for lithium is 2.3 eV.

(a) Find the threshold wavelength A, for the photoelectric effect.

(b) If ultraviolet light of wavelength A = 2000 A is incident on a lithium

surface, obtain the maximum kinetic energy of the photoelectrons

and the value of the stopping voltage V0 .

1.6 Consider black body radiation at absolute temperature T. Show that:

(a) The number of photons per unit volume is N = 2.029 x 10
7 T 3

photons/m3
. [Hint: fo x

2
(e
x - l)

-1
dx = 2.40411]

(b) The average energy per photon is E = 3.73 x 10
-23 T joules =

2.33 x 10~ 4 T eV.

1.7 A photon of wavelength A0 = 0.708 A is incident on an electron which is

initially at rest.

(a) What is the wavelength shift AA at the photon scattering angle

e = 30°?

(b) What is the angle <p (measured from the incident photon direction) at

which the electron recoils?

(c) What is the kinetic energy T2 of the recoiling electron?

1.8 Consider the Compton scattering of a photon of wavelength A0 by a free

electron moving with a momentum of magnitude P in the same direction

as that of the incident photon.

(a) Show that in this case the Compton equation [1.54] becomes

AA — 2A0
(Po + P)c

E - Pc
sin

0

2

where p0
= h/A0 is the magnitude of the incident photon momen-

tum, 0 is the photon scattering angle and E = (m2
c
4 + P2

c
2
)
]/2

is the

initial electron energy.

(b) What is the maximum value of the final electron momentum?
Compare with the case P — 0 discussed in the text.

(c) Show that if the free electron initially moves with a momentum of

magnitude P in a direction opposite to that of the incident photon,

the wavelength shift is given by

AA = 2A0
(po -P)c

E + Pc
sin

0

2

1.9 Consider a photon of energy E0 = 2 eV which is scattered through

an angle 6 = n from an electron having a kinetic energy T = 20 GeV
(1 GeV = 10

9
eV) and moving initially in a direction opposite to that of

the photon. What is the energy E\ of the scattered photon? [Hint: use

the result (c) of Problem 1.8]

1.10 Consider the scattering of an a particle of energy 10 MeV by an atomic

electron, which we assume for simplicity to be initially at rest.

(a) What is the maximum momentum that can be transferred to the

atomic electron?

(b) What is the maximum angle of deflection of the a particle?
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1.11 Consider a Rutherford scattering experiment in which an a-particle of

laboratory energy 10 MeV scatters from a gold nucleus (Z = 79).

(a) Find the distance of closest approach for a head-on collision.

(b) Using the results of Appendices 1 and 2, find the centre of mail

scattering angle 8 of the a particle if its impact parameter is

b = 8 x 10
-14

m.

(The mass of the a particle is Af„ - 4 a.m.u. and the mass of the gold

nucleus is AfN = 197 a.m.u.)

1.12 Alpha particles of laboratory energy E are scattered by a copper nucleus

(Z = 29) of mass AfN = 63 a.m.u. and radius R - 5 x 10
15 m. Find

the value ofE for which departures from Rutherford scattering occur for

head-on collisions (6 = 180°).

1.13 Using the infinite nuclear mass approximation in the Bohr model, obtain

the wavelengths of the first four lines of the Lyman, Balmer and Paschen

series for H, He*, Li
2+ and C 5+

.

1.14 Consider a one-electron atom (or ion), the nucleus of which con-

tains A nucleons (Z protons and N = A - Z neutrons). The mass

of that nucleus is given approximately by M — AMp ,
where Afp =>

1.67 x 10“ 27 kg is the proton mass. Using this value of M, obtain

the relative correction AE/E to the Bohr energy levels due to the finite

nuclear mass for the case of hydrogen (A = 1, Z = 1), deuterium

(A = 2, Z = 1), tritium (A = 3, Z = 1),
4He+

(A = 4, Z = 2) and
7
Li

2

4

(A = 7, Z = 3).

1.15 Calculate the difference in wavelengths AA between the Balmer H„ lines

in atomic hydrogen and deuterium.

1.16 Calculate the energy ER with which an hydrogen atom recoils when

emitting a photon in a transition from the n = 4 level to the n = 1 level,

and show that ER is negligible in comparison with the energy difference

between the two levels.

1.17 Use Moseley’s law [1.105] with a = 1 for K lines and a = 7.4 for L

lines to

(a) Calculate the two longest wavelengths in the K series ofCu (Z = 29).

(bl Calculate the three longest wavelengths in the L series of gold

.

’

(2 = 79).

'

(c) Find the element whose K„ line has the wavelength 0.723 A.

1.18 With reference to Fig. 1.22 showing a Stern-Gerlach apparatus, calcu-

late the distance P2Pi from the following data:

dSft. ,

Field gradient: ——— = 10
3 T/m

Length of pole piece: L — 0.1 m
Distance to screen: / = 1 m
Atomic beam composed of silver atoms, for which Mz = ±fiR

Temperature of oven: 600 K
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Problems

Assume that the velocity of the silver atoms is equal to the root mean

square velocity of (3kT/M )
l/2

, where k is Boltzmann’s constant and M is

the mass of a silver atom.

1.19 Calculate the de Broglie wavelength of:

(a) A mass of 1 kg moving at a velocity of 1 m/s.

(b) A free electron of energy E = 200 eV.

(c) A free a particle of energy E = 5 MeV.
(d) A free neutron of energy E = 0.02 eV.

(e) A free electron of kinetic energy E = 1 MeV. (Consider whether you

need to use relativistic kinematics.)
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2mad The elements of quantum mechanics
I'

In Chapter 1 , we discussed some of the evidence for the atomic nature of matter.

We also learned that the classical Newtonian form of mechanics could not

describe phenomena on the atomic scale. In particular, we saw that experiments

involving the diffraction of electrons or atoms by crystals demonstrate that

particles exhibit wave properties. Equally, experimental evidence for the

quantisation of the radiation field, from phenomena as different as black body

radiation, the photoelectric effect and the Compton effect, points to a fun-

damental wave-particle duality which must be taken into account in satisfactory

theories of both matter and radiation. For material particles, such a theory

was developed in the years 1925 and 1926 by W. Heisenberg, M. Born and

P. Jordan in a form known as matrix mechanics. An equivalent form of the

theory, called wave mechanics, was proposed at the same time by E. Schrodin-

gcr, following the ideas put forward in 1924 by L. de Broglie. A more abstract

form of quantum mechanics, which includes both matrix mechanics and wave

mechanics was published by P.A.M. Dirac in 1930.

In this chapter, we shall outline the main results and approximation methods

of quantum mechanics, which will be used in the detailed discussions of atomic

and molecular phenomena following in later chapters. In the space available,

only those aspects of the subject which find immediate application will be

discussed. For detailed accounts of the fundamentals of quantum theory we
refer to the standard texts of which Dicke and Wittke (1960), Messiah (1968),

Si’hilf (1968) and Merzbacher (1970) are excellent examples.

2.1 WAVES AND PARTICLES, WAVE PACKETS AND
THE UNCERTAINTY PRINCIPLE

The experiments on the corpuscular nature of the electromagnetic radiation,

which we discussed in the previous chapter, require that with the electromagne-

tic field we must associate a particle, the photon, whose energyE and magnitude

ol momentum p are related to the frequency v and wavelength A of the

electromagnetic radiation by

E = hv, p = h/A 12. 1J

On the other hand, the experiments on the wavelike properties of particles,

also discussed in Chapter 1 , imply that we associate with each particle a wave or
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matter field, the de Broglie relations which link the frequency v and the

wavelength A of the wave with the particle energy E and magnitude o

momentum p being also given by [2.1]. As a consequence, we can assume that

the relations [2.1] hold for all types of particles and field

angular frequency to = 2irv, the wave number k - 2 tt/X
_

and the reduced

Planck constant h = h/2jr, we may write the relations [2.1] in the m

symmetric form

E = fuo, p = hk \2.2\

As a first step in formulating non-relativistic wave mechanics for inaterial

particles, let us consider a free particle of mass m, having a well defined

momentum p = pxx directed along the positive X direction and a non-

relativistic energyE = p
2
x/2m. Guided by [2.2], we associate with this particle a

plane wave

¥(x, 0 =Ae,(^ w0
t
2 - 3 J

where A is a constant. This plane wave travels in the positive X direction, has a

wave number k = 2rr/A = pjh and an angular frequency w = E/h which we

may also write as 2

w [2.4]

2m

The function T(x, t) is known as a wave function, and we shall discuss its

significance shortly. For the moment, we note that for a free particle,

represented by the plane wave [2.3], we have

-ih — T = pfV [2-5]

dX

ih — T = [2.6]

dt

This one-dimensional treatment is easily extended to three dimensions. To a

free particle of mass m, having a well-defined momentum p and an energy

£ = p
2/2m, we now associate a plane wave

¥(r, i) = Ae ,(k ' r"“")
t2 -7 J

where the propagation vector k is related to the momentum p by

p = hk t2 - 8 ]

The vector r is the position vector of the particle and the angular frequency to is
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still given by ai - E/h = fik
2/2m. The equation [2.6| remains unehanged for

the plane wave [2.1], while [2.5J is now replaced by its obvious generalisation

-ifiVT = pT [2.10]

where V is the gradient operator, having Cartesian components (d/dx, d/dy,

d/dz). The relations [2.6] and [2. 10] show that for a free particle the energy and

momentum can be represented by the differential operators

£„P = ih Pop = -ffiV [2.11]
at

acting on the wave function T. It is a postulate of wave mechanics that when the

particle is not free the dynamical variables E and p are still represented by these

differential operators.

The plane waves [2.3] or [2.7] represent particles having a definite momen-
tum, but since their amplitude is constant, these plane waves correspond to a

complete absence of localisation of the particle in space. To describe a particle

which is confined in a certain spatial region, a wave packet can be formed by

superposing plane waves of different wave numbers. For example, in order to

describe a free particle which is confined in a region of the X axis, we shall

superimpose plane waves of the form [2.3] to obtain the wave packet

T(x, t) = (2

t

Th)~ 1/2

|
c"

pxX-E‘ >/fl
<t>(px ) dpx [2.12J

where the factor in front of the integral has been chosen for future convenience.

Writing t//(x) = T(x, t
= 0) we see that the functions

<K*)
= (2 -nfi)

- 1/2 JpxX/tl
<t>(Px ) dpx [2.13a]

and

<KPx) = (2 ttA)
- 1/2 e-'/wV(x) dx [2.13b]

are just Fourier transforms of each other. More generally, we write at time t

T(x, t ) = (27rfir
1/2 e'^cp(px , t) dp [2.14a|

and

<F(px , t) = (2tt1i)~
1/2 z~ ipxX/hs

P(x, t) dx [2.14b]

so that the functions T(x, t) and t) are also mutual Fourier transforms.

The functions t) and 4>(px )
= <F(px , t = 0) are called wave functions in

momentum space.



The elements of quantum mechanics

The Heisenberg uncertainty principle

Consider the case for which the wave function <f>(px) is localised in a certain

region of the px variable. As a simple example, we shall assume that 4>(px) is the

Gaussian function

<Kpx) = e-c^/^ [2.15]

We note that 4>(px) has a maximum at px = p0 and falls to 1/e of its maximum

value at p x = po ± y, so that the ‘width’ of the distribution represented by

[2.15] is Apx = 2y (see Fig. 2.1). Using the known result

f+» /„\l/2

e-“V* dw =
f

[2 ' 16]

we find from [2.13] that

!p(x) = (2hy 1/2ye
,pox/he~

y2xZ/4flZ
[2-17]

Apart from the factor exp (ip0x/h) which is known as a ‘phase factor’ since

\exp(ip0x/h)\
2 =

1, we see that the function ip(x') is again a Gaussian. It has a

maximum at x = 0 and \ip(x)\ falls to 1/e of its maximum value at x = ±2h/ y,

so that the ‘width’ of the function |ip(x)| is Ax = 4h/ y, as shown in Fig. 2.1. It

is important to remark that if we increase y so that the width Ax is decreased

and the function |i//(x)| becomes more strongly localised about x = 0, then the

width Apx of the distribution [2.15] becomes larger, and the function <Kpx) gets

broader. For any finite, non-zero value of y the product of the widths is

AxApx = 8ft, which is independent of y and is of the order of magnitude of h.

Similar conclusions can be derived for functions 4>{px ) having different shapes

<MS>%

)

1.0

\le \

1

-2.0 -1.0 io l.o 2.0 y

y= ipx - Po)h

2.1 The wave packets <Kpx ) and *(x) defined in LZ.13J ana Lz.i/j. ‘
, I, width of the

against v = (p, - p0)/y; it falls to 1/e of its maximum value at >• = ±1, so the w dth of the

distribution is = 2y . The function Jh
\

iK*)
Ih is plotted against a - yx/h, it falls to 1 /e of its

maximum value at a = ±2, so the width of the distribution is Ax - 4ft/y.
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(Problem 2.1). In fact, it is a general result of Fourier analysis that if <K*) AlM|

4>(px ) are mutual Fourier transforms as in [2.13]-[2.14], then -ft

Ax Apx h [2.18]

This is the Heisenberg uncertainty relation for position and momentum, according to

which the uncertainty Ax in measuring the x coordinate of a particle is related to

the uncertainty Apx in measuring the x component of the momentum, the

product of the uncertainties being larger than a quantity of order h. A precise

definition of the uncertainties Ax and Apx will be given below.

The foregoing discussion is readily generalised to more than one dimension.

By superposing plane waves of the form [2.7] we obtain the wave packet

¥(r, t) = (2 tth)~ i/2
(
e
,(p

' r“£'vV(p) dp

[2.19]

where the wave functions in momentum space <I>(p, t) and </>(p) = d>(p, t m 0)

are the Fourier transforms of ^(r, t) and i//(r) = ^(r, t = 0), respectively. That

is

= (2irh)~ i/2
e,p r/ft

d>(p, t) dp

<F(p, t) = (2rrhy 3/2 e“ !pr/A^(r, t) dr

and

<(>(P) = (27rh)
3/2 -ip-r/h

<Kr) dr

[2 .20]

[2 .21 ]

The three-dimensional form of the Heisenberg uncertainty relations for position

and momentum is now

Ax Apx 5s ft , Ay Apy ? h, Az Apz [2 . 22 ]

The position-momentum uncertainty relations [2.22] have been derived by

using the theory of Fourier analysis. This theory may also be invoked to obtain a

time-energy uncertainty relation. Indeed, according to Fourier analysis, a wave

packet of duration At must be composed of plane-wave components whose

angular frequencies extend over a range Aa> such that At Aw 3= 1. Since

E = hw, we therefore have

At AE [2.23]

which is the Heisenberg uncertainty relation for time and energy. It connects the

uncertainty AE in the determination of the energy of a system with the time

interval At available for this energy determination. Thus, if a system does not

stay longer than a time At in a given state of motion, its energy in that state will

be uncertain by an amount AE S h/At.
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The Heisenberg uncertainty relations [2.22] and [2.23], which are fun-

damental to any wave theory of matter, are particular cases of the uncertainty

principle formulated by W. Heisenberg in 1927. This principle states that it is

impossible to specify precisely and simultaneously the values of comple-

mentary’ dynamical variables such as x and px ,y and py , z and pz ,
or t and E.

The uncertainty relations [2.22] and [2.23] may be used to estimate various

basic quantities which occur in quantum physics. For example, it is possible by

using the position-momentum uncertainty relations [2.22] to obtain an estimate

of the size and of the energy of the hydrogen atom in its ground state

(Problem 2.2). On the other hand, the time-energy uncertainty relation L2.23J

is very useful in studying the lifetime of unstable systems.

Interpretation of the wave function

To make progress in the theory, we need to interpret the meaning of the wave

function ¥(r, t). In searching for this interpretation, we must remember that

Wr, t) is in general a complex function, and that |'P(r, f)l is lar8e where thc

particle is likely to be found, and small everywhere else. We also recall that

diffraction patterns, made by light, depend on the intensity of the radiation

determined by the Poynting vector, which can be interpreted as measuring the

flux of photons, and which depends on the square of the vector potential. In a

similar way, M. Born in 1926 made the fundamental postulate that if a particle is

described by a wave function ¥(r, t), the probability of finding the particle

within the volume element dr = dx dy dz about the point r at the time t is

Pit, t ) dr = |¥(r, 0!
2 dr [2-24]

so that ft tci
P(r, t) = |¥(r, l)l

= ¥*(r, *)¥(*> 0 [2-25]

is the (position) probability density. Born’s statistical interpretation of the wave

function has to be justified by the success of the theory built on it. For P(r, t) to

be unique everywhere, one must require that the wave function M'(r, t) should

be continuous and single-valued. It is also worth noting that since
|

(r, t)l is

the physically significant quantity, two wave functions which differ from each

other by a constant multiplicative factor of modulus one (that is, a constant

phase factor of the form exp(ia)) are equivalent.

Since the probability of finding the particle somewhere must be unity, we

deduce from [2.24] that the wave function 'Pfr, t) should be normalised so that

|
I'kfr, t)|

2 dr = 1 [2.26]

where the integral extends over all space. Wave functions satisfying this

condition are said to be square integrable. However, not every wave function can

be normalised like this, for example the plane wave [2.7]. In this case

|¥(r , i)

|

2 dr can be interpreted as the relative probability of finding the particle
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at time t in a volume element dr centred about r, so that the ratio

OlVl'i'to , Ol
2

gives the probability of finding the particle within t

volume element centred about r = ri , compared with that of finding it within

the same volume element at r = r2 .

There are alternative methods of normalising wave functions which are not

square integrable. For example, we may assume that the system is confined to a

large box of volume V, in which case the normalisation condition [2.26] reads

|*(r, 0|
2
dr = 1 [2.27]

where the integration now extends over the volume V. It can be shown that

calculated physical quantities are independent of V, provided the box is

sufficiently large. Plane waves such as [2.7] can also be ‘normalised’ with the

help of the Dirac delta function 8(x), which is defined by the relation

*-|-oc

/(0) = /(x) 8(x) dx [2.28]

where /(x) is an arbitrary well behaved function. There are several ways of

representing the delta function, one of which is

8(x) - lim
a—

sin ax

7TX
[2.29]

When used in [2.28] the infinitely rapid oscillations of this function when x ^ 0

imply that the only contribution to the integral arises from the neighbourhood

of x = 0, and

/(x) 8(x) dx = /(0) lim
sin ax

dx
7rx

m [2.30]

Other useful representations of the Dirac delta function are

and

1 — cos /3x

8{x) = limw
f>-» tt/3x

2

6(x) = (277-)
1 lim e dk = (2 77)

k—* I -K
e’** dk

[2.31]

[2.32]

We see that the Dirac delta function is an unusual function (in fact a

‘distribution’) which is such that, in effect.

S(x) = 0 if x f 0, 5(x) dx = 1 [2.33]

59



The elements of quantum mechanics

Using this result, we find that the plane waves

<Ak(r) = (277-)~
3/2

e'
k ’ r -

satisfy the relation

f+“

^,(r)«Ak(r) dr = (2 ir)
-3

e '(fe k ‘>x dx

r+oo
gi(ky-ky)y ^ e

!(£ 2 -*;)2 ^

= _
k'x) S(ky ky) S(^Z £Z)

= S(k - k')

[2.34]

[2.35]

which is known as an orthonormality relation. In addition, the plane waves [2.34]

satisfy the closure relation

f iAk(r')iAk(r) dk = S(r - r') [2-36]

Expectation values

Consider a one-dimensional system in which the normalised wave function is

y(x, t). Since |^(x, t)|
2 dx is the probability of finding the particle at the

position x in the interval dx, the average or expectation value of x may be defined

as

<x> = x|T(x, t)|
2 dx [2.37]

Likewise, the expectation value of any function /(r) of the coordinates x,_y, z,

in a state represented by the normalised wave function 4r(r, t) is

(/) /(r)j'k(r, f)P dr [2.38]

where the integral is taken over all space.

How should we calculate the average value of the momentum of the particle?

The wavelength, which determines the magnitude of the momentum of a

particle through [2.1], has only a precise value for a plane wave such as [2.7].

For such a wave the momentum is obtained by operating on the wave function

with the differential operator —ihV, as in [2.10]. When the wave function is not

a plane wave, we shall still assume that the momentum is represented by this

operator (see [2.11]) and the average value of the momentum in a state

represented by a normalised wave function T(r, t) is

<P> 'F*(r, t)p0p^(r, 0 dr >F*(r, t)(-ihV)V(r, t ) dr [2.39]
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In general, if an operator A depends on r, p and t, its expectation value it

defined as

(A) = ^*(r, t)A(r, -ihV, r)^(r, t) dr [2.40]

The uncertainties Ax, Apx and so on which appeared in the uncertainty

relations [2.22] can now be defined as standard deviations by the formulae

Ax = <(x - <x))
2
)
1/2

,
Apx = {{px - (/>x»

2
}

l/2
[2.41]

2.2 THE SCHRODINGER EQUATION

In order to compute the average values of functions of the position and

momentum of a particle, which are the quantities determined by a series of

measurements, some way is needed of calculating wave functions. We first

notice that the wave packet [2.19] for a free particle satisfies the differential

equation d
ih— 'F = v ^

dt 2m
[2.42]

because E(p) = p
2/2m, and this is called the Schrodinger equation for a free

particle. What is the Schrodinger equation for a particle moving in a potential

V(r, r)? Using [2.1 1], the Schrodinger equation for a free particle can be written

£0P* = i (P"P
)2* [2.43]

The operator (pop)

2/2m represents the kinetic energy T of the particle. The

total energy or Hamiltonian operator of a particle is just

H = T + V = V 2

2m
V [2.44]

and the generalisation of the Schrodinger equation for a particle in a potential is

£op^ - (T + V)V [2.45]

or

ih — T = HV
dt

which explicitly reads

ih — T(r, r) =
dt

~ V2 + V(r, t)

2m
T(r, t)

[2.46|

[2.47]

This is the time-dependent Schrodinger equation for a particle moving in a

potential. We remark that this equation is linear in 'kfr, t). As a result, it
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satisfies the superposition principle, according to which a linear superposition of

possible wave functions is also a possible wave function. The fact that the

superposition principle applies is directly related to the wave nature of matter,

and in particular to the existence of interference effects for de Broglie waves. We
also note that the Schrodinger equation [2.47] is of first order in the time

derivative d/dt, so that once the initial value of the wave function 4' is given at

some time t0 , namely TCr, t0), its values at all other times can be found.

The time-dependent Schrodinger equation [2.47] will now be used to obtain

two important results concerning probability conservation and the time varia-

tion of expectation values.

Probability conservation

The probability of finding a particle within a fixed volume V is seen from [2.24]

to be

P(r, t) dr = |¥(r, r)|
2 dr [2.48]

The rate of change of this probability can be obtained with the help of [2.47]:

dt

— P{r, t) dr = ¥*—- +
v

ih

2m

dV dV*
^ dr

dt dt

[^*V2^ - (V2^*)^] dr

= - V •

j
dr

v

where we have introduced the vector

j(r, t) = —t [¥*V¥ - (V¥*)¥]
2mi

Using Green’s theorem, we find that

P{r, r) dr = -d

dt
j

• dS

[2.49]

[2.50]

[2.51]

where the integral on the right-hand side is over the surface 5 bounding the

volume V. Since the rate of change of the probability of finding the particle in

the region V is equal to the probability flux passing through the surface 5 , the

vector j can be interpreted as a probability current density. The equation

dPV i
+- = 0 [2.52]
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which follows from [2.49] is analogous to the continuity equation of electro-

magnetism, expressing charge conservation.

Time variation of expectation values

The rate of change of the expectation value [2.40] of an operator A is given by

d d f— (A) = — (fMf) dr
dr dr

J

= I I
— AW + W* ^ W + fM ^ ) dr

lf)A\ 1 f—
)
+ — V*(AH- HA)V dr

dt / ih
J

where we have used the Schrodinger equation [2.46] and the fact that H is

Hermitian (see below). The commutator of two operators A and B is defined as

[A,B]=AB - BA [2.54]

and two operators are said to commute if their commutator vanishes. Using this

definition [2.53] can be written as

+ I2 - 551

In particular, if the operator A does not depend explicitly on time (that is,

i)A/dt = 0), we have

ih^-(A) = {[A,m) [2.56]
dr

and if A commutes with H, A is a constant of the motion {d{A)/dt - 0).

Using the result [2.56] one can prove (Problem 2.5) Ehrenfest’s theorem,

according to which the expectation value of the variables r and p obey equations

corresponding to Newton’s equations of motion. That is,

d<r>
, ,m— =
<p>,

at

d(p)

dr
-<w> L2.57]

Time-independent Schrodinger equation and energy eigenfunctions

When the potential does not depend on the time, the Schrodinger equation

[2.47] admits stationary state solutions of the form

^(r, r) = fe(r)e~
(,/ft)£

' [2.58]

where £ is a constant and where i>£ (r) satisfies the time-independent Schrddingtr

63



The elements of quantum mechanics

equation

h
2

,

V2 + V(t)
2m

tfe(r) = E tfe(r) [2.59]

or

H4>e = Eife [2.60]

The significance of the constant E is seen by recognising that E is the

expectation value of the total energy H = T + V. That is

E = (H) = V*(r, t)H'-V(r, t) dr [2.61]

In writing [2.61] we have assumed that the wave function 'E is normalised to

unity, so that

*

i//*£ (r)i//£(r) dr = 1 [2.62]

where the integral can be taken over all space for square integrable functions, or

over a large volume V in the other cases. We shall find that only certain values of

E are compatible with normalisable solutions. These values are called the energy

eigenvalues and the corresponding solutions if/E are the eigenfunctions of the

energy operator H. Equations of the type

Aifn = an il/n [2.63]

- where A is an operator and an is a number - are called eigenvalue equations; an

being called the eigenvalue and >Jin the eigenfunction of the operator A. If more

than one eigenfunction corresponds to a given eigenvalue, this eigenvalue is said

to be degenerate.

It is a general postulate of quantum mechanics that each dynamical variable

(such as the position, momentum, energy, . . . ) can be represented by a linear

operator [1] and that the result of a precise measurement of the variable can only

be one of the eigenvalues of this operator. For example, the only possible result

of a measurement of the energy of the system is one of the eigenvalues E of the

Hamiltonian operator H.

The spectrum of the Hamiltonian

The set of all eigenvalues of the Hamiltonian is called the energy spectrum. It may

consist of discrete values or a continuous range, or both. In general the discrete

eigenvalues are associated with bound states (analogous to the closed orbits of

classical mechanics) and the continuum with scattering states (corresponding to

open classical orbits).

[1] For a definition of linear operators, see Byron and Fuller (1969) or Mathews and Walker (1973).
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It is easy to show by integratingrby parts that for any normalised eigenfiinc*

tion tpE of H one has /
' 1

E* = (H)*~
r h> ,

1

</£ V 2
4- V

2m
ipE dr

4>e

(H) = E

— V 2 + V
2m

0* dr 4>e 2m
V 2 + V t/'A- dr

[2.64]

so that the eigenvalues E are real.

In general, ifA is a linear operator and 4> and are any two wave functions,

the adjoint operator A* is defined by the relation

$*A¥ dr = (A<J>)*'IA dr [2 .65]

If Af = A, then A is said to be self-adjoint or Hermitian, in which CSM

(A) = (A)'* and the eigenvalues of A are real. Operators representing physical

quantities (such as H, r or p) are called observables, and it is a postulate of

quantum mechanics that observables must be Hermitian.

We shall now prove that if tpE and <lfE - are two eigenfunctions corresponding

to unequal eigenvalues E and E', then

|
</£(r)<AiKr) dr = 0 [2.66]

in which case i\>E and i\>E' are said to be orthogonal. We first note that

and

- E)fE = 0 [2.67a]

4>eKH - E'We-]* = 0 [2.67b]

Subtracting these two equations, and integrating we have

(E - E') j/E'^E dr U)*e-H\\)e ~ dr

= 0 L2.68J

where in the last step we have used the fact that H is Hermitian. Since E f E'

,

we see that [2.66] follows from [2.68].

When several eigenfunctions r = 1, 2, . . . , a correspond to a given

eigenvalue E (that is, if the eigenvalue E is degenerate) linear combinations of

the eigenfunctions >pE,r can always be constructed so that the resulting a

eigenfunctions belonging to the eigenvalue E are mutually orthogonal. Each of

these eigenfunctions is evidently orthogonal to every eigenfunction belonging to

a different eigenvalue E' f E. Thus all the energy eigenfunctions can be made

orthogonal to each other, even when some of the eigenvalues are degenerate.

65



The elements of quantum mechanics

The eigenfunctions i(/„ of an operatorA are said to constitute an orthonormal set

if they are both normalised and mutually orthogonal. That is

</£(r)<An(r) dr = 8n [2.69]

where is the Kronecker symbol

n = n'

n f n'
[2.70]

The energy eigenfunctions if/E constitute such a set, and in the same way so do

the eigenfunctions of an Hermitian operator representing any observable [2].

2.3 EXPANSIONS, OPERATORS AND OBSERVABLES

We shall assume that all the orthonormal eigenfunctions i/q(r) of a given

Hermitian operator A form a complete set, in the mathematical sense that an

arbitrary normalised wave function 'kfr, t) can be expanded in terms of them:

^(r, 0 = X c„(t)iA„(r) [2.71]

n

Suppose now that at time t a measurement is made of the observable

represented by A. Then, as we have seen above, the value obtained must be one

of the eigenvalues an . A further postulate, due to Born, is that the probability

Pn(t) of obtaining the value an is given by

Pn(t) = \cn (t)\
2

[2-72]

As a consequence, we are certain to obtain a particular eigenvalue a n only when

the wave function that describes the particle at time t is the corresponding

eigenfunction \pn (apart from a constant phase factor). Immediately after a

measurement in which the result a n is obtained, the system will be found in the

state represented by the wave function ijjn .

We can calculate the probability amplitudes cn from [2.71] using the ortho-

normal property [2.69] of the expansion functions i/v Multiplying [2.71] by

t/$ and integrating, we obtain

i//*(r)^(r, t) dr = 2 cn(0
n

= 2 cn(t) 8
n

= cn .(t)

dr

[2.73]

[2] If n is a continuous index, then a ‘delta function’ normalisation analogous to [2.35] can be used.

Alternatively, a ‘box’ normalisation of the type [2.27] can be introduced, in which case n remains

discrete and the relations [2.69]-[2.70] apply without modification.
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It is convenient at this point to introduce the Dirac notation

r

< f\g)
= f*(r)g(r) dr

so that the result [2.73] reads c„ = (i/vjT). More generally, we define tht

matrix element of an operator A as ,>

(f\A\g) =
j
f*(r)Ag(t) dr [2.75]

so that the expectation, or average, value of A can be written as

0) = {V\A\V)

= 22 C*Cn('l'„\A\'l'n)

n ri

= 22 C*Cn‘ln(*l'„'\*l'n) -M
n ri

- 2 M 2
«.

n

where we have used [2.63] and the orthonormality relation [2.69], which readl

i/j„) = Sn„' in Dirac’s notation.

Another important relation can be proved from [2.71] and [2.73]. Indeedi

since

0 = 2 cn (t)il/n(r)

= 2 </>*(r')^(r', t) dr' 4>n(*) [2.77]

we have

2 </tf(r>„(r) = S(r - r') [2.78]

n

where 5(r- r') is the Dirac delta function discussed in Section 2.1. The result

[2.78] (see also [2.36] for the special case of the plane waves) is known as the

closure property of the orthonormal set of functions ij/n .

General solution of the Schrodinger equation

for a time-independent potential

Let us assume that the potential is independent of time, so that the time-

dependent Schrodinger equation [2.47] admits stationary state solutions of the

form [2.58]. Expanding the general solution of [2.47] in terms of energy

eigenfunctions, we then write (see [2.71] and [2.73])

V(r, t) = 2 cHmE(r) 1-2.79]

E
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where

Ce(0 — ^(r)^(r, t) dr [2 . 80]

Substituting [2.79] into the Schrodinger equation [2.47], and using the ortho-

normality of the eigenfunctions il/E , together with the fact that they satisfy the

time-independent Schrodinger equation [2.59], we find that the coefficients

cE (t) satisfy the equation

ih cE (t) = EcE(t) [2.81]
at

which is readily integrated to yield

cE(t) = c£ (t0)e~
(,/A)£('-I<,)

[2.82]

We note that the probability PE of obtaining the energy value E is constant,

since from [2.72] and [2.82] we have

PE — \cE (t)\
2 — \cE (t0)\

2
[2.83]

Using [2.79] and [2.82], we find that

¥(r, 0 = 2 [2.84]

or

¥(r, 0 = 2 cE {t0)*E(j)e-
a/h)El

; cE (t0) = cE (t0)^mE ‘°
[2.85]

E

so that the general solution T(r, t) is a linear superposition of stationary state

solutions [2.58], as we expect from the linearity of the Schrodinger equation

[2.47],

These results may also be used to write down an expression for T(r, t) at any

time, once it is known at the time t = t0 . Indeed, from [2.80] and [2.84], we

have

T(r, t) = 2
E

= f Kir, v, r', Jb)¥(r', to) dr' [2.86]

rW, t0) dr' 4>E(r)

where

K(r, t; r', t0) = 2 ^I(r')^(r)e-
(i/* )B( ‘

_
‘ o)

t2 - 87]

E

We see from [2.86] thatK may be interpreted as the probability amplitude that a

particle originally at r' will propagate to the point r in the time interval t — to

The function K is therefore called a propagator.
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j

Matrix representations of wave functions and operators
,

.

J fi
Let us consider a complete orthonormal set of functions {t/»y}. Any physically

admissible wave function T can be expanded in terms of them as (see [2.71] and

[2.73])

T = 2 Ml’ c
i
= AlA [2.88]

j

The set {*//,} is called a and the coefficients Cy are the components of 'l' in

that basis. Once a given basis - also called a representation — has been chosen, T
is completely specified by its components Cy. Thus the set {t

fa}
may be thought of

as a basis in a vector space [3], and T as being represented by a vector in that

vector space, whose components are the coefficients Cy.

The action of a linear operator A on T may be specified in terms of its effect

on the components Cy in a given representation. Indeed, starting from [2.88] we

have

AT = A ^ Cj iftj = 2 cjAty [2.89]

j j

Let us express the new vectors if/'-
= Aif/j in our basis as

IAj
= = 2 C2 -90]

i

where

A,y = (4>i\A\il/j) [2.91]

Then, if we write

T' = AT = 2 Mi t
2 -92

)

i

so that the coefficients c' are the components of T' in our basis, we have from

[2 . 89]—

[

2 . 92 ]

T' = AT = X 2 A
<j
cA = S Mi 12.93)

i J i

so that

C' = 2 [2-94 J

j

This is a matrix equation which relates the components Cy of T and c[ of

T' = AT by means of the matrix elements A,y of the linear operator A.

Thus far we have adopted a given representation (that is, a given complete

orthonormal set of basis vectors {ip,}) in which T is represented by a vector

having components Cy and the operator A by a matrix whose matrix elements are

[3] Vector spaces are discussed by Byron and Fuller (1969) and Mathews and Walker (1973),
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given by [2.91]. This representation, however, is not unique. Indeed, we may

develop T in terms of another complete orthonormal set of basis vectors {<p*} as

¥ = 2 dk<Pk, dk = <<p*|^> [2-95]

k

and the coefficients are the components of a vector representing T in the

‘new’ basis In particular, any ‘old’ basis vector may be expressed in the

‘new’ basis as

= 2 u*p> [2 - 96]

k

where

Ukj = (<pk \fj)
[2-97]

In the same way, the reverse expansion is

<f>k = 2 <Pk)'!fj = 2 Ukjd'j [2,98]

T = 2 ‘A =22 CjUvVk = 2 dk<Pk [2.99]

j J k k

we also see that

d„- s Vt,c, [2.100]

J

The set of numbers Ukj can be regarded as the elements of a matrix U and the

equation [2.100] written in matrix form as

d=Uc [2-101]

The matrix U is readily shown to be unitary, namely such that

UU* = U fU = / [2.102]

where I is the unit matrix. Indeed, we have

(UU\n = 2 UkjUJn = 2 UkjU*j

j j

= 2 (<Pk\'lfj) (‘Pnl'hj)*

dr (p*(r)
[
dr>„(r') X

dr <pt(r) drVn(r') S(r - r')

dr <p*(r)<p„(r) - S kn [2.103]
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where we have used the closure relation for the functions 1
fy.

Similarly, one hM

am.-**
so that the unitarity property [2.102] follows from [2.103] and [2.104].

Therefore the passage from one representation of quantum mechanics to

another is effected by unitary transformations.

Instead of changing the representation by means of a unitary transformation,

we may also apply unitary transformations directly to the wave functions

(vectors) and operators. For example, let T and <t> be two wave functions and A
an operator (observable) such that

AV = d> [2.105]

Let us now apply the unitary transformation U, so that

'P' = t/'P, d>' = UA> [2.106]

Writing

A'^P' = d>' [2.107]

we have

A'UV = £70> = UA'V [2.108]

Hence, using [2.102], we find that

A = UfA’U, A' = UAU+ [2.109]

These equations imply (Problem 2.8) that if A and A' are two operators

connected by a unitarity transformation:

1. If >1 is Hermitian, then A ' is also Hermitian.

2. The eigenvalues of A' are the same as those of A.

3. One has

<<b'|iT|'r> = <<h|A|'P> [2.110]

where T' and d>' are defined by [2.106]. In particular, the expectation value

<T[T|T) remains unchanged. By choosing A = I (the unit operator) we also

see that the scalar (inner) product (d>|T) is invariant under a unitary

transformation. As a result, the normalisation is also preserved, since

{'P'I'P') = <T]T).

Let us assume that the orthonormal functions {0y} which we use as a basis set

for a matrix representation are the eigenfunctions of some quantum mechanical

operator A. Then, using [2.63], we find that

Ay = (ft\A\fj) =

= «,«# [2- HI]

so that the matrix which represents the operator A in this basis is diagonal.
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Solving the eigenvalue equation [2.63] for an observable A is therefore

equivalent to finding a unitary transformation which diagonalises the corres-

ponding matrix.

The Heisenberg equations of motion

We have learned in Section 2.2 how to calculate the time rate of change of the

expectation value of an operator A (see [2.55]). In a similar way, one can show

that

_d

dr
dr

dA
,

1

4>* dr + —
dt ih

<b*[A,H]9 dr [2 . 112]

where d>(r, t) and T(r, r) are two arbitrary wave functions. Thus we have the

operator (or matrix) equation

dA
dt

[2.113]

where dA/dt is the operator whose matrix elements are the time rate of change

of the matrix elements of A. The equation [2.113] is known as the Heisenberg

equation of motion of a dynamical variable.

Commuting observables

Let two different observables be represented by the operators A and jB. From

Born’s postulate, it follows that if there is a state in which a simultaneous

measurement of the two observables is certain to yield the values a, and b
} ,

then

a
{
and b

t
must be eigenvalues ofA and B, respectively. The corresponding wave

function, tpy, must be an eigenfunction of both A and B. That is,

A\fij = a.ipij ; Bipij = b^ [2.114]

If such eigenfunctions ofA and B can be found for all the eigenvalues a, and

bj, then the two observables are said to be compatible, and the 4>ij
form a

complete set. By taking suitable linear combinations of any degenerate eigen-

functions, this set can be made orthonormal,

i'PiMij)
= V <% [2-115]

From [2.114], we see that

[A, B]ipij = {AB - BA^j = 0 [2.116]

and since any wave function T can be expanded in terms of the orthonormal set

{</'.)}> we must have

[A,B] = 0 [2.H7]

so that the two operators A and B commute with each other . Conversely ,
if A
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and B are two operators which commute with each other, there exists a complete

set of eigenfunctions which are simultaneously eigenstates of both A and B. Oo 'j
!

||

the other hand, if [A, S] f 0, a precise simultaneous measurement of both the

observables is impossible.

As an example, let us consider the Cartesian components x, y, z of the

position operator and the Cartesian components of the momentum operator,

px = -if, d/dx,pv
= —ih d/dy and pz = -ih d/dz. If/(x) is a function of x, we

have

[x, px]/(*)=-*{*^-^(*0}

- ih /(x) [2.118]

so that we may write the relation [x, pj = ih. More generally, we have

[x, px] = [y, Py] = [s, pj = ih [2.119]

while all other commutators - such as [x, py]
- vanish. It follows that, for

example, x and pv have common eigenfunctions and can be measured simul-

taneously with arbitrary accuracy. In contrast, since x and px do not commute
|

with each other, a precise simultaneous measurement of both of these observ-

ables is impossible. Indeed, as we saw in Section 2.1, the accuracy to which both

x and px can be measured is limited by the uncertainty principle.

The above arguments can be extended to any number of observables. The

greatest number of commuting observables that can be found for a given system

is said to form a complete set of commuting observables.

Commutator algebra

It is convenient to list here some elementary rules for the calculation of

commutators. These rules are easily verified (Problem 2.9) from the basic

definition [2.54], If A, B and C are three linear operators

[A, B] = -[S, A] [2.120aJ

[A, B+C] = [A, B] + [A, C] [2.120b]

[A, SC] = [A, S]C + B[A, C] [2.120c]

[A, [B , C]] + [B , [C, A]] + [C, [A, S]] = 0 [2.120d]

2.4 ONE-DIMENSIONAL EXAMPLES

In this section we shall analyse the time-independent Schrodinger equation

h 2 d2
<Kx) r ," + V(x)^x) = E^x)

I
2 - 121 ]

for two simple one-dimensional potentials: the infinite square well and the linear

harmonic oscillator. This will allow us to illustrate the theory and to obtain

several results which will be useful in further chapters.
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The infinite square well

Let us consider a particle ofmass m which is constrained by impenetrable walls

to move in a region of width L, where the potential energy is constant. Taking

this constant to be zero, and setting a = L/2, the potential energy for this

problem is

V(x) =
lx| < a

x < —a. x > a
[2 . 122 ]

and is illustrated in Fig. 2.2(a).

Because the potential energy is infinite at x = ±a, the probability of finding

the particle outside the well is zero. Hence the wave function il/(x) must vanish

for |xj > a, and we only need to solve the Schrodinger eigenvalue equation

[2.121] inside the well. Moreover, since the wave function must be continuous,

(a).

8 ma2
c
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n = 2

n = 1

Energy levels

(b)

2.2 (a) The infinite square well

(b) Wave functions and eigenvalues for the infinite square well.

\
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<K*) must vanish at the constraining walls, namely

fi(x) = 0 at x = ±a [2.123]

We shall see shortly that it is precisely this boundary condition which leads to tlM

quantisation of the energy.

The time-independent Schrodinger equation for |x| < a reads

2m

d
2
<K*)

dx 2
= Eift(x) [2.124]

and has the general solution

iA(x) = A sin kx + B cos kx, [2.123]

Applying the boundary condition [2.123] we find that

A sin ka = 0, B cos ka = 0 [2.126]

As a result, there are two possible classes of solutions. For the first class A m 0

and cos ka = 0, so that the only allowed values of k are

mr nir
kn “7

2a L
[2.127]

with n = 1, 3, 5, . . . The corresponding eigenfunctions i//„(x) = B„ cos k HX

can be normalised so that

|
il'J(x)Wx) dx = 1 [2.128]

from which the normalisation constants Bn are found (within an arbitrary phase

factor) to be B„ = a~ 1/2
. The normalised eigenfunctions of the first class may

therefore be written as

(//„(x) = -J=
cos ^ x, n = 1 , 3 , 5 , . . . [

2 . 129]

Ja 2a

Similarly, for the second class of solutions, such that B = 0 and sin ka = 0,

the allowed values of k are given by [2 . 127] with n = 2 , 4 , 6 , . . . and the

corresponding normalised eigenfunctions are

1 mr= —F Sin — x, n = 2, 4, 6, . . .

Ja 2a
[2.130|

For both classes of eigenfunctions it is unnecessary to consider negative

values of w, since these lead to solutions which are not linearly independent of

those corresponding to positive n. The energy eigenvalues En are given by

2u2

E„ =
h z

k„

2m

h2 v2n2

8m a
2

±2 _2„2n 7r n
n = 1, 2, 3, . . . [2.131]
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We see that there is an infinite number of discrete energy levels, with one

eigenfunction corresponding to each energy level. The energy eigenvalues and

the corresponding eigenfunctions are shown in Fig. 2.2(b) for the first few

states. It is interesting to note that the lowest energy or zero-point energy is

E
y
= h

2
TT

2l%ma
1
so that there is no state of zero energy. This is in agreement

with the requirements of the uncertainty principle. Indeed, the position

uncertainty is roughly given by Ax — a. The corresponding momentum

uncertainty is therefore Apx ~ h/a, leading to a minimum kinetic energy of

order h 2/ma 2
, in qualitative agreement with the value of E\.

There is an important difference between the two classes of eigenfunctions

which we have obtained. That is, the eigenfunctions belonging to the first class

are such that ipn(—x) = ipn(x), and are therefore even functions of x, while those

of the second class are such that ipn(—x) = — iA„(x) and hence are odd. This

division of the eigenfunctions into even and odd types is a consequence of the

fact that the potential F(x) is symmetric about x = 0, F(-x) = V(x), so that the

Hamiltonian is invariant under the parity or reflection operation x—> — x.

Finally, we observe that a general solution of the time-dependent Schrodinger

equation [2.46] for the present problem can be written as a linear superposition

of stationary solutions (see [2.85]), namely

¥(x, 0 = S c„^(x)e- (i/^ [2.132]

n= 1

where the coefficients c„ can be determined from the knowledge of the wave

function T at some particular time, say t = 0. Thus, using [2.80], we find that

f
+a

c„ = </tf(x)T(x, t
= 0) dx [2.133]

The linear harmonic oscillator

We now consider the one-dimensional motion of a particle of mass m which is

attracted to a fixed centre by a force proportional to the displacement from that

centre. Thus, choosing the origin at the centre of force, the restoring force is

given by F = -kx (Hooke’s law), where k is the force constant. This force can

thus be represented by the potential energy

V(x) = \kx2 [2.134]

which is shown in Fig. 2.3(a). Such a parabolic potential is of great importance

in quantum physics as well as in classical physics, since it can be used to

approximate an arbitrary continuous potential IF(x) in the neighbourhood of a

stable equilibrium position x = a (see Fig. 2.3(b)). Indeed, if we expand W(x)

in a Taylor series about x = a, we find that

W{x) = W(a) + (x - a)W'(a) + i(x - a)
2W"(a) + • •

• [2.135]
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where W'(a) = (dW/dx)x=a and W"(a) = {d
2W/dx 2

)x=a . Since W(x) has a

minimum at x = a, we have W'(a) = 0 and W"(a) > 0. Choosing a as the

coordinate origin and W{a) as the origin of the energy scale, we see that the

harmonic oscillator potential [2.134] is the first approximation to W(x). Hence

the linear harmonic oscillator is the prototype for systems in which there exist

small vibrations about a point of stable equilibrium. This will be illustrated in

Chapters 9 and 10, where we shall study the vibrational motion of nuclei in

molecules.

The one-dimensional Schrodinger equation [2.121] becomes, for the linear

harmonic oscillator

+ \ kx 2
4,(x) = Etp(x) [2.136]

2m dxz
2

It is convenient to rewrite this equation in terms of dimensionless quantities. To

this end we introduce the dimensionless variable

(-a,, “ = I2 ' 137 !

and the dimensionless eigenvalue

where

1/2

[2.139]

is the angular frequency of the corresponding classical oscillator. The Schrodin-

ger equation [2.136] then becomes

+ (A -^ = 0 [2.140]
dr

Let us first analyse the behaviour of ip in the asymptotic region f\
y-. We

may then neglect the term A compared to and the resulting equation is

readily seen to have solutions of the form exp(± £
2
/2), where n is finite. The

physically acceptable solution must contain only the minus sign in the exponent.

This suggests looking for solutions to [2.140] of the form

<K£> = e-f2/2tf(£) [2.141]

where H(f) are functions which must not affect the asymptotic behaviour.

Substituting [2.141] into [2.140] we obtain for H(£) the equation

d2H „ dH
d£2 U

df
+ (A - 1)H = 0 [2.142]
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Energy levels

Solutions of [2.142] which satisfy the above requirement and are finite

everywhere are only found for A =2n + 1, where n = 0,l,2,.... They are

called Hermite polynomials The energy spectrum of the linear harmonic

oscillator is therefore given by (see [2.138])

E„ = fuo^n + -j

= hv^n + -j, n = 0, 1, 2, . . . [2.143]

where v = w/2 tt.

The infinite sequence of discrete, equally spaced energy levels [2.143] is

similar to that discovered in 1900 by Planck for the radiation field modes (see

Section 1.3). This is due to the fact that a decomposition of the electromagnetic

field into normal modes is essentially a decomposition into uncoupled harmonic

oscillators. We note, however, that according to [2.143] the linear harmonic

oscillator, even in its lowest energy state, n = 0, has the energy hco/2. On the

other hand the lowest energy of a classical harmonic oscillator is zero. The finite

value hco/2 of the ground state energy level, which is called the zero-point energy ,

is therefore a purely quantum mechanical effect, and is directly related to the

uncertainty principle (Problem 2.11). The eigenvalues [2.143] of the linear

harmonic oscillator are non-degenerate, since for each eigenvalue there exists only

one eigenfunction, apart from an arbitrary multiplicative factor.

Hermite polynomials

The Hermite polynomials //„(£), which are the physically acceptable solutions

of [2.142] corresponding to the eigenvalues A = 2n + 1, are polynomials of

order n, having the parity of n, which are uniquely defined except for an

arbitrary multiplicative constant. This constant is traditionally chosen so that

the highest power of £ appears with the coefficient 2" in //„(£). This is consistent

with the following definition of the Hermite polynomials:

//„(£) = (-D"e f2 [2.144]

The first few Hermite polynomials, obtained from [2.144], are

H0(0 = 1

ffi(£) = 2*

H2(0 = 4? -2
HM) = 8£

3 - 12f

H4(0 = I6t - 48£
2 + 12

H5(e = 32|
5 - 160£

3 + 120£

[2.145]
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Another definition of the Hermite polynomials which is equivalent (gj£

[2.144], involves the use of a generating function G(£, s). That is ( ||

*) = *T*+2s *

_ v HM) „
/ J

I

^

„=o nl
[2.1

The relation [2. 146] means that if the function exp[-s 2 + 2s£] is expanded in I

power series in s, the coefficients of successive powers of s are just 1/n! times the

Hermite polynomials Hn(f). Using the generating function [2.146] it may be

shown that the Hermite polynomials satisfy the recurrence relation *

Hn+m - 2fHn(f) + 2nHn-m = 0 [2. 1473'

• 4
The wave functions for the linear harmonic oscillator

1

Using [2.141], we see that to each of the discrete values En of the energy, give!

by [2.143], there corresponds one, and only one physically acceptable wavt

function, namely

>K(x) = Nnc-“
2* 2/1Hn{ax) [2 . 141]

where we have returned to our original variable x, and JV„ is a constant which

(apart from an arbitrary phase factor) is determined by requiring that the wave

function [2.148] be normalised to unity. That is

|<A„(*)|
2 dx = I

Nn \

:

e-<tf 2
(£) df = 1 [2.149]

The integral on the right is evaluated in Appendix 3 by using the generating

function [2.146]. It is found (see equation [A3. 10]) that the normalisation

constant Nn can be chosen to be

Nn [2.150]

so that the normalised linear harmonic oscillator wave functions are given by

It is also shown in Appendix 3 that the wave functions i]/„(x) and ijjm (x) arc

orthogonal if n f m, in agreement with the fact that they correspond to

non-degenerate energy eigenvalues.

Because the Hamiltonian of the linear harmonic oscillator,

H h 2 d2
1 2

2m dx 2
+

2
^x [2 . 152 ]
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is invariant under the parity operation x —* —x, the eigenfunctions *P„(x) are

either even functions of x(for n = 0, 2, 4, . . .) or odd functions of x (for n = 1,

3, 5, . . .). This is apparent in Fig. 2.4 where plots of the first few harmonic

oscillator wave functions are shown, together with the corresponding probabil-

ity densities \ifjn \

2
. It is also clear from this figure that for small values of n the

quantum mechanical probability densities are very different from the corre-

sponding densities for the classical harmonic oscillator. However, the agree-

ment between the classical and quantum-mechanical probability densities

quickly improves with increasing values of n. This is an illustration of Bohr’s

correspondence principle, according to which the predictions of quantum

physics must correspond to those of classical physics in the limit in which

the quantum numbers specifying the state of the system become large.

2.5 ANGULAR MOMENTUM

The classical orbital angular momentum of a particle is

L = r x p [2.153]

where r and p are the position and momentum vectors of the particle,

respectively. Using the fact that p is represented in wave mechanics by the

vector operator -ihV, we see that L is represented by the vector operator

-ih(r XV). Its Cartesian components are given by

L x = ypz ~ zpy = ~ifi

[2.154]

Tz Xpy ypx

Using the rules [2.120] of commutator algebra and the basic commutation

relations [2.119] one finds that

[Lx , Ly\ = ihLz ,
[U,,, Us] = ihLx ,

[Lz , Lx \
— ihLy [2.155]

so that the operators Lx , Lv and Lz do not mutually commute. As a conse-

quence, it is impossible to find a representation that diagonalises more than one

of them, and the components of the orbital angular momentum cannot in

general [4] be assigned definite values simultaneously. However, each of the

three components of L is easily seen to commute with the operator

[4] An exception occurs when the angular momentum is zero (Lx - Ly - Lz - 0). In this case any

function which only depends on the magnitude r of the position vector r is a simultaneous

eigenfunction of Lx , Ly and Lz .
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L2 = L\ + Ly + L\. For example,

[L2 , L2
] = \LZ , L

2
] + [L„ L 2

]

= [L2 , Lx] L x + LX[L2 , Lx] + [L2 ,
Lv] Ly + Ly[Lz ,

Ly]

= ih(LyLx + LxLy) - ih(L xLy,
+ LyLx)

= 0 [2.156]

Thus it is possible to construct simultaneous eigenfunctions of L2 and one

component of L, so that L2 and this component can be simultaneously defined

precisely. In what follows we shall choose this component to be Lz .

It is convenient to express Lz and L
2
in spherical polar coordinates (r, 9, <p),

which are related to the Cartesian coordinates (x, y, z) of the vector r by

x = r sin 6 cos 4>

y = r sin 9 sin 4>

z = r cos 9

[2.157]

with 0 0 0 7r, 0 « <j> «£ 2-tt (see Fig. 2.5). It is found that

(Problem 2.12)

= —ih
d(j>

[2.158]

and

L2 = - h
2

1 d— sin 9 —- +
sin 9 39 \ 39 sin

1
9 3<t>

1 6b
[2.159]

The eigenfunctions <&(</>) of Lz satisfy the eigenvalue equation

4>) = mh^{4>) [2.160]

where the eigenvalues have been written as tnfi for convenience. The normalised
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solutions of [2.160] are

1

JYtt

gimd>
[2.161]

Since the functions (Pm must be single-valued, we have <t>m(2ir) = 4>m(0), so that

m, which is called the magnetic quantum number, is restricted to positive or

negative integers, or zero (m = 0, ±1, ±2, . . .). We also note that the

functions [2.161] are orthonormal,

'2n

<D£.(4>)<Dm(4>) d4>=Smm , [2.162]

Jo

The simultaneous eigenfunctions of L 2 and Lz are called the spherical

harmonics and are denoted by Y[m(0, <f>). They satisfy the eigenvalue equations

L2Ylm(d, <b) = /(/ + \)h
2Ylm(d, <!» [2.163]

and

LzYlm(e, 4>) = rnhYlm(0, 4>) [2.164]

where the eigenvalue of L2
has been written as /(/ + 1 )h

2
. The quantum

number l is known as the orbital angular momentum quantum number. Setting

Ylm(e, <f>) = 0/m
(0)c&m(d>) [2.165]

substituting into [2.163] and using [2.159], we find that the functions ©;m(0)

satisfy the equation

1 d

sin 9 BO
+

m

sin
2
0

®bn(9) = Kl + D©;m(0) [2.166]

The physically acceptable solutions of this equation that remain finite over

the range 0 =s 9 *£ -it exist only when / = 0, 1, 2, . . . and m = —l,

— / + l, , +/. They can be expressed in terms of associated Legendre

functions cos 6), which are defined in the following way. Introducing the

variable w = cos 6, we first define the Legendre polynomials Pfw) of degree / by

the relation

Pm = h ij^ iy [2 - 1671

An equivalent definition ofPfw) can be given in terms of a generating function,

namely

T(w, s) = (1 - 2sw + s
2
)
_1/2

= 2 Pi(w)s
l

, |s| < 1 [2.168]
1=0
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The Legendre polynomials satisfy the differential equation

(1 - w2
) dw2 2w —— + /(/ + 1)

dw
P,(w)

= 0 [2.169]

which is readily shown to be equivalent to [2.166], with m = 0. One has the

recurrence relation

(2/ + \)wP, - (/ + l)Pl+l - IP,-! = 0 [2.170]

which is also valid for / = 0 if one defines P-i = 0. The orthogonality relations

read

f
+1

2

(

Pi(w)P,(w) dw = — - - S,r

One also has the closure relation

^2 (21 + 1)P^P'iw') = 8(w - w')
1 i=o •

Important particular values of the Legendre polynomials are

Pi( 1) = 1, />/(-!) = (-1)'

For the lowest values of l one has explicitly

Poiw) = 1

P\(w) = w

P2(w) = i(3zc
2 - 1)

P 3(w) = j(5w 3 - 3w)

P4(w) = j(35w4 - 30w 2 + 3)

P5(w) = i(63w
5 - 70

w

3 + 15zu) [2.174]

[2.171]

[2.172]

[2.173]

The associated Legendre functions Pf(w) are now defined by the relations

dm
PT(w) = (1 - w 2

)
m/2— P,(w), m = 0, 1, 2, . . . I [2.175]

They satisfy the recurrence relations

(2/ + 1)wPf = (/ + 1 - m)PT+

1

+ (/ + m)PT-

1

[2. 176a

J

(2/ + 1)(1 - = FT+i - FT- 1
[2.176b]

and the orthogonality relations

/: *»

-

n i ii ~ [2 - ,7?]
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The first few associated Legendre functions are given explicitly by

P\(w) = (1 - w 2
)

l/1

P\(w) = 3(1 - w2
)
1/2w

Pfoo)
= 3(1 - w 2

)

P\(w) = |(1 - w2
)
l/2(5w 2 - 1)

P\(w) = 15zt>(l - w2
)

P\(w) = 15(1 - w 2
f

/2

The functions 0/m (0), normalised so that

©*«(0)©/m(0) sin 0 dO = 8W

are given in terms of the associated Legendre functions Pf by

[2.179]

= (- 1 )"
(21 + 1)(/ - m)!

1/2

2(1 + m)\

= (— l )
|
m

|

0/|m|(^) 5

Using [2.165], [2.161] and [2.180], the spherical harmonics are given by

Pf(cos ff), m 3= 0

m< 0 [2.180]

Ylm(8, <f>) = (-1)"
(21 + 1 )(/ - m)\

1/2

Pf(cos 9)e
im<i>

4 tt(1 + m)!

Yi, m(e, 4>)
= (-1TYtm(8, <f>)

They satisfy the orthonormality relations

m 3= 0 [2.181a]

[2.181b]

f 2 J

4>)Ylm(0, 4>) dO = d <p d0 sin 6 Y*m (8, 4>)Ylm(9, <$>)

= Sir 8mm . [2.182]

where we have written dfl = sin 9 dO d(b. The closure relation reads

+i

2 2 YUe, <b)Ylm(9', V) = 8(n - ft'),

1=0 m— — l

8(n - ft') =
8(9 - 9') 8(<j> - (/>')

sin 8
[2.183]

The first few spherical harmonics are listed in Table 2.1. Polar plots of the

probability distributions

\Ylm(9, <b )

|

2 = (2 tt)
_1

| ®im (9)\
2

[2.184]

are shown in Fig. 2.6. Additional useful formulae involving the Legendre

polynomials and the spherical harmonics are given in Appendix 4. In that

appendix we also discuss matrix representations of angular momentum operators,
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/ 15
'

±1

l 15 \
±2 2 '= 2 “

( 32^)
sin

2 Oe*

±2

/ 7 \
1/2

Kjo = (5 cos
3
8 - 3 cos 8)

’
' 1071 /

/ 21 V/2

-s- j f
sin 8 (5 cos

2
8 — l)e

1

16477 j

V3,»2 = frr—^ s>n2 0 cos 8 e
r2'*

' 105 \
1/2

(32W

-las)

and define the raising and lowering operators

L ± = Lx ± iLy [2.185J

These operators are such that (see [A4.21])

L± Ylm(6, <t>) = *[/(/ + 1) - m(m ± l)]
1/2

F,,m±1 (0, <A) L2.186a]

or

L± \lm

)

= ft[/(/ + 1) — m(m ± l)]
1/2

|/7n ± 1) [2.186b|

where in the last line we have used the Dirac ket notation ,
in which the

eigenfunctions Y[m are written in the form \lm).

I

Let us assume that the particle is in the orbital angular momentum state \lm)

such that L2
j/m) = /(/ + \)h

2
\lm) and Lz\lm) - mh\lm) (see [2.163] and

[2.164]). Although two components of the orbital angular momentum cannot in

general be assigned precise values simultaneously, it is nevertheless possible to

say something about the components Lx and Ly . Indeed, one can readily show
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z

m = 0

m = 0

<-

m = +1

m = 0 m = +1 m = +2

O
I
O /-3

m = 0 m = + 1 m=+2 m = +3

2.6 Polar plots of the probability distributions |y,„(0, ^)|
2 = (2ir)“'|0,m (e)|

2

(Problem 2.13) that

(lm\Lx\lm) = (lm\Ly\lm)
= 0 [2.187]

and

{lm\L
2
x\lm) = (lm\Ly\lm) = } [1(1 + 1) - m2

]h
2

[2.188]

We note that when m = +/ or m = -l, so that the orbital angular momentum is

respectively ‘parallel’ or ‘antiparallel’ to the Z-axis, its x and y components are

still not zero. It is helpful to visualise these results in terms of the vector model

introduced in Section 1.8 (see Fig. 1.24). According to this model, the orbital

angular momentum vector L, of length Jl(l + 1 )h, precesses about the Z-axis,

the (21 + 1) allowed projections of L on the Z-axis being given by mh, with

m = —l, — l + 1, . . . +/.

Spherical harmonics in real form

In some applications it is convenient to use an alternative set of eigenfunctions

of L 2
,
which are the real forms of the spherical harmonics. That is,

Yi,cos(0, <W = N®,\m\(6) cos\m\4>
^ 189j

Y
t,Sin(0, <j>) = N0l]ml (6) sin|mjd>
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where the normalisation constant N is equal to
1/2

, except for m *» 0

which N - (2ny 1/2
. For m = 0, the function y;>cos is clearly identical to

spherical harmonic Yt)0 . On the other hand, for m ^ 0 we have

1

Yl,cos
=

—J=
Wl\m\ + Y*m|)

i

Yl , sin
7^

—
[2.1

The spherical harmonics in real form are eigenfunctions ofL2 and L\, but not of
Lz (except, of course, when m = 0). They behave like simple functions of tkhjft

Cartesian coordinates, and for this reason are well suited for describing tty|

directional properties of chemical bonds (see Chapter 9).

The first few spherical harmonics in real form are listed in Table 2.2.

have used in this table the so-called ‘spectroscopic’ notation, in which the VI

of the orbital angular momentum quantum number l is indicated by a lett*V|

Table 2.2 The first few spherical harmonics in real form

/ W Spherical harmonic in rial form

0 0
1

S

(4ir)
1/2

( 3 Y
/2

1 0 p*
= — cos 9

\4tt /

/ 3 \
1/2

1 P* =
I

—
I

sin 9 cos 4>

( 3 V
/2

.

pv
= — sin 9 sin </>

\4tt)

2 0
/ 5 \

1/2

dfel-rl = 1—
|

(3 cos
2
e - 1)

1
( 15 \

1/2

d„ = — sin 9 cos 9 cos <f>

\4ttJ

, (15 \
1/2

= — sin 9 cos 9 sin <f>

\4vr/

2

/ is y/ 2

dx2_ v 2 = — sin
2
9 cos 2<J>

\4rrJ

( 15 V /2

d„ = — sin
2
8 sin 2d>

\4n)
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according to the correspondence

Value of / 0 1 2 3 4 5

t l I t l $

Code letter s p d f g h , . . .

These code letters are remnants of the spectroscopist’s description of various

series of spectral lines, the letters s, p, d and f being the first letters of the

adjectives ‘sharp’, ‘principal’, ‘diffuse’ and ‘fundamental’, respectively. For

values of l greater than three the letters follow in alphabetical order (g for / = 4,

h for / = 5, and so on). The subscripts z, x, y, xz, yz, etc. used in Table 2.2

indicate the behaviour of the real spherical harmonic in terms of Cartesian

coordinates. Polar graphs of the s, px , py and pz functions are given in Fig. 2.7.

We also remark that while the probability distributions [2.184] corresponding to

the ‘genuine’ spherical harmonics are independent of the azimuthal angle

those corresponding to the spherical harmonics in real form (that is, |F/ jCOS |

2

and |F/;Sin
|

2
) depend on 4> in the same way as the functions cos

2
\m\<f> and

sin
2

[m|(/>, as seen from [2.189],

s orbital

Z Z

The rigid rotator

As an example of the use of the operator L2 and of its eigenfunctions, consider

the motion of a particle of mass m, constrained to remain at a given distance R0

from a fixed point, which we choose as the origin of coordinates. Denoting by

I - mRo the moment of inertia, the Hamiltonian of this system, which is known
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as a (three-dimensional) rigid rotator, is

H =
21

[2 . 191 ]

Using the expression [2.159] of L2
in spherical polar coordinates, the Schrddin-

ger eigenvalue equation reads

1
2 h2

27
*(e’ " “27

1

sin 8 88

1

sin 0—r! +
. p

~ tt? I <K0> 4>) = E^{0, 4>)

[2 . 192]

Thus, we see from [2.163] that the eigenfunctions are just the spherical

harmonics Yim(0, <f>),
and the energy eigenvalues are

h2

£ = — /(/+ 1 ), l = 0 , 1 , 2 , . . . [2 . 193]

Spin angular momentum

We saw in Chapter 1 that the Stern-Gerlach experiment can be interpreted at

showing that the electron possesses an internal degree of freedom, the spin,

which behaves like an angular momentum in the way it couples with a magnetic

field. The z component of this spin angular momentum can only take on two

values msh, where m, = ±1/2. Therefore, the electron spin cannot be described

by the orbital angular momentum operator L we have considered thus far,

since the z component of L only takes on the values mh, with m = ~l,

-l + 1, . . . +/, and / = 0, 1, 2, . . . . We shall assume, however, that all

angular momentum operators, whether orbital or spin, satisfy commutation

relations of the form [2.155]. Thus, if Sx , Sv and Sz are the three Cartesian

components of the electron spin angular momentum operator S, they must

satisfy the commutation relations

[Sx , Sy] = ihSz , [Sy , Sz\ = ihSx , [Sz> Sx]
= ihSy [2.194J

Using the results of Appendix 4, we may readily obtain the properties of the

spin angular momentum and of the spin eigenfunctions. Denoting by xs ,m, the

simultaneous eigenfunctions of S
2 and Sz , we have

S 2
*s,«, = s(s + 1)h

2
Xs,m

,
[2.195]

and

SzXs,m, = mstix5,mt [2.196]

Since tn
s
= ±1/2 for an electron, we must have s — 1/2, and we say that the

electron has spin one-half. There are only two different normalised spin

eigenfunctions Xs,m, >
namely

a " Xi/2,i/2i P = *1/2 -i/2 [2 . 197]
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and we see from [2.195] and [2.196] that

S 2a = Sz
p = |ft

2
0 [2.198]

and „ ft
=

-j
a>

h
Sz (3

= -j P [2.199]

The spin eigenfunctions a and /3 are said to correspond respectively to spin up

( | ) and spin down ( | ) states. A general spin- 1/2 function x is an arbitrary

linear superposition of the two basic spin states a and p. That is,

X = x+a + X-P [2.200]

where x+ and are complex coefficients such that \x+\
2

is the probability of

finding the electron in the ‘spin up’ state a, while \x~\
2

is the probability of

finding it in the ‘spin down’ state (3. The normalisation condition = 1

gives

l*+
|

2 +
i
*-|

2 = 1 [2 -201 ]

provided that the basic spin states a and (3 are orthonormal, namely

<a|a) - (P\P)
-

1
[2.202]

<«|JS) = <0| a) = 0

We note from [2.198] and [2.200] that for an arbitrary spin-1/2 function x we

have S 2
* = (3h

2
/4)x, so that we may write

S2 - ih 2 [2.203]

Introducing the raising and lowering operators

S ± = Sx ± iSy [2.204]

and using the general relations [A4. 1 5]-[A4. 16] of Appendix 4, with j
= 1/2 and

m ~ ±1/2, we have

[2.205]
S+a = 0; S + [3 = ha

S a = h/3; S _/3 = 0

From [2.199], [2.204] and [2.205] we may construct a table which tells us how

the components of S act on a and (3. That is.

ft h
Sxa =

2
P’ S*P ~

~2
a

th lh r,
1= - (3; Syf3 =~a [2.206]

^ o ft „
Sza = — a; Szj3 - f3

Using [2.200] and the results of this table, we remark that if x is an arbitrary

spin-1/2 function one has Six = (A
2
/4)^, with a similar result for 5 2 and S2

.
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Thus we have

r2 _ Si = — [2 .207]

Since there are only two basic spin states a and (3

,

a matrix representation of the

spin operators will only require two-by-two matrices. It is apparent from

[2. 195]—[2. 199] that the matrices representing the operators S 2 and S, may be

taken to be the two-by-two diagonal matrices

S2 = -h2

4
(

l °v
hS=- fl 0

ir
2

2 lo -v
[2 .208]

The normalised spin- 1/2 eigenfunctions a and (3 are given by the two-

component column vectors (also called spinors)

[2 .209]

and may be considered as the basis vectors of a two-dimensional ‘spin space’.

The orthonormality relations [2.202] can then be written in the form

^ = 1

[2 .210]

a^(3 = (3*a = 0

where the dagger denotes the adjoint. Thus a 1 and j8
+ are the row vectors

= (1 0); /3
+ = (0 1 ) [2 . 111 ]

and according to the rules of matrix multiplication, we have explicitly

oFa = (1

c?(3 = (1

0)

0)

= 1

= 0, etc .

[2 .212 ]

It is also readily verified that the equations [2.205] are satisfied if

(° >)
O 0\

II1<0

0/Vo 0/ VI

whence

h 0
S-=2 i

h (0

[2.213]

[2.214]

The results [2.208] and [2.214] can also be written as

«
hS=-a [

2 . 215]
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where

are called the Pauli spin matrices. Their principal properties, which can readily

be verified (Problem 2.14) are summarised by the equations

ct
2
x = o-y = a2

z - 1 [2.217a]

crxcry = -<j
y(Tx = urs ; cryaz = - crzcry = icrx ; <yzcrx = -crxcrz = icry [2.217b]

Tr crx = Tr cr^, = Tr az = 0 [2.217c]

det crx = det cry = det az = —
1 [2.217d]

where Tr means the trace and det the determinant. Moreover, the three Pauli

matrices crx cry az and the unit two-by-two matrix form a complete set of 2 x 2

matrices, in the sense that an arbitrary 2x2 matrix can be expressed in terms

of them. Finally, one can prove (Problem 2.14) the identity

(tr A)(a B) = A • B + iff • (A x B) [2.218]

where A and B are any two vectors, or two vector operators whose components
commute with those of the spin S (that is with those of cr). In the latter case the

order of A and B on both sides of [2.218] must be respected.

Using the explicit form [2.209] of the basic spinors a and (3, an arbitrary spin

1/2 function [2.200] may be written as the spinor

* - (Li
[2 -219]

and the normalisation condition [2.201] becomes

X*X = 1
[2 .220]

where x' denotes the adjoint of the spinor namely

*+ = (X* X-) [2.221]

It is worth noting that if the electron is in a pure ‘spin up’ state a or a pure

‘spin down’ state (3, the expectation values ofSx and Sv vanish, (Sx) = (Sy) = 0

while (Si) — (Sf,) = h2
/A (see Problem 2.13). Thus, even when the spin

angular momentum S is said to be ‘up’ (m
s
= +1/2) or ‘down’ (ms

= -1/2), its

x and y components are still not zero. As in the case of the orbital angular

momentum L, these results can be visualised with the help of a vector model.

According to this model, the spin vector S, of length f3>/4h, precesses about

the Z axis, the only allowed projections of S on the Z axis being m/?,with

m
s
= ±1/2. This is illustrated in Fig. 2.8.

Thus far we have only considered the spin of the electron. Other particles,

such as the atomic nuclei, may also possess a spin angular momentum S, for

which the quantum number s (see [2.195]) can be either integral or half-integral.

94



2.S

™^M|flP!Ppr
"'"

Angular momentum

2.8 The vector model of the spin, for a spin one-half particle.

From the results of Appendix 4, with j = s and m = ms ,
we see that the

quantum number ms
takes on the 2s + 1 values — s, — s + l,...s — 1,5. The

matrices representing the spin operators Sx , Sy ,
Sz and S2

then have dimensions

2s + 1; they can be written explicitly by using the methods of Appendix 4 (see

Problem 2.15).

Total angular momentum

The total angular momentum of a particle can be written as

J = L + S [2.222J

The orbital angular momentum L = r x p operates only in ‘ordinary’ space

and satisfies the commutation relations [2.155]. On the other hand, the spin

angular momentum S satisfies the commutation relations [2.194] and operates

only in ‘spin space’. All its components therefore commute with those of r and

p, and hence with all those of L. As a result, the total angular momentum J

satisfies the commutation relations

= [Jy,n = *J*, L7z,n = Wy [2-223]

which characterise an angular momentum operator.

It is shown in Appendix 4 that the simultaneous eigenfunctions of

J
2 =Jl+Jl + Jl and Jz satisfy the eigenvalue equations

JVfm,- = jU+W2
<Pjm, [2.224]

[2.225]

95



The elements of quantum mechanics

where j is a non-negative integer or half-integer (j
— 0, 1/2, 1, 3/2, . . .) and

mj = -j, - j+1, . . . j
-

1, j.

Since all the components ofL commute with all those of S, the operators L2
,

Lz , S2 and Sz mutually commute, and have the simultaneous eigenfunctions

= Ylm,(Q, d>)Xs,m
s

[2.226]

where we have written m
t
= m [5]. It can be shown (Problem 2.16) that the four

operators L2
, S 2

, J
2 and Jz also form a commuting set of operators. Their

simultaneous eigenfunctions are linear combinations of the functions ihum,™, and

are often denoted by the symbol (see Appendix 4). For a given value of l

and s the possible values of j are given by

\l - s\,\l - s\ + . I + s [2.227]

For a given j the quantum number m
;
can take on the 2j+ 1 values -j,

—j+ 1, . . . j — 1, j, as we have seen above.

Wave functions for a spin-1/2 particle

Thus far in this section we have focused our attention on the angular and spin

parts of the wave functions. In general, the wave functions also depend on the

radial coordinate r and on the time t. For example, in the case of a spin- 1/2

particle (e.g. an electron), a general expression for the wave function is

T(? , t) = ¥ + (r, t)a + ^_(r, t)/3 [2.228]

where q denotes the ensemble of the (continuous) spatial variables r and the

(discrete) spin variable (ms
= ± 1 /2) of the particle. The probability density for

finding at time t the particle at r with ‘spin up’ is T*(r, t)

|

2
, and with ‘spin

down’ it is |'vI
/'_(r, t')\

2
. Using [2.209] we may also write the wave function T as a

two-component or spinor wave function, namely

T = [2.229]

2.6 CENTRAL FORCES

Let us now return to the Schrodinger equation [2.59] describing the motion of a

spinless particle of mass m in a time-independent potential V(f). We shall

consider in this section the important case of central potentials, that is potentials

V(r) which depend only upon the magnitude r = |r| of the vector r. Since V(r) is

spherically symmetric, it is natural to use the spherical polar coordinates defined

[5] In general we shall use the notation m for a magnetic quantum number, but where it is important

to distinguish between different kinds of angular momenta, we shall use the notation m; ,

ms , mj, as necessary.
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in [2.157]. The Hamiltonian of the system is then given by

h2

! m

H=-—V2 + V(r)
2m

1 d
-r— — +

1

r
2

dr \ dr r
2
sin 6 d0

sin 6-
36

+
1

+ V(r)
r
1
sin

2
6 3 4>

2

Using the expression [2.159] of L2
,
we may also write

+ V(r)

[2.230]

'
1 8

(r2 ±\
rNJ

1

r
2

dr [ dr) h2
r
2

\

[2.231]

so that the Schrodinger equation [2.59] reads

1 3

4 - r
2 - --ti + V(r) <Kr) = £<Kr)

r
2

dr dr I

[2.232]

Now L2 and Lz only operate on angular variables, and in addition [L2
, L,] • 0«

Therefore, we see from [2.231] that

[H, L2
] = [H, LJ = 0 [2.233]

We may thus look for solutions of the Schrodinger equation [2.232] which art

simultaneous eigenfunctions of the operators H, L2 and Lz . Since the spherical

harmonics Yim(6, d>) are simultaneous eigenfunctions of L2 and Lz (see [2.163]

and [2.164]) we can write a particular solution as

lJ/E,i,m(r> 4*)
= E.E,t(r)Yim(0, 4>) L2-234]

Substituting [2.234] into [2.232], and using [2.163], we obtain for the radial

function RE ,i(r) the equation

1 d /(/ + 1 )

-7 — r
r dr dr

V(r)\RE,i(r) = ERE j(r) [2.235]

which shows that REJ does not depend on the magnetic quantum number m.

The radial equation [2.235] can be simplified by introducing the new radial

function

uE/r) = rRE/r) [2.236]

The new radial equation which we obtain for M£ ,;(r) is then

h1 d2
/(/ + i)r

2m dr
2
+

2mr2
+ U(r) uE/r) = EuHJ(r) [2.237]

For potentials which are less singular than r
2

at the origin, a power senes

expansion of uE i(r) can be made for small r, and the examination of the indicial
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equation shows that

i%,,(r) ~ r
/+1

[2.238]
r—»0

The equation [2.237] is similar to the one-dimensional Schrodinger equation

[2.121] for an ‘effective potential
’

Tefr(r) = V(r) +
/(/

2

+
Jf [2.239]

which contains the repulsive centrifugal barrier term /(/ + \ )h
2/2mr 2

in addition

to F(r). We remark, however, that the variable r is confined to positive values

0 =s r ss so, in contrast to the variable x in [2.121],

Parity

The parity operator 2P is defined by the relation

= /(- r) [2.240]

where /(r) is an arbitrary function. Thus the parity operator corresponds to an

inversion of the position coordinate r through the origin. It is a Hermitian

operator since, for any two wave functions 4>(r) and i/r(r), we have

</>*(r)2P</<r) dr = <f)*(r)i^(-r) dr

= 4>*(—r)ip(r) dr

= [2P<Kr)]*iKr) dr [2.241]

Let us now consider the eigenvalue equation for 2P, which we write as

= oojja(r) [2.242]

From the definition [2.240] of 2/’ and the fact that 2?/(— r) = /(r), we deduce

that

3>2 = / [2.243]

where / is the unit operator. Hence

= a® t/fa(r) = aV„(r) = i/^fr) [2.244]

so that a2 = 1 and the eigenvalues of ^ are a = ± 1 . Denoting the correspond-

ing eigenfunctions by i/f+ and </>_, we have

2P<K(r) = Mr), &Mr) = -*-(r) [2.245]

or

*A+(— r) = Mr), iff-(-r) = -<A-(r) [2.246]
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Thus ip+ (r) is an even function of r, and t//_ (r) is an odd function of r. Thf
eigenfunctions ip+ are said to have even parity, while the eigenfunctions tp- haVO

odd parity. We note that tp+ and ip- are orthogonal. They also form a complete

set, since any function tp(r) can always be written as

i/r(r) = i/»+(r) + ip-(r) [2.247]

where

«A+(r) = i[iA(r) + ip(-r)] [2.248]

has obviously even parity, while

>P-(r) = M.¥?) - iA(-r)] [2.249]

has odd parity.

Let us now return to the central force problem. Under the parity operation

r —» — r, the spherical polar coordinates (r, 6, <p) become (r, tt — 0, <p + it).

The central force Hamiltonian [2.230] is clearly unaffected by this operation, or

in other words the parity operator 9? commutes with the Hamiltonian [2.230]

[9>, H] = 0 [2.250]

As a result, simultaneous eigenfunctions of the operators 9* and H can be

found. Applying the parity operator on the wave function tpE> i,m (r, 9, <p) -

RE ,i(r)Ylm(9, <p) (see [2.234]), we have

nREj(r)Ylm(e, </>)]
= REJ(r)Ylm(7T - 0, 4> + rr) [2 .251 ]

Now, from the definition [2.181] of the spherical harmonics, it can be shown

that

YU

«

- e, cP + tt) = (-1)%m(e, <p) [
2 . 252 ]

so that Ylm has the parity of /. Thus

nREAr)Ylm(9, <P)] = REU(r)(-\)
lYlm(6, <P) [

2 . 253 ]

and the wave function \pE ,i,m itself has the parity of / (even for even /, odd for

odd /).

The free particle

We shall discuss at length various applications involving central potentials in

subsequent chapters. For further reference, we consider here the (very) special

case of the free particle, for which V(r) = 0. Writing k = JlmE/h, the radial

equation [2.235] becomes

il l—
dP

+
r dr

IQ + l)
+ k

2 RE .i(r) = 0 [2.254]
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It is convenient to set p = kr and to write Rfp) = ReA*)’ s0 t^ial tbe above

equation reads

d2 2_d

dp 2
p dp

1(1 + 1)V

P
2

)\

R,(p)
= o [2.255]

This equation is known as the spherical Bessel differential equation. The

solutions of [2.255] which are regular and finite everywhere are given (up to a

multiplicative constant) by the spherical Bessel functions jfp), defined by

ji(p') •M(P) [2.256]

where JXp) is a Bessel function of order v. The first few spherical Bessel

functions are given explicitly by

sin p
Jo(P) =

ii(p)
=

h(p) =

sin p cos p

P

sin p
- 3
—

j

cos pnr
[2.257]

Additional properties of the functions jfp) will be discussed in Chapter 11.

The eigenvalues k
2
of [2.254] can take on any positive real value. As a result,

the energy E = h2
k
2/2m can assume any value in the interval (0, »), giving an

example of a continuous spectrum. Thus, returning to [2.234] and using the

foregoing results, we see that for every positive value of E there exist eigen-

functions of the free particle Schrodinger equation labelled by the orbital

angular momentum quantum numbers (l, m), namely

6, 4>) = Cji(kr)Ylm(d, d>) [2.258]

where C is a constant. It can be shown that the ensemble of spherical waves

[2.258] forms a complete set.

On the other hand, we have seen in Section 2.1 that a free particle of

momentum hV. and energy E = h2
k
2/2m is represented by the plane wave

exp(ik • r). Since the spherical waves [2.258] form a complete set, we may

expand the plane wave exp(ik • r) in terms of them. That is,

e'
k r = E 2 clm(k)ji(kr)Ylm(0, <j>) [2.259]

1=0 m=—l

If we choose the Z axis to be along the wave vector k, then the left hand side of

[2.259] reads exp(ik • r) = exp(ikr cos 6), which is independent of d>. Setting

w = cos 9, the expansion of exp(ik • r) reduces to an expansion in terms of

Legendre polynomials Pfw). A straightfoward calculation (Problem 2.17) then
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yields

e
lk r = 2 (21 + l)#/(*r)P/(cos 0)

/=o
[2.26Qf

Using the addition theorem of the spherical harmonics (see the equation [A4.23]

of Appendix 4) we can also write the above formula in the form of equation

[2.259], That is

e'
k r = 4 tt 2 2 i

l

j,(kr)Yfm(k)Ylm (f)

/=0 m=-l
[2.261]

where x denotes the polar angles of a vector x. Upon comparison of [2.259] and

[2.261] we see that the coefficients clm (k) are given by c!m (k) = 4ffi
l

Yfm (fc).

2.7 SEVERAL-PARTICLE SYSTEMS

Until now we have only discussed the motion of a single particle. In this section

we shall generalise our results to A/-particle systems. We begin by considering a

system of N non-relativistic spinless particles having masses m„ position

coordinates r, and momenta p, (t = 1,2,... N). The classical Hamiltonian

function of this system is

N
D
2

H{tu ...rW)Pl ,...pN ,!) =2f + V(Xi> - rN , t) [2.262]
i=l 2m

i

where V is the potential energy. The total classical energy E
lot

of the system is

£tot = H(ri, . . . r^, pi, . . . pjv, t) [2.263]

The Schrodinger equation for the wave function ^(rj, . . . rv ; i) which

describes the dynamical state of the system is obtained by considering and

p, to be the differential operators (compare with [2.11])

E0p vh , (Pi)op ih\r

dt
[2.264]

and writing that E op and Hop = H(r
t , . . . rN , -ihV

Ti , . . . -ihVrN , t) give

identical results when acting on T. That is

d

dt

Ir " ,
< h

2
,\4t II * ii

LSI
-—

V^J + V(r„ .

v
2tn, 7

rN , 0

The normalisation condition [2.26] now takes the form

IT^!, . . . TN , i)
I

2
drj . . . dr^ = 1

^ [2.265J

[2.266]

The total orbital angular momentum L of the system is the sum of the

individual orbital angular momenta L, = r, x p,

N
l = Xl, [2.267]

i= 1
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It is also worth noting that all the components of the position r, and

momentum p, of particle i commute with all those pertaining to particle j

provided that i f j, so that the fundamental commutation relations read

[x,, pXJ ]
= ih <5y , [yl ,pxj] = o, etc. [2.268]

Two-body systems

Of particular interest is a system of two particles, of masses m x and m 2 ,

interacting via a time-independent potential V
r

(r 1'-r2) which depends only upon

the relative coordinate ri - r2 . The classical Hamiltonian of the system is

therefore given by

H = + -p- + V(r, - r2) [2.269]
7.771 \

7th2

Making the substitutions p! —* ~ihV
rj
and p 2

—* -ihVT/ in [2.269], we obtain

the quantum mechanical Hamiltonian operator, and the corresponding

Schrodinger equation reads

ih TT ^ri> r2> 0 =
at 2m x

V?. -
2m 2

V2
ri + T(fl - r2) ^(ri, r2 , t )

[2.270]

Because the potential V only depends on the difference of coordinates ri - r2 ,

an important simplification can now be made. We introduce the relative

coordinate

together with the vector

i = ii - t2

_ mil i
+ m2r2

mi + m2

[2.271]

[2.272]

which determines the position of the centre of mass (CM) of the system.

Changing variables from the coordinates (rj , r2 ) to the new coordinates (r, R)

one finds that the Schrodinger equation [2.270] becomes

ih — T(R, r, t) =
ot 2M 2P

V2
r + V(r) ^(R, r, 0 [2.273]

where

M = mi + m2

is the total mass of the system and

mim2 .

u =
m i

+ m2

[2.274]

[2.275]

is the reduced mass of the two particles. The Schrodinger equation [2.273] may
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also be obtained by introducing the relative momentum

m2Pi - mip2

P =
mi + m2

[2.276]

together with the total momentum

P = Pi + P2 [2.277]

Since

_2 2 p2 _2
Pi P2 P P

2mi 2m2 2M 2/u.

[2.278]

the classical Hamiltonian [2.269] can be written as

P2 P
2

H -w + -, + m [2.279]

Performing the substitutions P —> —ihVR and p —* ~ihVr in [2.279], we

then obtain the quantum mechanical Hamiltonian operator leading to the

Schrodinger equation [2.273].

Two separations of the equation [2.273] can now be made. The time

dependence can first be separated as in [2.58] since the potential is time-

independent. Secondly, the spatial part of the wave function can be separated

into a product of functions of the centre of mass coordinate R and of the relative

coordinate r. Thus the Schrodinger equation [2.273] admits solutions of the

form

T(R, r, 0 = $(R) t/
f(r)e“’

(£cA,+£)^ [2.280]

where the functions <1>(R) and i//(r) satisfy respectively the equations

-^rrVi $>(R) = Ecm <*>(R)
2M [2.281 J

and

h2
,_ Vr
2 + T(r)

2M
<Kr) = Eip(i) [2.282]

We see that the equation [2.281] is a time-independent Schrodinger equation

describing the centre of mass as a free particle of massM and energy £Cm- The

second time-independent Schrodinger equation [2.282] describes the relative

motion of the two particles; it is the same as the equation corresponding to the

motion of a particle having the reduced mass n in the potential V(r). The total

energy of the system is clearly

Etot — ECm 3" E [2.283]

We have therefore ‘decoupled’ the original two-body problem into two one-

body problems, that of a free particle (the centre of mass) and that of a single
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particle of reduced mass /x in a potential V'(r). We remark that if we elect to

work in the centre of mass system of the two particles, we need not be concerned

with the motion of the centre of mass, the coordinates of which are eliminated.

Systems of particles with spin. Addition of angular momenta

Let us now consider a system of particles which may possess spin. We shall

denote by q, the ensemble of space and spin coordinates of the particle i. The

angular momentum J, of that particle is the sum of its orbital angular

momentum L, and its spin angular momentum S,,

J, = L, + S, [2.284]

The total orbital angular momentum L of the system is given by [2.267], The

total spin angular momentum is

S = i S, [2.285]

i— 1

Finally, the total angular momentum of the system is the sum of the individual

angular momenta J,,

J = X J. [2.286]

i= l

In many problems of quantum physics the Hamiltonian H of the system is

rotationally invariant. As a consequence, it may be shown [6] that H commutes

with the components of the total angular momentum J, so that we can look for

the eigenfunctions ofH among the simultaneous eigenfunctions ofJ
2 andJz . On

the other hand, we know in general how to obtain the eigenfunctions of the

individual angular momentum operators J j, Jiz (see Appendix 4). The problem

of the addition of angular momenta consists in oDtaining the eigenvalues

and eigenfunctions of J
2 and 7* in terms of those of J

2 and Jiz . The simplest

addition problem, namely that of adding two angular momenta is discussed

in Appendix 4.

Indistinguishable particles

Many systems considered in further chapters of this book contain a number of

particles (notably electrons) which are all identical. In this case the Hamiltonian

must be symmetric with respect to any interchange of the space and spin

coordinates of the particles. Thus an interchange operator P,
,
that permutes the

variables q t
and q} of particles i and j commutes with the Hamiltonian:

[Pij, H]
= 0 [2.287]

[6] See Messiah (1968) or Merzbacher (1970).
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As a consequence, if iK<7i, ... ft, . ftv) is an eigenfunction of H
with eigenvalue E, so is also Pyip, where ;:

!

||i!

Py'Piqi, ft , . . . qN) = >Kqi> . .
. ft,

. . . ft, • . . qN) [2.288]

Since two successive interchanges of q, and
ft

bring the particles back to thdf

initial configurations, we have

Pi = I [2.289]

so that the eigenvalues of the operator P
tJ

are e = ±1. Wave function!

corresponding to the eigenvalue e = + 1 are such that

Pij4>(qi , qi} ft,
. . . qN)

=
«K?i, • •

• ft,
• • • q,, . ftv)

= <K?i, ...?„••• q,, . qN) [2.i90]

and are said to be symmetric under the interchange Ptj

.

On the other handi Will
functions which correspond to the eigenvalue e = - 1 are such that

PijtKqi, qj, • • • ftv)
= iA(?i, qt , qN)

= -<//(?!, qj, . . . ffw) [2.291]

and are said to be antisymmetric under the interchange P
l;

.

More generally, there are TV! different permutations of the variable!

qi, . . . qN . Defining P as the permutation that replaces q t
by qPX , q2 by

qP2 , . . . qN and qPN and noting that P can be obtained as a succession of

interchanges, we have

[P, H] = 0 [2.292]

A permutation P is said to be even or odd depending on whether the number of

interchanges leading to it is even or odd. If we let the operator P act on a wave

function 4>(qi , . . . qN), we have

Ptfsiqu ?n\)
=

<K?.pi> • • • qpN) [2.293]

It is worth stressing that except for the case N = 2 the TV! permutations P do

not commute among themselves. This is due to the fact that the interchange

operators P
tJ
and Pik (k f j ) do not mutually commute. Therefore, the eigen-

functions i//(<?i , . . . qN) of H are not in general eigenfunctions of all the TV!

permutation operators P. However, there are two exceptional states which are

eigenstates of H and of the TV! permutation operators P. The first one is the

totally symmetric state ipsiqi , q.\-) satisfying [2.290] for any particle inter-

change P
tJ ,

so that for all P

Ppsiqi, - • 9,v)
= ^siqpi, • qpN)

=
</,s(‘7i> • • • 4V) [2.294]

The other one is the totally antisymmetric state i/»a(?i> • •
• Vv)> which satisfies
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[2.291] for any interchange P
tJ

. Hence, for all P

PMh, Qn)
= Qpn)

. . . qN) for an even permutation

. . . qN) for an odd permutation [2.295]

We also remark that the equation [2.292] implies that P is a constant of the

motion, so that a system of identical particles represented by a wave function of

a given symmetry (S or A) will keep that symmetry at all times.

According to our present knowledge of particles occurring in nature, the two

types of states ips and ipj\ are thought to be sufficient to describe all systems of

identical particles. This is called the symmetrisation postulate. Particles having

states described by totally symmetric wave functions are called bosons. They can

be shown [7] to obey Bose-Einstein statistics. Experiment shows that particles of

zero or integral spin, such as the photon (s — 1) are bosons. On the other hand,

particles having states described by totally antisymmetric functions are called

fermions. They satisfy Fermi—Dirac statistics [7], It is found that particles

having half-integral spin values such as the electron and the proton (s = 1/2) are

fermions. The statement that the wave function of a system of identical fermions

must be totally antisymmetric in the combined space and spin coordinates of the

particles is the generalised version of the Pauli exclusion principle.

If the system is composed of different kinds of bosons (fermions), then its

wave function must be separately totally symmetric (antisymmetric) with

respect to permutations of each kind of identical particles. For example, in the

case of the hydrogen molecule H2 , the total wave function must be antisymmet-

ric under the interchange of the two electrons and also antisymmetric under the

interchange of the two protons.

2.8 APPROXIMATION METHODS

As in the case of classical mechanics, there are relatively few physically

interesting problems in quantum mechanics which can be solved exactly.

Approximation methods are therefore of great importance in discussing the

application of quantum theory to specific systems, such as the atomic and

molecular ones considered in this book. In this section we shall review several

approximation methods which will be used extensively in further chapters.

Time-independent perturbation theory

Perturbation theory deals with the changes induced in a system by a ‘small’

disturbance. Although we shall also apply perturbation methods to scattering

problems at a later stage (see Chapters 11-13) we shall start here by discussing

the Rayleigh-Schrodinger perturbation theory, which is concerned with the

[7] See Dicke and Wittke (1960) or Messiah (1968).
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modifications in the discrete energy levels and corresponding eigenfunctions of4
system when a perturbation is applied. Mi:

Let us assume that the time-independent Hamiltonian H of a system may
be separated in two parts,

H = H0 + AH' [2.296)

where the ‘unperturbed’ Hamiltonian H0 is sufficiently simple so that the

corresponding Schrodinger eigenvalue equation

Hotpk = Ek'I'k [2.297]

may be solved, and the term AH' is a small perturbation. The parameter A will

be used below to distinguish between the various orders of the perturbation

calculation. We assume that the (known) eigenfunctions tpk corresponding to the

(known) eigenvalues Ek ofH0 form a complete orthonormal set (which may be

partly continuous). Thus, if ipi and ipj are two members of that set, we have

<</#>> = % or S(i - j) [2.298]

where the symbol 8(i - j) should be used when both ip, and <p
;
correspond to

continuous states. In what follows we shall simplify the notation by extending

the meaning of 8
tJ
to cover both possibilities in [2.298]. The eigenvalue problem

which we want to solve is

H^k = «*¥* [2.299]

where we have used the notation %k and 'k* to denote the perturbed energy

levels and eigenfunctions, respectively.

(a) Non-degenerate case

Let us focus our attention on a particular unperturbed, discrete energy level Ek ,

which we assume to be non-degenerate. We suppose that the effect of the

perturbation AH' is small enough so that the perturbed energy level 't, k is much
closer to Ek than to any other unperturbed level. It is then reasonable to expand

both 'k* and %h in powers of A, namely

** = 2 A"<tf
n=

0

.(»)

k [2.300]

and

2 A
nE™ [2.301]

n=0

where the index n refers to the order of the perturbation. Substituting the

expansions [2.300] and [2.301] in [2.299], and using [2.296] we have

(H0 + \H')(4 + A^ + AVi2) + • * )

=(E(

k
0) + AEi

l)
+ A

2

£i
2) + • -)(^

0) + A^15 + A
2^2) + • •

•) [2.302]
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Let us now equate the coefficients of equal powers of A. Beginning with A , we

see that

Hot? = Ef\Af [2.303]

so that

IIIh}III
§.«

[2.304]

as expected. The coefficient of A then gives

H0t? + H’fk = Ekt? + E?tk
[2.305]

while that of A
2
yields

H0t? + H’t? = Ekt? + E?t? + E?tk
[2.306]

dllU. o\j WIi.

In order to obtain the first energy correction E?, we premultiply [2.305] by

(//* and integrate over all space. This gives

(4>k\H0 - Ek\^) + ~ E?\tk) = 0 [2.307]

Using [2 297] together with the fact that H0 is Hermitian, so that

(tk\H0\t?) = (H0tk\t?) = Ek(tkW?), we find from [2.307] the very simple

but important result

E? = (4>k\H'\tk) - H'kk [2.308]

Similarly, we deduce from [2.306] that

(<pk\Ho ~ Ek\ip?) + ~ E?\t?) - E?(tk\\tk) = 0 [2.309]

and therefore

E? = <0*|H' - E?\t?) [2. 3 10]

An equivalent expression ofE? may be obtained by starting from [2.305], and

is given (Problem 2.18) by

E? = -(W\H0 - Ek\t?) [2311]

Expressions for higher order corrections E

n

2* 3 can be obtained in a similar

way. For example, one has (Problem 2.18)

E? = (t?\
H' - E?\t?) - 2E®<0*|\t?) [2.312]

Let us now return to [2.305]. The Rayleigh-Schrodinger method attempts

to obtain the solution
1

of that equation in the following way. First, the

‘unperturbed’ equation [2.297] is solved for all eigenvalues and eigenfunctions

(including those belonging to the continuous part of the spectrum, if there exists

one). The unknown function t? is then expanded in the basis set of the

unperturbed eigenfunctions. That is,

t? = 2 [2.313]

m
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where the sum over m means a summation over the discrete part of the set and
, ,

,

an integration over its continuous part. Substituting [2. 3 IB] into [2.305], wt 11

obtain

(H0 - Ek) 2 a^m + (H' - E^)4>h = 0 [2.314]
m

Premultiplying by tpf, integrating over all space and using the fact that

H0 iP! = £,(//, and \4>k) = 8kh we find that

a?\E, - Ek ) + W^k) ~ E[l)
8kl = 0 [2.315]

For l = k this reduces to our basic result [2.308]. On the other hand, for l ^ k

we have

a
(i) -
i

l ? k [2.316]

where we have set H\k = We note that the equation [2.305] does not

determine the coefficient a£\ which is the ‘component’ of H' along ipk . We can

thus require without loss of generality that

a? = (+k\W) = 0 [2.317]

and rewrite [2.313] as

4>
(

k
l> = 2

mik

= [2 - 318 ]

mik *^k t-'m

Substituting this result in [2.310] we obtain

Zjr LJf
w-,(2) V1 n km11 mk
^ k 2*4 77 t?

mik

= 2
mik

[2.319]

The third-order correction E (

k
y> may be obtained in a similar way from [2.312]

and [2.318].

(b) Degenerate case

Thus far we have assumed that the perturbed eigenfunction T* differs slightly

from a given function ijjk , solution of the ‘unperturbed’ equation [2.297], When

the level Ek is a-fold degenerate, there are several ‘unperturbed’ wave functions

,j/kr(r = 1, 2, ... a) corresponding to this level and we do not know a priori to

which functions the perturbed eigenfunctions tend when A —» 0. This means
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that the above treatment - and in particular the basic expansion [2.300] - must
be modified to deal with the degenerate case.

The a unperturbed wave functions ipkr corresponding to the level Ek are

orthogonal to the unperturbed wave functions ifa corresponding to other energy

levels E
t =f Ek . Although they need not be orthogonal among themselves, it is

always possible to construct from linear combinations of them a new set of a
unperturbed wave functions which are mutually orthogonal and normalised to

unity. We may therefore assume without loss of generality that this has already

been done, so that

(>l'kr\4'ks)
= 8rs (r, s = 1, 2, . . . a) [2.320]

Let us now introduce the correct zero-order functions Xkr which yield the first

term in the expansion of the exact wave function in powers of A. That is

Vkr = Xkr + AC + AVg} + • • [2.321]

We shall also write the perturbed energy % kr as

%kr = Ek + AEg + A
2£® + • •

• [2.322]

with Ek = Ekr (r = 1, 2, ... a) since the level Ek is a-fold degenerate. Using

the above expansions in [2.299] and equating the coefficients of A we find that

+ H' Xkr = Erf" + E^Xkr [2-323]

Since the functions Xkr are linear combinations of the unperturbed wave

functions il>kr , we may write

a

Xkr = 2 Crstks (r = 1, 2, ... a) [2.324]
S— 1

where the coefficients crs are to be determined. Similarly, expanding ih'^ in the

basis set of the unperturbed wave functions, we have

€r
} = 2 2 [2.325]

m s

where the indices r and s refer explicitly to the degeneracy. Substituting the

above expressions of Xkr and ^ in [2.323] and using the fact that

f/fWv, = Em ipms , we find that

2 2 <r,ms(Em ~ Ek)*ms + 2 Es(H’ - E'Zrfhs = 0 [2.326]
ms s

Premultiplying by <//*„ and integrating over all space, we obtain

2 2 - EkMkJl’U + 2 crI(>Pku\H'\<hs)
- E[lXs] = 0

ms s .

(u = 1,2, ... a) [2.327]

where we have used [2.320]. Since (ihkul'Pms)
= 0 when k f m and Ek = Em if
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k =m, we see that [2.327] reduces to

a

2 crs[(<PJn'\ k̂s) - e™ sm]
= o

s= 1

(u = 1, 2, ... a) [2.328]

This is a linear, homogeneous system of equations for the a unknown quantities
cr i> cr2 > • • • cra - A non-trivial solution is obtained if the determinant of the
quantity in square brackets vanishes,

det|<^„|/f'|fe) - E™ fij = 0 (s,u= 1,2,... a) [2.329]

This equation yields a real roots E[\\ E$, . . . E^. If all these roots are

distinct the degeneracy is completely removed to first order in the perturbation. On
the other hand, if some or all roots of [2.329] are identical the degeneracy is only

partially (or not at all) removed. The residual degeneracy may then be either

removed in higher order of perturbation theory, or it may persist to all orders.

The latter case occurs when the operatorsH0 andH share symmetry properties.

For a given value of r, the coefficients crs (s = 1,2,. . .a) which determine

the ‘correct’ unperturbed zero-order wave function Xkr via [2.324] may be

obtained by substituting the value of E^/ in the system [2.328] and solving for

the coefficients crl , cr2 , . . . cra in terms of one of them. The last coefficient is

then obtained (up to a phase) by requiring the function Xkr to be normalised to

unity. It is clear that this procedure does not lead to a unique result when two or

more roots E

$

of equation [2.329] coincide, since in this case the degeneracy is

not fully removed.

Time-dependent perturbation theory

We shall now discuss the perturbation theory of a system whose total Hamilto-

nian H may be split as

H = H0 + \H'(t) [2 .330]

where the ‘unperturbed’ Hamiltonian H0 is time-independent and A//'(t) is a

small time-dependent perturbation. The method which we outline below is

known as Dirac’s method of variation of constants.

Let us suppose that we know the eigenvalues Ek of the unperturbed

Hamiltonian H0 , together with the corresponding stationary eigenfunctions t//*

,

which we assume to be orthonormal and to form a complete set. Thus, since

H0 i[/k = Ek tpk , the general solution of the time-dependent Schrodinger equation

2\J/

Hi—- = H0^o [2.331]
01

is given by

*o = 2 <fV*e-
,e‘'/fi

[2.332]
k
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where the coefficients cf
r>

are constants and the sum is over the entire set of

eigenfunctions ipk- Because the functions tpk form a complete set, the general

solution T of the time-dependent Schrodinger equation

dT
ih = HV [2.333]

dt

can be expanded as

T = 2 ck (t)fkz-'
Ekl/h

[2.334]
k

where the unknown coefficients ck(t) clearly depend on the time. Since the wave

functions tf/k are orthonormal, and provided T is normalised to unity, we can

interpret the quantity |c*(t)|
2
as the probability of finding the system in the state

labelled k at the time t, and ck (t) as the corresponding probability amplitude.

Upon comparison of [2.332] and [2.334] we see that if H'it) = 0 the coefficients

ck reduce to the constants cf 1 which are therefore the initial values of the ck .

Thus, as we expect from [2.332] the quantity |c^
0)

|

2
gives the probability of

finding the system in the stationary state tpk before the perturbation is applied.

To find equations for the coefficients ck (t) the expansion [2.334] is inserted

into the Schrodinger equation [2.333]. From [2.330] and the fact that

= Ek ipk ,
we then have

ih 2 ck (t)fkc-^‘
/h = 2 ck{t)\H ' {t)iJjkt~

lEit!fl
[2.335]

k k

where the dot indicates a derivative with respect to the time. Taking the scalar

product with a particular function t//6 belonging to the set {t/^} and using the fact

that {tfb\ k̂) = §bk ,
we then find from [2.335] the set of coupled equations

cb (t) = (ih)-
1 2 hH'bk(t)ck(i)e

ia>iit

k

[2.336]

where

H'bk(t) = <4>t\H\t)\^k) [2.337]

and where the Bohr angular frequency tobk is defined by

Eb - Ek
Mbk ~

h
[2.338]

The system of coupled differential equations [2.336] is completely equivalent

to the original time-dependent Schrodinger equation, and no approximation has

been made thus far. However, if the perturbation AH' is weak, we can expand

the coefficients ck in powers of the parameter A as

Ck = cf + Acj^ + A2c® + •
• [2.339]

Substituting this expansion into the system [2.336] and equating the coefficients
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of equal powers of A, we find that

4
0) = o

= (ift)
-1 2 H’bk{ty

mbh,cT
k

4
S+1) =m 1 2 H'bk{ty^cf s = o, i, . .

.

[2.340a]

[2.340b]

[2.340c]

Thus the original system [2.336] has been decoupled in such a way that the

equations [2.340] can now in principle be integrated successively to any given

order.

The first equation [2.340a] simply confirms that the coefficients c
(

M
0)

are

time-independent. As we have seen above, the constants c™; define the initial

conditions of the problem. In what follows, we shall assume for the sake of

simplicity that the system is initially (that is, for t *£ r0) in a well-defined

stationary state ipa of energy Ea . Thus

c(0) = \
8ka for discrete states

[8(k - a) for continuous states

We note that this statement is not in contradiction with the uncertainty relation

AE At 53 h since we have essentially an ‘infinite’ amount of time available to

prepare our initial state. Upon substitution of [2.341] into [2.340b] we then have

c
(

b
\t) = [2.342]

where wba = (Eh - Ea)/h. This equation is readily solved to give

c
(

b
x
\t) = (ift)"

1

f'
H’ba{t'y

MU
dr' [2.343]

Jt0

where the integration constant has been chosen in such a way that 4*
’(0

vanishes at t = t0 , namely, before the perturbation is applied. To first order in

the perturbation the transition probability for the transition a —> b is then given

by

Pba(t) = ItfW [2.344]

If H' is independent of time, except for being ‘turned on’ at the time t0 = 0

and ‘turned off’ at time t, we have

ci
l
\t) = ywbat -

1 ) [2 . 345 ]

and the first-order transition probability from state a to a state b j=- a is given by

Pfr«(0 = I4
n
(')i

2 = ^2 \H'ba\
2
F(t> Uba) [2.346]
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where

2.8

1 — cos wt
Fit, 0>) = 2

O)
[2.347]

The function F(t, co) is shown in Fig. 2.9 for fixed t. We see that it exhibits

a sharp peak about the value w = 0. The height of this peak is proportional to

t
z

, while its width is approximately 2v/t. Setting x = wt/2, we also note that

r -hoc r +30 • 2
Sin X r

F(t, cS) dw = t —
j
— dx = Trt [2.348]

— 00 J — oo X

where we have used a standard integral. We remark that this result allows us

also to write for large t (see [2.31])

Fit, o)
t
~„ itt 8(co) [2.349]

Let us first analyse [2.346] for a fixed value of t. Since the function Fit, o>ba)

has a sharp peak of width 27r/t about the value wba = 0, it is clear from [2.346]

that transitions to those final states b for which o>ba does not deviate from zero by

more than 8o)ba — 2ir/t will be strongly favoured. Therefore the transitions

a —> b will occur mainly towards those final states whose energy Eb is located in

a band of width

8E » 2trh/t [2.350]

about the initial energy Ea , so that the unperturbed energy is conserved to

within 2Tfh/t. This result may easily be related to the time-energy uncertainty

2.9 The function F(t, a>) for fixed t.
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relation AE At ^ h. Indeed, since the perturbation gives a way of measuring

the energy of the system by inducing transitions a—* b, and because this

perturbation acts during a time t, the uncertainty related to this energy

measurement should be approximately h/t, in qualitative agreement with

[2. 350].

We now study the transition probability [2.346] as a function of t. For a

transition to a given state b we must distinguish two cases:

1. If the transition is such that the unperturbed energy is strictly conserved

(wha = 0), then we see from [2.346] that

Puff) = [2.351]

so that the transition probability increases as t
2

.

2. If on the contrary one haso^ =£ 0, then one sees from [2.347] that the

function F(t, coba) oscillates between the values 0 and 2/ofha with a frequency

(abJ2-n. As a result, Pba (t) will oscillate with the same frequency about the

average value

2\H'ba \

2

_
2\H'ba \

2

ba
h
2
co
2
ba (Eb - Ea)

2
[2.352]

Instead of considering transitions to a particular state b, it is often necessary

to deal with transitions involving a group of states b' whose energy Ey lies within

a given interval (Eb
- rj, Eb + 17) centred about the value Eb . If we denote by

pb(Ebf the density of levels Ey, namely the number of states b' per unit energy,

then the first-order transition probability Pba from the initial state a to the group

of final states b' is given by

P bJf) J2 [
\H'ya \

2F(t,Wya)py(Ey)&Ey
n )E b -V

[2.353J

Assuming that 17 is small enough so that H'b a and pb - are nearly constant within

the integration range, we have

PbaiO = ^2 \

H
'ba\

2
Pb(Eb)

fEt + 17

F(t, u>b
'a) dE b

E b ~v
[2.354]

We shall also assume that t is large enough so that the quantity rj satisfies the

condition

17 !> 2irlij

t

[2.355]

It is clear that the overwhelming part of the integral on the right of [2.354] arises

from transitions which conserve the energy (within SE = 2-n-h/t). Since

17 > 27rh/t, we may write

J

F(t, (ob a) dEy = h
I

F(t, (o b a) dwb a = h tu [2.356]

jE t -v J-*
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where we have used [2.348]. Thus [2.354] reduces to

PtJf) = ^ \H'J
2
Pb (E)t [2.357]

n

with E = Ea = Eb , so that the transition probability increases linearly with t

for those transitions which conserve the energy. We may therefore introduce a

transition probability per unit time (or transition rate)

H P^ [2.358]

and we see from [2.357] that to first order in perturbation theory, we have

Wba = ^ |
H'JWE) [2.359]

This formula, first obtained by Dirac, is also often referred to as Fermi’s

Golden Rule. We recall that we have proved it here for a perturbation H' which

is independent of time, except for being ‘turned on’ at t = 0 and ‘turned off’ at

time t. However, the Golden Rule can be generalised to other time-dependent

processes, and we shall return to it when discussing the interaction of atoms

with electromagnetic fields. We simply remark at this point that [2.359] is only

valid if the time t during which the perturbation acts is sufficiently large so that

the condition [2.355] is satisfied, and yet small enough so that first-order

perturbation theory is justified, namely if

Pba(t)
= Wbat < 1 [2.360]

so that there is little change in the initial state a for times l of physical

interest.

The variational method

We shall now discuss an approximation method, known as the variational

method, which is very useful in obtaining the bound state energies and wave

functions of a time-independent Hamiltonian H. We denote by En the

eigenvalues of this Hamiltonian and by 4>„ the corresponding orthonormal

eigenfunctions, and assume that H has at least one discrete eigenvalue. Let <t> be

an arbitrary normalisable function, and let E[<i>] be the functional

E[4>] = (4>m)

<p*H4> dr

dt

[2.361]
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where the integration is extended over the full range of all the coordinates of tfcf

system.

It is clear that if the function 6 is identical to one of the exact eigenfunctions

ipn of H, then E[6] will be identical to the corresponding exact eigenvalue En .

Moreover, it will now be shown that any function 6 for which the functional

E[cf)] is stationary is an eigenfunction of the discrete spectrum of H. Thus, if <f>

and t[>„ differ by an arbitrary infinitesimal variation 86,

</>=(/(„+ 86 [2.362]

then the corresponding first-order variation of E[cj>] vanishes:

8E = 0 [2.363]

and the eigenfunctions of H are solutions of the variational equation [2.363].

To prove this statement, we note that upon clearing the fractions and varying,

we have from [2.361]

SE 6*6 dr + E 86*6 dr + E 6* 8(j> dr

= 8(f>*H(j> dr + 6*H 8<f> dr [2.364] •

Since (6\6) is assumed to be finite and non-vanishing, we see that the equation

[2.363] is equivalent to

8<t>*(H - E)(j) dr +
|

4>*(,H - E) 8^ dr = 0 [2.365]

Although the variations 86 and 86* are not independent, they may in fact be

treated as such, so that the individual terms in [2.365] can be set equal to zero.

To see how this comes about, we replace the arbitrary variation 86 by i 86 in

[2.365] so that we have

86*(H — E)6 dr + i

j

6*(H — E) 86 dr = 0 [2.366]

Upon combining [2.366] with [2.365] we then obtain the two equations

86*(H — E)6 dr = 0

6*(H — E) 86 dr = 0 [2.367]

which is the desired result. Using the fact that H is Hermitian, we see that the

two equations [2.367] are equivalent to the Schrodinger equation

(H - E[6])6 = 0 [2.368]

Thus any function 6 = 6n f°r which the functional [2.361] is stationary is an
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eigenfunction ofH corresponding to the eigenvalue E n — E\ipn ]. Conversely, if

(//„ is an eigenfunction of H and E n the corresponding energy, we have

E„ = £[(//„] and the functional E[t}>„] is stationary because t/r„ satisfies the

equations [2.367]. It is worth stressing that if <b and tpn differ by 8<f>, the

variational principle [2.363] implies that the leading term of the difference

between E[(j>] and the true eigenvalue E n is quadratic in 8<p. As a result, errors

in the approximate energy are of second order in 8(f) when the energy is calculated

from the functional [2.361].

We also remark that the functional [2.361] is independent of the normalisa-

tion and of the phase of <j). In particular, it is often convenient to impose the

condition = 1. The above results may then be retrieved by varying the

functional (<f>\H\<f>) subject to the condition = 1, namely

8 cf>*H(f) dr — 0, (j>* cj) dr — 1 [2.369]

The constraint = 1 may be taken care of by introducing a Lagrange

multiplier [8] which we denote by E, so that the variational equation reads

< dr — E dr = 0 [2.370]

or

8<j)*(H — E)4> dr + (f>*(H - E) 8(f) dr = 0

.

[2.371]

This equation is identical to [2.365], and we see that the Lagrange multiplier E
has the significance of an energy eigenvalue.

An important additional property of the functional [2.361] is that it provides

an upper bound to the exact ground state energy E 0 . To prove this result, we

expand the arbitrary, normalisable function <i> in the complete set of ortho-

normal eigenfunctions of H. That is

<t> = 2 an^n [2.372]
n

Substituting [2.372] into [2.361], we find that

2 kl2£n

EW -w [2 ' 373]

where we have used the fact that Hil/n — En ipn and — S„|u„|
2

. If we now

subtract E0 , the lowest energy eigenvalue, from both sides of [2.373] we have

2 \an \

2(En - E0)

E[<{>] - E0
- = - [2.374]

[8] Lagrange multipliers are discussed for example in Byron and Fuller (1969).
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Since En s= E0 , the right-hand side of [2.374] is non-negative, so that

E0 EM [2.375]

and the functional E[4>] gives an upper bound - or in other words a minimum

principle for the ground state energy.

The property [2.375] constitutes the basis of the Rayleigh-Ritz variational

method for the approximate calculation ofE0 . This method consists in evaluat-

ing the quantity E\(f>] by using trial functions
<f>

which depend on a certain

number of variational parameters, and then to minimise E\<f>

]

with respect to

these parameters in order to obtain the best approximation of Eo allowed by the

form chosen for 4>.

The Rayleigh-Ritz variational method can also be used to obtain an upper

bound for the energy of an excited state, provided that the trial function il

made orthogonal to all the energy eigenfunctions corresponding to states having

a lower energy than the energy level considered. Indeed, let us arrange Um
energy levels in an ascending sequence: E0 , E\, E2 , . and let the trial

function
<f>

be orthogonal to the energy eigenfunctions ipfn = 0, 1, ... <),

namely

(ipn \4>) = 0, n = 0, 1, . . . t [2.376]

Then, if we expand <j> in the orthonormal set {if/n } as in [2.372] we have

a„ = (ipn \ <p) = 0 (» = 0, 1, . . . t) and the functional E[<f>] becomes

so that

y \a„\
2E„

EM = n~y
,

-
p- [2.377]

n= i+ 1

Ei+ 1
« EM [2.378]

As an example, suppose that the lowest energy eigenfunction rio is known,

and let be a trial function. The function

4> = <t>
~

i/'0 <</'o|d>) [2.379J

is orthogonal to i//0 (that is, (Po\4>) = 0) and can therefore be used to obtain an

upper limit of E x , the exact energy of the first excited state.

In many practical situations the lower energy eigenfunctions ip„ (n = 0,

1 , . . . i) are not known exactly and one only has approximations (obtained lor

example from a variational calculation) of these functions. In this case the

orthogonality condition [2.376] cannot be achieved exactly, and the relation

[2.378] does not hold. For example, let us suppose that the (normalised) function

<t> 0 is an approximation to the true ground state eigenfunction ijV0 . If 4>\ is a trial

function orthogonal to <b0 (that is, if (</>o|d>i) = 0) it may be shown

(Problem 2.23) that

Ei - soCEi “ E0) EM] [2.380]
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where e0 is the positive quantity

e0 = 1
_

|(</'old>o)|
2 [2.381]

Thus E\4>i] does not provide a rigorous upper bound to E i . However, it <!>« is

a good approximation to ih0 ,
then £0 will be small and the violation of the

relation E\ =£ E[<j>i] will be mild. ... ,

The application of the variational method to excited states is greatly facilitated

if the Hamiltonian of the system has certain symmetry properties, since in this case

the orthogonality condition [2.376] can be satisfied exactly for certain states, or

example, if the excited state in question is of different parity or angular

momentum than the lower states, then the orthogonality condition is automati-

cally satisfied.

Particularly useful trial functions 4> can be constructed by choosing a certain

number (N) of linearly independent functions xi > X2 , • Xn and forming the

linear combination

4 = f [2M2]
n=l

where the coefficients cu c 2 ,
... cN are linear variational parameters which

must be determined by minimising the functional E[<f>] in order to obtam the

best approximation to E0 . Substituting [2.382] in [2.361] we find that

N N
c*,c h

E[4>] =

2 2 C*'Cn
n= 1 n'= 1

where we have set

Hnn = (Xn'\H\Xn)

K'n = iXn'lXn)

[2.383]

[2.384]

We remark that if the functions \n are orthonormal, then A„-„ S„-„.

In order to find the values of the variational parameters c,,c 2 ,
cN which

minimise £[$], we first rewrite [2.383] as

E[<t>] 2 2 c*cn A = S 2 c*,cnHn .n [2.385]

n= 1 n' — 1 "=1 " ,= 1

Differentiating with respect to each c„ or c*-

,

expressing that dE/dcn = 0

(or dE/he* = 0), we obtain a system of N linear and homogeneous equations

in the variables c l3 c2 , • • cN ,
namely

2 Cn(f/,„-4,„£) = 0; n' = l,2,...N [2.386]
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The necessary and sufficient condition for this system to have a non-trivial

solution is that the determinant of the coefficients vanishes. That is,

det|//„.„ - A„.„E| = 0

Ez

7V= 1 N = 2 N=2 N = 4 N = *

2.10 Approximate eigenvalues given by the Rayleigh-Ritz variational method with linear trial

functions. Each root of the determinantal equation [2.387] is an upper bound on the

corresponding exact eigenvalue E,.

Let £g
V;

, E[
N)

, . . . E <

ff2 l
be the N roots of this equation, arranged in an

ascending sequence; the superscript (TV) indicates that we are dealing with a

N x N determinant. The lowest root E^ }
is of course an upper bound to the

ground state energy E0 . Upon substituting E
(f J in the system of equations

|2.386] and solving for the coefficients c„ in terms of one of them (for example

c
, ,

which may be used as a normalisation factor), we then obtain the

corresponding ‘optimum’ approximation (/>0 to the ground state wave function

i//(,. It may also be shown that the other roots E)N) of [2.387], with i = 1,

2, ... N —
1, are upper bounds to excited state energies of the system. In

particular, if the Hamiltonian commutes with a Hermitian operator A and the

trial function [2.382] has been constructed from eigenfunctions corresponding

to a given eigenvalue a of A, then the roots E\N) , with i = 1, 2, ... N are

upper bounds to the energies E
l
associated with excited states belonging to the

eigenvalue a of A (for example a given value of the angular momentum or the

parity). The ‘optimum’ approximations 4>o, 4>i, • • • 4>n~

i

t0 the true wave

functions, obtained by the above method, may also be shown to be mutually

orthogonal. Moreover, if we construct a new trial function d>' containing an

additional basis function %n+ i > namely

N+ 1

<*>' = 2 cnXn [2 . 388 ]
«- 1
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it can be proved that the ‘new’ (N + 1) roots E <

q
i
'~

x

\ E 1}
,

• . E'N
5 of

determinantal equation [2.387] are separated by the old roots E 0 ,

E{n\ . . . E'fff. This property, which is illustrated in Fig. 2.10, is known as

the Hylleraas-Undheim theorem.

The variation- perturbation method

We have seen in our discussion of perturbation theory that according to the

Rayleigh-Schrodinger method the solution t/4
0 of [2.305] (for the non-

degenerate case) or the solution of [2.323] (for the degenerate case) are

obtained by expanding these functions in the basis set {ipm } the unperturbed

eigenfunctions. The coefficients of this expansion and the second- and third-

order corrections to the energy are then given in terms of matrix elements of

H' between unperturbed eigenfunctions (see for example [2.316] and [2.319]).

Unfortunately, in many cases the evaluation of all the necessary matrix elements

of H' and of the required summations is very difficult. In these cases, however,

it is possible to obtain approximations to E^ } and Ef } by using the

variation—perturbation method, which we shall now describe for the non-

degenerate case.

Let us assume that the unperturbed eigenfunction ipk as well as the

corresponding energy Ek and the first-order energy correction E (X) =
(f>k\H’\fk)

are known for a given state k. Let df
k

l> be an arbitrary trial function and F\[<Pk ]

the functional

FM»] =
(4>i

l)\H0 - Ek\4>i»)
+ 2 (W\H' - Em) [2.389]

We now express that this functional is stationary for variations of tp^ around the

correct first-order wave function f
<

^
>
- Proceeding as in the case of the variational

method studied above, we find that the variational equation

8F X
= 0 [2-390]

implies that

(H0 - Ek)<t>^ + (H' - E (

km = 0 [2.391]

so that the function which makes the functional F x
stationary is a solution

,/£> of the equation [2.305]. Moreover, by comparing [2.305], [2.310] and

[2.389] we see that reduces to the correct value of E\ when

4>i
l) - 4r>

.

Let us now consider the particular case of a state k for which Ek is the lowest

eigenvalue of Ho corresponding to a given symmetry. It is then straightforward

to show that (compare with [2.375])

Ef =£ F^] [2-392]

One can then proceed in a way similar to that followed in the Rayleigh—Ritz

method. First, a trial function d> k

l

is chosen containing a certain number of

variational parameters. One then inserts that trial function in the functional
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which is minimised with respect to the variational parameters. Becautt

of [2.392] this minimum value of Fi[(p
(

k

l>

] gives an upper bound to Tha

corresponding ‘optimum’ function <f>^ can also be used to calculate an

approximate value of Ef'1 by replacing by <f>^ in [2.312].

The method can be extended to calculate approximate values of and

E^K To this end, we consider a trial function (p^ and the functional

FM2)
] = (<t>?\H0 - Ek \<p

<2
>> + 2(^\H’ - E^M^) -

[2.393]

where i//^ is now assumed to be known. Let us express that this functional is

stationary with respect to variations of 4>
(^\ The condition

8F2 = 0 [2.394]

yields the equation

(Ho - Ek)4>® + (H’ - E<£W» ~ Ef'^k = 0 [2.395]

so that the function which makes the functional F2 stationary is a solution

i}/*'
1 of [2.306]. In addition, it is easily shown that when <^

2)
i/^

2)
the

functional F2 gives the exact value of E^\ apart from terms which are

independent of pf
1

. Moreover, F 2 yields a minimum principle (upper bound)

for E£
4) when the state k is the lowest eigenvalue ofH0 corresponding to a given

symmetry. The function <^
2) determined from the variational principle [2.394]

can also be used to calculate the energy correction E^\ By constructing

functionals F 3 [<^
3)

], F 4 [<j!>*
(4)

], and so on, the variation-perturbation method

can be used to calculate higher order perturbation corrections to the wave

functions and the energy eigenvalues.

PROBLEMS

2.1 Consider the momentum space wave function cp(px )
= 0, \px - p0

|

> y

4>(Px) ~ C,
|px - pol *= y where p0 , C and y are constants. Find the

corresponding wave function </>(x) in configuration space and determine

the constant C, so that >p(x) satisfies the normalisation condition

’oc

dx|iKx)| 2 = L
— oc

Using a reasonable definition of the ‘width’ Ax of
|

ip(x)
| ,
show that

Ax Apx > h.

2.2 Consider an electron of momentum p in the Coulomb field of a proton.

The total energy is

2m (47T£o)r’

where r is the distance of the electron from the proton. Assuming that the
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uncertainty Ar of the radial coordinate is Ar — r and that Ap — p, use

Heisenberg’s uncertainty principle to obtain an estimate of the size and

the energy of the hydrogen atom in the ground state.

2.3 Consider the normalised Gaussian wave packet tji(x) = N exp(-A 2x
2
)

where N = (2A
2/V) 1/4

. Using [2.16], calculate the uncertainties Ax and

Apx from [2.41] and show that Ax Apx = h/2.

2.4 Starting from [2.39] show that

<P> d>*(p, t)pd>(p, 0 dp

where <f>(p, t) is the normalised momentum space wave function corres-

ponding to 'k(r, t) (see [2.20]).

2.5 A particle of mass m moving in a potential V(r) has the Hamiltonian

H = -(h2/2m)V 2 + V(r)^ Using the result [2.56] prove Ehrenfest’s

theorem [2.57].

2.6 (a) Using the definition of an adjoint operator [2.65] prove that ifA and

B are two operators then (AB)* = B*A*.

(b) Suppose that A and B are two non-commuting Hermitian operators.

Determine which of the following operators are Hermitian (i) AB
(ii) [A, B] (iii) AB 4 BA (iv) ABA (v) A” where n is a positive

integer.

2.7 Let En denote the energy eigenvalues of a one-dimensional system and

(/f„(x) the corresponding energy eigenfunctions. Suppose that the nor-

malised wave function of the system at t = 0 is given by

¥(x, t = 0) = e + -^=-e’
a2

ifo(x) + -j=- e
iQ^3(x)

2.8

2.9

2.10

where the a, are constants.

(a) Write down the wave function ^(x, t) at time t.

(b) Find the probability that at time t a measurement of the energy of the

system gives the value E2

(c) Does (x) vary with time? Does (p x ) vary with time? Does E = (H

)

vary with time?

If U is a unitary operator and A' = UAU r where A is a Hermitian

operator, show that:

(a) A' is Hermitian.

(b) The eigenvalues of A' are the same as those of A
(c) (th'lA'I^') = <d>|A| 1F) where T' and <&' are connected with T and

by [2.106],

Verify the equations [2.120].

Consider a particle of mass m moving in one dimension in the infinite

square well [2. 122]. Suppose that at time r = 0 its wave function is given

by

¥(x, t = 0) = A(a2 - x
2
)
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(a) Find the probability P„ that a measurement of the energy will give

the value En ,
where E„ is given by [2.131].

(b) Obtain the average value of the energy.

2.11 Classically the simple harmonic oscillator having the total energy

E = p
2/2m + mco

2x2
/

2

could have x = p = 0 and hence E = 0. In

quantum mechanics, there will be uncertainties x = 0 + Ax,

px = 0 + Apx such that A x Apx ^ h. Show that because of this condition

the minimum total energy cannot be zero and must be of the order of h<t>.

2.12 Starting from the definitions [2.154] show that Lx ,
Ly

and Lt can be

expressed in spherical polar coordinates (see [2.157]) as

( d d
L x = ih sin c/> 1- cot 6 cos <p

—
*

\ dd d(j>

( d
,

d

L„ - ih —cos t- cot 0 sin <p
—

y
\ dd a<

and verify that L2 = L 2 + L2 + L2
is given by [2.159]. Using th€M

results show that [L, /(r)] = 0 and [L2
, /(r)]

= 0 where /(r)^ is an

arbitrary function of the radial coordinate r. Show also that [L, p ]
** 0,

where p
2 = -h2 V2

.

2.13 Obtain the results [2.187] and [2.188], and show that for s ** i

<S
2
)
= (Sy) = h

2
/4.

2.14 Verify equations [2.217] and [2.218].

2.15 Write down explicitly the matrices representing the operators Sx ,Sy ,S,,

S+ , S_ and S2
for r = 1 and s = 3/2.

2.16 Prove that L2
, S

2
, J

2 andJz form a commuting set of operators, and that

[(L • S), Jz\ = 0.

2.17 Assuming that the expansion of a plane wave in a series of Legendre

polynomials is of the form

x.

expO'^r cos 6

)

= ^Ciji(kr)Pi(cos 6)
1=0

find the coefficients c
t

.

Hint: Use the fact that ji(kr) ^ (kr)
1
sin (kr - hr/ 2).

2.18 Show that E^ and E {p are given by [2.311] and [2.312] respectively.

2.19 Consider a linear harmonic oscillator for which the Hamiltonian is

Ho
h
2 d2 -1

—5 + — kx
2m dx 2

2

If this oscillator is perturbed by an additional potential of the form

H' = \k’x2
, find the first and second order corrections to the energy

levels using perturbation theory. Also find the first order correction to the
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wave function. Compare your results with the exact solution

£. - »„(. < i) (i + f')
1"

where a> = (k/m)l/2
. Hint: Obtain first the matrix elements:

4 = (4>i\x%)
(2a

2
)

-
‘[O + 1)0' + 2)]

1/2 i=j+ 2

= (2a 2
)

-1
(2j +1) i=j

,(2a
2
)

-1
[>0 - D]

1/2
i = j — 2

(mk\ 1/4

where a = l-^jl

2.20 A two-dimensional isotropic harmonic oscillator has the Hamiltonian

h2

( d
2

d
2

\ 1
, 2s

(a) Show that the energy levels are given by

En „ = hw (nx + ny + 1); nx = 0, 1, 2 . . .

ny = 0, 1, 2 . . w = (k/m) l/2

What is the degeneracy of each level?

(b) If the oscillator is perturbed by an interaction of the form H' = \xy,

where A is a constant, find the first-order modification of the energy

of the first excited level.

2.21 Consider a particle of charge q and mass m, which is in simple harmonic

motion along the X axis with force constant k. An electric field %{t),

directed along the X axis, is switched on at time t
— 0 so that the system

is perturbed by an interaction

H\t) = -qxUt)

If %(t) has the form

%{t) = %0 exp(— f/r)

where ’S0 and r are constants, and if the oscillator is in the ground state

for t 0, find the probability that the oscillator will be found in an

excited state as t —

>

2.22 (a) By varying the parameter a in the trial function

<bo(x) = O2

= 0

x < a

obtain an upper bound for the ground state energy of a linear harmonic
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oscillator having the Hamiltonian

H = -
2m dx 2

L 7 2+ - mco x

(b) Show that the function = x<f>o(x) is a suitable trial function for

the first excited state and obtain a variational estimate of the energy

of this level.

2.23 Prove the result given in equation [2.380].

2.24 Let E„j denote the discrete energy levels of a particle of mass m in a

central potential V(r), corresponding to a given orbital angular momen-

tum quantum number I, and let E™f be their minimum value. Prove

that Enj < Enj+i
Hint: Write the Hamiltonian of the particle as

H = Hr +
L2

2mr2>
Hr

=
2m r

2
dr \ dr

)

+ V(r)

and note that Hr is a purely radial operator.
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One-electron atoms

In this chapter we begin our quantum mechanical study of atomic structure by

considering the simplest atom, namely the hydrogen atom, which consists of a

proton and an electron. Apart from small corrections, which we shall discuss in

Chapter 5, the hydrogen atom may be considered as a non-relativistic system of

two particles interacting by means of an attractive Coulomb potential. Other

similar one-electron systems, called hydrogenic atoms, include the isotopes of

hydrogen (deuterium, tritium) and the hydrogenic ions (He+ ,
Li

+ +
,
etc.) which

we have already encountered in our study of the Bohr model. These hydrogenic

systems will also be discussed in the present chapter.

Our starting point is the Schrodinger equation for one-electron atoms. After

separating the centre of mass motion, we solve the eigenvalue equation for the

relative motion in spherical polar coordinates, and obtain the energy levels and

wave functions of the discrete spectrum. We then consider the expectation

values of various operators, prove the virial theorem and conclude this chapter

with a discussion of ‘special’ hydrogenic systems such as muonium, positro-

nium, muonic and hadronic atoms, and Rydberg atoms.

3.1 THE SCHRODINGER EQUATION FOR ONE-ELECTRON ATOMS

Let us consider a hydrogenic atom containing an atomic nucleus of charge Ze

and an electron of charge —e interacting by means of the Coulomb potential

V(f) =
Ze2

(4 7re0)r
[3.1]

where r is the distance between the two particles. We denote by m the mass of

the electron andM the mass of the nucleus. Since the interaction potential [3.1]

only depends on the relative coordinate of the two particles, we may use the

results of Section 2.7 to separate the motion of the centre of mass. Remembering

that P is the total momentum associated with the motion of the centre of mass

and p the relative momentum, the total energy of the atom can be split into two

parts. The first one is the kinetic energy Pz/2(M+m) corresponding to the

motion of the centre of mass, and the second one is the (internal) energy of the

128



3.1 The Schrddinger equation for one-electron atonu

relative motion, governed by the Hamiltonian

-2 Ze 2

H =
2/i (4vEo)r

where

M =
mM

m + M

[3.2]

[3.3]

is the reduced mass of the two particles. Thus, working in the centre of mass

system (where P = 0) and in the position representation, we must solve the

one-body time-independent Schrddinger equation

h
2

_
2/i

V2
Ze 2

(4n£0)r
«A(r) = £<A(r) [3.4]

Instead of using the position representation, as we shall do below, it is also

possible to solve the Schrddinger equation for one-electron atoms in momentum

space. This is carried out in Appendix 5, where the hydrogenic wave functions

in momentum space are obtained.

Solution in spherical polar coordinates

Because the interaction potential [3. 1] is central, the wave equation [3.4] may be

separated in spherical polar coordinates (see Section 2.6). Thus we write a

particular solution of this equation as

i 0, 4>) = REj(r)Ylm(6, <f>) [3.5]

where Yim{d, </>) is a spherical harmonic corresponding to the orbital angular

momentum quantum number l and to the magnetic quantum number m (with

m = -1,-1 + 1, . . . + /). The function REJ(r) satisfies the radial Schrddinger

equation

r h
2

r i d / 2
d \ /a + 1)

i 2/1 [r
2
dr \ dr] r

2

Ze 2

(47T£0)r
RE,i(r)

= EREJ(r) L3.6]

which we have obtained by substituting into [2.235] the expression [3. 1] of the

Coulomb potential. As we remarked in Section 2.6, we can simplify [3.6] by

introducing the new unknown function

uEJ(r) = rREJ(r) [3.7]

Thus, using [2.239] we find that uEJ(r) satisfies the equation

—TT~ 4 [E - Vc{{(r)]«£ ,/(r) = 0 [3.8]

dr n
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where

Veff(r) =
Ze2

/(/ + 1 )h
2

(47TS0)r 2/j.r
2

[3.9]

is the effective potential. Figure 3.1 shows Feff(r) for the case Z — 1 and jx — m
(corresponding to a hydrogen atom with an ‘infinitely heavy’ proton) and for the

values / = 0, 1, 2.

The problem of solving the Schrodinger equation [3.4] therefore reduces to

that of solving the radial one-dimensional equation [3.8] corresponding to a

particle of mass fx moving in an effective potential Ves made up of the Coulomb

potential [3.1] plus the ‘centrifugal barrier’ potential /(/ + l)h
2
/2jxr

2
. It is clear

that since Feff(r) tends to zero for large r, the solution uEJ(r) for E > 0 will have

an oscillatory behaviour at infinity and will be an acceptable eigenfunction for

any positive value of E. We therefore have a continuum spectrum for E > 0.

and r in units of a0 , where aa is the Bohr radius [1.86].
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3.1 The Schrddinger equation for one-electron aftNHI

The corresponding unbound states play an important role in the analysis of the

scattering of electrons by ions; we shall return to such collision phenomena ifl)

Chapter 11. For the moment, however, we will only be concerned with the

bound states of hydrogenic atoms, corresponding to the case E < 0 .

Let us return to the radial equation [3.8]. We shall look for solutions which

vanish at r = 0, i.e.

u£,/(0) — ® [ 3 . 10]

so that the radial function RE ,i(f)
~ and hence the full wave function tfov ,m(r)

given by [3.5] - remains finite at the origin [1], It is convenient to introduce the

dimensionless quantities

and

[3 . 11 ]

Ze2

AlTEoh
Za

(J£

1e

2\l/2

[
3 . 12]

where a = «
2
/(4 tT£0hc) - 1/137 is the fine structure constant and we recall that

E < 0. In terms of the new quantities p and A, the equation [3.8] now reada

d2

dp2

/(/ + 1) A

P
2 +

P
uE,l(p) = 0 [3 . 13]

As in the case of the harmonic oscillator (see Section 2.4) we first analyse the

asymptotic behaviour of wHj/(p). To this end, we remark that when p -* « the

terms in 1/p and 1/p
2 become negligible with respect to the constant term

(-1/4), so that [3.13] reduces to the equation

d2

dp2 «S,/(P) = 0 [
3 - 14

]

whose solutions are exp(±p/2). Therefore, using the fact that the function

uEJ(r) must be bounded everywhere, including infinity, we keep only the

exponentially decreasing function and we have

uE,i(p) ~ e
~ p/2

[
3 - 15 J

1 1] The finiteness of the wave function is not really a necessary requirement. In fact, mildly

singular wave functions are encountered in some cases, for example in the Dirac relativistic

theory of one-electron atoms. The correct boundary condition is obtained by requiring that all

the possible physical states are described by a complete, orthogonal set of wave function*.

However, for a large class of potentials including the Coulomb potential [3. 1], this condition

may be shown to lead to the aimpler requirement [3.10].
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This result suggests that we should search for a solution of the radial equation

[3.13] having the form

uEJ(p)
= e

-p/2
/(p) [3-16]

where we have written /(p) = fE,i(p) to simplify the notation. Substituting

[3.16] in [3.13], we obtain for /(p) the equation

£ < fSLLB + iU,,.,,
[dp2 dp p p]

We now write a power series expansion for /(p) in the form

f(p) = p‘
+1
g(P)

where

g(p) = 2 ckP
k
> co * 0

*=o

[3.17]

[3.18]

[3.19]

and we have used the fact (see Section 2.6) that uE^(p) - and therefore

/(p) — behaves like p
/ 1

for all central potentials V(r) which are less singular

than r~
2

at the origin. Upon substitution of [3.18] into [3.17] we find that the

function g(p) satisfies the differential equation

p
—- + (21 + 2 - p)— + (A - /- 1) \g(p) = 0 [3.20]

Moreover, using the expansion [3.19] to solve the equation [3.20], we find that

2 [k(k - 1) ckP
k~ x + (2/ + 2 - p)kckp

k ~ l + (A - / - l)c*p*] = 0 [3.21]

k=o

2 {[k(k + 1) + (21 + 2)(k + l)]c*+1 + (A - Z - 1 - k)ck}p
k = 0 [3.22]

k= 0

so that the coefficients ck must satisfy the recursion relation

k + / + 1 “ A
Ck+1 =

(k + l)(k + 21 + 2)
Ck [3.23]

If the series [3.19] does not terminate, we see from [3.23] that for large k

c
-hll _ I [3.24]
ck k

a ratio which is the same as that of the series for p
p exp(p), where p has a

finite value. Thus in this case we deduce from [3.16] and [3.18] that the
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3.2 Entrgy kink

function uE>i(r) has an asymptotic behaviour of the type 1

«e,M - p‘
t " rc" 2

[3.23]
T

P—»oo

which is clearly unacceptable.

The series [3.19] must therefore terminate, or in other words g(p) must be l

polynomial in p. Let us assume that the highest power of p in g{p) is p"'

,

where

the radial quantum number n
r
= 0, 1 , 2, . . . is a positive integer or zero. Then

the coefficient c„ + 1
= 0, and from the recursion relation [3.23] we deduce that

A = nr + l + 1 [3-26]

Let us introduce the principal quantum number

n — nr + / + 1 [3.27]

which is a positive integer (n = 1, 2, . . .) since nr and l can take on positive

integer or zero values. Thus, from [3.26] and [3.27], we see that the eigenvalues

of [3.13] are given by

A = «, n = 1, 2, . . . [3.28]

3.2 ENERGY LEVELS

Replacing in [3.12] the parameter A by its value [3.28] we obtain the energy

eigenvalues

En

1 .

/

Ze 2
\
2
p

2

n

2
\47re0/ b

2

e
2

p Zz

(47Tf0)ao m 2n
2

e
2 Z2

(47re0)afl
In2

[3.29]

where ao = ^ttsoH
2
/me

2
is the Bohr radius [1.86] and a^

Arre0h
2
/pe

2 = a0m/p is the modified Bohr radius [1.101]. We may also write

En [3.30]

where a = e
2
/(47re0hc) is the fine structure constant. The first form [3.29J

which does not contain the velocity of light c clearly shows that the energy levels

En have been obtained by solving a non-relativistic equation. The second form

[3.30], in which the energies E„ are expressed in terms of the rest mass energy

pc 2
, will be useful at a later stage when we shall discuss the relativistic

corrections to the energy levels of one-electron atoms (see Chapter 5). Using
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atomic units (a.u.) defined in Appendix 1 1, we also have

where we have written explicitly the electron mass (which is equal to unity in

a.u.) for future convenience.

The energy values En ,
which we have obtained here by solving the

Schrodinger equation for one-electron atoms, agree exactly with those found in

Section 1.7 from the Bohr model. The agreement of this energy spectrum with

the main features of the experimental spectrum was pointed out when we

analysed the Bohr results. This agreement, however, is not perfect and we shall

discuss in Chapter 5 various corrections (such as the fine structure arising from

relativistic effects and the electron spin, the Lamb shift and the hyperfine

structure due to nuclear effects) which must be taken into account in order to

explain the details of the experimental spectrum.

We note from [3.31] that since n may take on all integral values from 1 to + =°,

the energy spectrum corresponding to the Coulomb potential [3.1] contains an

infinite number of discrete energy levels extending from — (Z
2/2n2

)(q./w) to

zero. This is due to the fact that the magnitude of the Coulomb potential falls off

slowly at large r. On the contrary, short-range potentials such as the square well

have a finite (sometimes zero) number of bound states.

Another striking feature of the result [3.31] is that the energy eigenvalues

depend only on the principal quantum number n, and are therefore degenerate

with respect to l and m. Indeed, for each value of n the orbital quantum number

l may take on the values 0, 1, ... n -
1 and for each value of l the (21 + 1)

possible values of the magnetic quantum number m are -/, -/ 4- 1, . . . ,
+ /.

The total degeneracy of the energy level En is therefore given by

2 (21 + 1) = 2
” (” ^

+ n = n
2

[3.32]

/=0 2

As we have already pointed out in Section 2.6, the degeneracy with respect to m

is present for any central potential V(r). On the other hand, the degeneracy with

respect to l is characteristic of the Coulomb potential; it is removed if the

dependence of the potential on r is modified. For example, we shall see in

Chapters 7 and 8 that many properties of the alkali atoms can be understood in

terms of the motion of a single ‘valence’ electron in a potential which is central,

but which deviates from the 1 /r Coulomb behaviour because of the presence of

the ‘inner’ electrons. As a result, the energy of this valence electron does depend

on / and the degeneracy with respect to l is removed, leading to n distincts levels

Eni
for a given principal quantum number n. Finally, if an external magnetic

field is applied to the atom, we shall see in Chapter 5 that the (21 + 1)

degeneracy with respect to the magnetic quantum number m is removed.

Figure 3.2 shows an energy-level diagram for the hydrogen atom; it is similar

to that displayed in Fig. 1.16 except that the degenerate energy levels with the
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3.2 Eturgy

3.2 Energy-level diagram for atomic hydrogen.

same n but different / are shown separately. Following the usual spectroscopic

notation, these levels are labelled by two symbols. The first one gives the value

of the principal quantum number n and the second one indicates the orbital

quantum number / according to the correspondence discussed in Section 2.5,

namely

Value of / 0 12 3 4 5lilt l l

Code letter s p d f g h

Looking at the hydrogen atom spectrum (Fig. 3.2), we see that the ground state

is a Is state, the first excited state is fourfold degenerate and contains a 2s state

and three 2p states (with m = — 1, 0, + 1), etc.

Having obtained the energy levels of one-electron atoms within the

framework of the Schrodinger non-relativistic theory, we may now ask about

the spectral lines corresponding to transitions from one level to another. This

problem will be discussed in detail in the next chapter, where we shall study the

interaction of one-electron atoms with electromagnetic radiation. In particular,

we shall calculate the transition rates for the most common transitions, the

so-called electric dipole transitions, and we shall prove that these transitions

135



One-electron atoms 3.3

obey the selection rules

AZ = / — /' = ±1

Am = m — m' = 0, ±1
[3.33]

while Am = n — n' is arbitrary. Here the symbols n, l, m refer to the quantum

numbers of the upper state and n', m’ to those of the lower state of the

transition. Since the bound state energies En depend only on n, and because

transitions can occur between states with any two values of n, it is clear that the

Bohr frequency rule [1.70] can still be applied to obtain the frequencies of the

spectral lines corresponding to transitions between the energy levels. Thus,

we have

*V„ = Z 2R(M ) l^j - [3.34]

where R(M) is defined by [1.102]and wheren = 2, 3, 4, . . . , n' = 1, 2, 3, . . .

with n > n'

.

3.3 THE EIGENFUNCTIONS OF THE BOUND STATES

So far we have seen that the energy levels predicted by the Schrodinger theory

for one-electron atoms agree with those already obtained in Section 1 .7 by using

the Bohr model. However, the Schrodinger theory has much more predictive

power than the old quantum theory since it also yields the eigenfunctions which

will enable us to calculate probability densities, transition rates, and so on.

The radial eigenfunctions of the bound states

In order to obtain these eigenfunctions explicitly, let us return to [3.20]. We
shall now show that the physically acceptable solutions of this equation,

corresponding to A = n, may be expressed in terms of associated Laguerre

polynomials. To this end we first define the Laguerre polynomials L
q(p) by the

relation

[3.35]

and we note that these Laguerre polynomials may also be obtained from the

generating function

,
exp[ - ps/{\ - s)]

U(p, s) = r—

= |s| < 1 [3.36]

?=o ?!
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t

Differentiation of this generating function with respect to s yields the recurrence
.

formula

v.(p) + (P - 1 - 2q)L
q(p) + q

2L
q-\{p) = 0 [3 .37]

Similarly, if we differentiate U(p, s) with respect to p we find that

[3 . 38]
— L„(p) - q

— Vi(p) + qLq-i(p) - 0

Using [3.37] and [3.38] it is a simple matter to prove that the lowest order

differential equation involving only L
q{p) is given by

dp2

_d_

dp
Lip) = 0 [3 .39]

Next, we define the associated Laguerre polynomials L£(p) by the relation

[3 .40]

&
dp*

Upon differentiation of [3.39] p times, one finds that L*(p) satisfies the

differential equation

d2 d
p -j-j + (p + 1 - p)— + (q - p)
dp2 dp

LplP) = 0 [3.41]

Setting A = n in [3.20] and comparing with [3.41] we see that the physically

acceptable solution g(p) of [3.20] is given by

g(p) = NnlL
2
n
l

?,\p) L3.42J

where Nnt is a constant which will be determined below (apart from an arbitrary

phase factor) by the normalisation condition. We note that L2l

+f(p) is a

polynomial of order (n + Z) - (21 + 1) = n - / - 1 = nr in agreement with

the discussion following [3.25]. We also note from [3.11] and [3.29] that

na0 \mj

2 7
=— r [3.43]

where we recall that ap
(a 0 = 1) we have

a0m/p. is the modified Bohr radius. In atomic units

P
2Z (p\—

I r
n \m

[3.44]
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We may also obtain a generating function for the associated Laguerre

polynomials by differentiating [3.36] p times with respect to p. That is,

( -s)
p exp[-ps/(l - s)]

Up(p, s) = -

= 2

(1 - s)
p+1

L»
_a

q=p ?!

An explicit expression for L 21
*,

1

(p) is given by

L2/+i/ n = y 1

+ /)!
3 t.L”+l {p)

k% {
(n

r
- k)l(2l + 1 + *)! k!

[3.45]

n r
= n — l

—
1 [3.46]

and is readily verified by substitution into [3.45], with q — n + l and

p = 21 + 1.

Using [3.7], [3.16], [3.18] and [3.42] we may now write the full hydrogenic

radial function as

R„i(r) = Nnlc-
p/2
p

lL2
r!:,\p'),

P =
2Z

nap
[3.47]

where we have used the notation R n/
(which displays explicitly the quantum

numbers n and /) instead of the symbol REj introduced at the beginning of this

chapter.

Hydrogenic wave functions of the discrete spectrum

Using [3.5], we see that the complete eigenfunctions of the discrete spectrum for

a one-electron atom may be written as

(An/mCu 0, 4>) = R„i(r)Yim(d, 4>) [3.48]

where the radial functions R„i are given by [3.47] and the spherical harmonics

Ylm provide the angular part of the wave functions. We require that the

eigenfunctions [3.48] be normalised, namely

dr r d 6 sin 9 d<£
|

il/n!m{r, 6, <fi)\

2 - 1

o Jo

[3.49]

Since the spherical harmonics are already normalised on the unit sphere (see

[2.182]), the normalisation condition [3.49] shows that the radial functions

R„i(r) are normalised as

\Rni(r)\
2
r
2
dr = 1 [3.50]

.0
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3.3 The eigenfunctions of Hu bound SUMS

Using [3.47] we see that [3.50] becomes

|AU 2 fe
2Z

3

e-yu 2/
+V(p)]V dP = i [3 . 51]

;.} 'iis

It is shown in Appendix 3 that the integral over p can be evaluated by using tht

generating function [3.45]. The result is (see [A3.26])
!

2n[(n + /)!]
3

e-y /

[L^V(p)]
2
P
2 dp -

[3 . 52]
(n — l

—
1)!

so that the normalised radial functions for the bound states of one-electron

atoms may be written as [2] ,,

2Z\ 3
(n - / - l)ll

1/2

RJf) = -

2Z

{\ nan/ 2n[(n + /)!]
3

47reo^
2

p/W+V(p)

P =
na., pe

[3 . 51]

As an illustration of the above formulae, we shall consider the case of in

‘infinitely heavy’ nucleus, so that aM reduces to a0 = 4ire0h
2
/me 1

, the first Bohf

radius. The first few radial eigenfunctions are then given explicitly by

R\o(r) = 2(Z/a0)
3/2 exp(-Zr/tz0)

/?2o(0 = 2(Z/2a0)

3/2
(l - Zr/2a0) exp(-Zr/2a0)

1

^ 2 i(f) = y= (Z/2a0)
3/2(Zr/a0) exp(-Zr/2a0)

« 30(r) = 2(Z/3a0)

3/2
(l - 2Zr/3a0 + 2Z2

r
z
/21al) exp(-Zr/3a0)

4 v/2

«3i(0 (Z/3a0)
3/2

(l - Zr/6a0)(Zr/a0) exp(-Zr/3a0)

R 32(f) =
27^10

(Z/3a0)
3/2(Zr/a0)

2 exp(-Zr/3a0) L3.54J

In order to express these functions in atomic units (a.u.) one just sets a0 = 1 in

[3.54], To take into account the reduced mass effect, we should replace a0 by

= a0(m/n).

Using the radial wave functions [3.53] together with the explicit expressions

of the spherical harmonics given in Table 2.1, we display in Table 3.1 the com-

plete normalised bound state hydrogenic eigenfunctions <p„im(r, 6, <t>) for the

first three shells (i.e. the K, L and M shells corresponding respectively to the

values n = 1, 2 and 3 of the principal quantum number) for the case of an

[2] In writing [3.53] we have used the fact that the radial eigenfunctions R„,(r) may be taken to be

real without loss of generality.
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3.3 The eigenfunctions of the bound ttaut

‘infinitely heavy nucleus’. We have also indicated in Table 3. 1 the spectroscopic

notation, introduced in our discussion of the energy levels. We shall often refer

to one-electron orbital wave functions such as the hydrogenic wave functions

4,nlm as orbitals. In accordance with the spectroscopic notation, orbitals corre-

sponding to / = 0 will be called s orbitals, those with 1=1 will be denoted as

p orbitals, and so on.

In some applications it is convenient to consider a different set of hydrogenic

wave functions, in which the real form of the spherical harmonics is used for the

angular part. As we saw in Section 2.5, the spherical harmonics in real form

exhibit a directional dependence and behave like simple functions of Cartesian

coordinates. Orbitals using the real form of the spherical harmonics for their

angular part are therefore particularly convenient to discuss some properties

such as the directed valence characteristic of chemical bonds. We recall that the

spherical harmonics in real form are not eigenfunctions ofLz (expect, of COUrMi

for m = 0 where they coincide with the usual spherical harmonics). For a given

n and / the hydrogenic wave functions obtained by using the real form of thi

spherical harmonics are distinguished by the symbols x, y, z, 3z — r , xt, y$t

xy, etc. which have been introduced in Section 2.5. As an example, let US

consider the three 2p wave functions (for which n = 2, l = 1 and m = 0, ±1).

Using the real forms of the spherical harmonics given in Table 2.2, together

with the radial function R2 i(r) from [3.54], we see that the corresponding

normalised hydrogenic wave functions are given by

f2p = co.* = (Z/a0)

3/2(Zr/a0) exp(-Zr/2a0) sin 9 cos <A [3.55a]
x 4v277

f2p ^2,1, sintb
4 v/2t7

(Z/a0)
3/2(Zr/a0) exp(-Zr/2a0) sin 9 sin <f> \

3.55b]

4>2Pz = fop = ifc. 1,0
= —7= (Z/a0)

3/2(Zr/a0) exp(-Zr/2a0) cos 9 [3.55c]

4 y 277

In what follows, unless otherwise stated, we shall always use the usual

(complex) form of the spherical harmonics.

Discussion of the hydrogenic bound state wave functions.

Probability density. Parity

Let us return to the hydrogenic wave functions [3.48]. First of all, we note that

|i/Wm(r, 9, d>)|

2
dr = </£/m(r, 9, 6, 4>)r

2 dr sin 9 d0 df [3.56J

represents the probability of finding the electron in the volume element dr

(given in spherical polar coordinates by dr = r 2 dr sin 9 dd d</>) when the sys-

tem is in the stationary state specified by the quantum numbers (n, /, m). The

quantity \fnlm \

z =
<bt,m4>nim is the probability density. Using [3.48] and [2.184],
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i

we see that

\*nim(r, 0, <f>)

|

2 = \Rn!(r)\
2
\Yim(6, cf>)\

2

= \Rnl{r)\\2Try
l

\<dim {6)\
2

[3.57]

so that the probability density does not depend on the coordinate
<f>.

In fact, we

see from [3.57] that the behaviour of |i//„;J
2

is completely specified by the

product of the quantity |i?„/(r)|
2
, which gives the electron density as a function of r

along a given direction, and the angular factor (27r)
-1

|0/m(0)|
2

.

The spherical harmonics Ylm(d, d>) and the angular factors (27r)~
1

|0/m (H)|
2

have been studied in detail in Section 2.5. In particular, we refer the reader to

polar plots shown in Fig. 2.6. We also recall that if the real form of the spherical

harmonics is used (i.e. if the sine and cosine functions of </> are used), then the

probability density will depend on <f>, the dependence being through the functions

sin
2

m<j> and cos
2
mf. Polar representations of the angular dependence of the

probability density for s and p orbitals (in the real form) are given by Fig. 2.7.

We now turn our attention to the properties of the radial eigenfunctions

R„i(r). We have already seen that the quantity j/?„/(r)|
2
represents the electron

density as a function of r along a given direction. On the other hand, the radial

distribution function

DJx)
= r

2
\Rnl(r)\

2
[3.58]

gives the probability per unit length that the electron is to be found at a distance

r from the nucleus. Indeed, by integrating [3.56] over the polar angles 0 and d>

and using [3.48], we see that

f 277

Dnl(r) dr = r
2
\Rnl(r)\

2
dr d0 sin 0 df \Ylm{0, <j>)

\

2

Jo

= r
2
\R nl(r)\

2
dr [3.59]

represents the probability of finding the electron between the distances r and

r + dr from the nucleus, regardless of direction. The appearance of the factor of

r
2 on the right side of [3.59] is because the volume enclosed between two spheres

of radii r and r + dr is proportional to that factor. The first few radial

eigenfunctions [3.53] are plotted in Fig. 3.3, together with the corresponding

radial distribution functions D„i(r).

Several interesting features emerge from the examination of the eigenfunc-

tions RJr) and the radial distribution functions D„,(r).

1 . Only for s-states (l = 0) are the radial wave functions different from zero at

r = 0. We also note that since F0o = (4 tt)
1/2

is independent of Hand <b, one

has from [3.53]

I
*AkOo(0)

|

2 = ^ \Rno(Q)\
2 = -4-3 [3.60]

47r ira^n
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a result which plays an important role in the theory of hyperfine structure

(see Chapter 5). Moreover, each of the s-state eigenfunctions tpn0o — 4>m
is such that dRn0/dr ^ 0 at r = 0. This peculiar behaviour is because the

potential energy [3.1] is infinite at the origin.

2. For l j= 0 the fact that R nl is proportional to r
l
for small r forces the wave

function to remain small over distances from the nucleus which increase with

l. This is because the effective potential [3.9] contains the centrifugal barrier

term 1(1 + \)h
2
/(2/xr

2
) which prevents the electron from approaching the

nucleus. Among the eigenfunctions which have the same n, the one with the

lowest value of l has the largest amplitude in the vicinity of the nucleus.

3. The associated Laguerre polynomial L^z

+/(p) is a polynomial of degree

nr = n — l — 1 having nr radial nodes (zeros). Thus the radial distribution

function Dni(r) will exhibit n - l maxima. We note that there is only one

maximum when, for a given n, the orbital quantum number / has its largest

value / = n -
1. In this case nr = 0, and we see from [3.46] and [3.53] that

Rn,n-i(r) ~ r
n~ 1

e
-Zr/na

<* [3.61]

Hence, A,,„_i(r) = r
2R^ n

_-
l
(r) will have a maximum at a value of r obtained

by solving the equation

dr
r
2n

e
~ IZrlna M _ q [3.62]

r = [3.63]

which is precisely the value [1.100] appearing in the Bohr model. However,
in contrast to the Bohr model, the diffuseness of the electron cloud implies

that the concept of size is less precise in the quantum mechanical theory, so

that the value [3.63] should be interpreted as ‘a most probable distance’. We
see from [3.63] that this most probable distance is proportional to n

2 and
inversely proportional to Z. More generally, the maximum value of Dnl(r)

recedes from the nucleus with increasing values of n (see Fig. 3.3) and

becomes closer to the nucleus by a factor of Z_1
when Z increases.

To conclude our study of the hydrogenic bound state wave functions [3.48]

we now discuss their parity. Since we have reduced the study of hydrogenic

atoms to the problem of a particle of mass g in a central field, we may use

directly the results of Section 2.6. Thus the parity operation r —* — r (i.e.

(r, 6, <f>)
—

*

(r, tt — 6, <f>
+ tt) in spherical polar coordinates) leaves the radial

part R ni(r) of the hydrogenic wave function unaffected, while the angular part

Ylm(0, <t>) has the parity of /, as shown by [2.252]. As a result, under the parity

operation ??r = -r the hydrogenic wave functions [3.48] transform according

nRni(r)Ylm{0, eft)] = Rnl(r)Ylm(rr - 6, (ft + tt)

= Rnl{r)(-\)
lYlm(e, (ft) [3.64]
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We see that for l even the hydrogenic wave functions ih„(.r, 6, <f>)
-

R nl (r) Ylm(6, <t>) are unaffected by the parity operation: they are said to be ofMUM

parity. For l odd the wave functions ipnim change sign under the parity operation

and are said to be of odd parity.

3.4 EXPECTATION VALUES. THE VIRIAL THEOREM

Using normalised hydrogenic wave functions ipnimi1) we can calculate the

expectation (or average) values of various operators. As a simple example, let us

consider the average value of the distance r when the hydrogenic atom is in the

ground state, that is the quantity <«AiooIH*Aioo) = (Uioo • Taking into account the

reduced mass effect, we have t//ioo — (Z
3
/7t afj

1 ’'2 exp(—Zr/aM ) and therefore

{r)ioo <P*oo(r)nploo (r) dr

= [ |iAioo(r)|
2
r dr

J

7ran jo

dr r
3e-

2Zr/a » dd sin 9

2 IT

d(p [3.65]

The angular integral has the value 477 and the radial integral is readily

performed to give

3 a.,

(riioo
— L3.66]

For a general hydrogenic eigenstate we may calculate in the same way

<r)nim
=

[ 4>Zim(r)r4>nim(r) &

\Rnl(r)\
2
r
3 dr

Using the normalised radial eigenfunctions [3.53] it is found that

(f)nlm 1 +
2

/(/ + 1 )

[3.67]

[3.68|

which is seen to agree with [3.66] when n — 1 and / — 0. We remark from

[3.68] that (r)nlm , which we may interpret as the ‘size’ of the atom, is inversely

proportional to Z and roughly proportional to n
2

, in agreement with the

discussion following [3.63], In fact, we see that for s-states (/ = 0) (r)„im is

directly proportional to n
2

; for states with / =f=
0 the deviations from this

proportionality are small.

It is also interesting to evaluate the average values of r
k

,
where k is a positive

or a negative integer, since the quantities (r
k
)„,m clearly exhibit the differences
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between the radial eigenfunctions. For example, one has

, 2v 2 n
4

f 3 r /(/ + 1) - 1/311
<r >* - “M 1 +

2
1—?

—

[3.69]

1 /35
(/ + 2)(/ - 1)

—
4 (l + 2)(/ + 1)/(Z - 1)

9n

a^n3
(l

r
3

ran, alnXl + l/2)(/ + 1)

[3.70]

[3.71]

[3.72]

[3.73]

We note from [3.68]—£3.73] that (r
k
)„im ~ (a^/Z'f, a result which is easily

explained since the Z dependence can be ‘factored out’ of the problem by

defining a new reference length a
/JL
= aJZ. We also remark that the expectation

values of positive powers of r(k > 0) are controlled by the principal quantum

number n, while those corresponding to negative powers of r are strongly

dependent on / for k < - 1 . This is due to the fact that for positive powers

(k > 0) the important contributions to the integral

(r)nlm = \Rnl(f)\r
0

[3.74]

arise from large values of r, for which R nt behaves essentially like r
n 1

exp(—Zr/naX). On the other hand, for negative powers such that k < — 1 the

main contributions to the integral [3.74] come from the region of small r, where

Rni is proportional to r
l

.

Using the result [3.71] we may immediately obtain the average value of the

potential energy V{r) = -Ze l
I{Attest. The result is

(4Tre0)<U n
2

= 2En [3.75]

where we have also used the equation [3.29] which gives the energy eigenvalues

En . From [3.75] we can also deduce the average value of the kinetic energy

operator T = — (Zi
2
/2/x)V

2
. That is,

(T)„im = En - (V)nln = ~En [3.76]
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so that

200 = -<V>

where we have dropped the subscripts. The result [3.77] is a particular case of

the virial theorem, which we shall now prove.

The virial theorem

Let us denote by H the Hamiltonian of a physical system and by 'L its state

vector, solution of the time-dependent Schrodinger equation [2.46], We have

proved in Section 2.3 that the time rate of change of the expectation value

(A) = ('l'|7l|T) of an operator which does not depend explicitly on t satisfies the

equation

ih 4- <^|A|^) = (V\[A, H][9) [3.78]

'

dr

where [A, H] = AH - HA is the commutator of the operators A and H.

Let us further assume that H is time-independent and denote respectively by

En and i{/„ its eigenenergies and eigenfunctions. For a stationary state

= ipn exp(-iEn t/h) and a time-independent operator A it is clear that the

expectation value = {ip„\A\<l/n) does not depend on t so that [3.78]

reduces in this case to

MA, = 0 [3-79]

We now apply this result to the particular case of the non-relativistic motion

of a particle of mass )i in a potential F(r), the corresponding time-independent

Hamiltonian being

H = — + V = T + V [3. 80]
2yU.

where T = p
2
/2fx

= -h 2V 2
/ 2/jl is the kinetic energy operator. Moreover, we

choose A to be the time-independent operator r • p. We then have from [3.79]

Mr-p),//]kJ-([(r-p),/f]) = 0 [3.81]

Using the algebraic properties [2.120] of the commutators, together with the

fundamental commutation relations [2.1 19] and the fact that p — —ihV

,

we find

that

[(r • P), H\ = 0Xpx + ypy + zpz ), {pl + P
2

y + pi) + Z)

ih
= -(px + p; + pD - i*

\

x -^ + y— + 2 i7

= lihT- ih(r VV)

dV dV sV

dy dz

[3.82]
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From [3.81] and [3.82] we therefore obtain the relation

2(T) = <r • VV) [3.83]

which is known as the virial theorem [3]. It is worth noting that this result may
also be obtained by choosing the operator A to be p • r instead of r • p. Indeed,

the difference between r • p and p • r is a constant, and therefore commutes
with H.

If the interaction potential is spherically symmetric and proportional to r
s

,

and if the expectation values exist, we deduce from [3.83] that

= s(V> [3.84]

For example the case s = 2 corresponds to the harmonic oscillator, for which

(T) = (V). On the other hand the case s = — 1, corresponding to the hydro-

genic atom, yields the relation 2(7’) = —(F), in agreement with our result

[3.77], which is therefore seen to be a direct consequence of the virial theorem.

3.5 SPECIAL HYDROGENIC SYSTEMS: MUONIUM; POSITRONIUM;
MUONIC AND HADRONIC ATOMS; RYDBERG ATOMS

Let us recall some of the key results we have obtained for hydrogenic systems.

The energy eigenvalues are given by [3.29] and the frequencies of the transitions

by [3.34], In particular, the ionisation potential 7P = |£M=1
|

is just

7p —
(4t7£O)0V 2

[3.85]

and the ‘extension’ a of the wave function describing the relative motion of the

system is roughly given in the ground state (see [3.63]) by

a (47TE0)h
2

a = — = ^

—

Z Zfie"

where yx = mM/(m + M) is the reduced mass.

[3.86]

[3] We recall that in classical mechanics the virial of a particle is defined as the

quantity - (1/2)F • r, where F is the force acting on the particle and the bar denotes a time

average. If the motion is periodic (or evenif the motion is not periodic, but the coordinate and
velocity of the particle remain finite) and T denotes the time average of the kinetic energy of the

particle, one has (Goldstein, 1962).

T

=

-4F • r

and this relation is known as the virial theorem. If the force is derivable from a potential V the

virial theorem becomes

2? = r • VV

which is the classical analogue of [3.83].
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The hydrogenic systems we have considered so far correspond to an atomic

nucleus of mass M and charge Ze and an electron of mass m and charge —

#

interacting by means of the Coulomb potential [3.1]. The ‘normal’ hydrogen

atom, containing a proton and an electron is the prototype of these hydrogenic

systems. The hydrogenic ions He +
(Z = 2), Li

++
(Z = 3), Be34

(Z = 4), etc.

are also examples of such systems. As we have already noted in Chapter 1, and

as we can see again from the above formulae, the value of a for these ions is

reduced with respect to that of the hydrogen atom by a factor of Z and their

ionisation potential is increased by a factor ofZ2
(neglecting small reduced mass

effects).

The (neutral] isotopes of atomic hydrogen, deuterium and tritium, also

provide examples of hydrogenic systems. Here the proton is replaced by a

nucleus having the same charge +e, namely a deuteron (containing one proton

and one neutron) in the case of deuterium or a triton (containing one proton and

two neutrons) in the case of tritium. Since Md — 2Mp and M t
— 3MP , where

Mp is the mass of the proton, Md the mass of the deuteron and M, the mass of

the triton, we see that the reduced mass /x is slightly different for hydrogen,

deuterium and tritium, the relative differences being of the order of 10” 3
. Thus

the quantities Jp and a are nearly identical for the three atoms, the small

differences in the value of /x giving rise to isotopic shifts of the spectral lines (of

the order of 10
-3

) which we have already discussed in Chapter 1.

Positronium, muonium

In addition to deuterium and tritium, there exist also other ‘less conventional’

isotopes of hydrogen, in which the role of the nucleus is played by another

particle. For example, positronium (e
+
e
_

) is a bound hydrogenic system made of

a positron e
+

(the antiparticle of the electron, having the same mass as the

electron, but the opposite charge) and an electron e . Muonium (/x

'

e ) is

another non-conventional isotope of hydrogen, in which the proton has been

replaced by a positive muon fx~

,

a particle which is very similar to the positron

c
f

, except that it has a massM — 207 m and that it is unstable, with a lifetime

of about 2.2 x 10
6

s. Both positronium and muonium may thus be considered

as light isotopes of hydrogen. Positronium was first observed in 1951 and

muonium in 1960. Table 3.2 gives the values of the reduced mass fx, the ‘radius’

a and the ionisation potential Ip for positronium and muonium, compared with

those of the hydrogen atom.

Positronium and muonium have attracted a great deal of interest because they

only contain leptons (i.e. particles which are not affected by the strong

interactions) and hence are particularly suitable systems to verify the predictions

of quantum electrodynamics. We remark that both positronium and muonium

are unstable. Indeed, muonium has a lifetime of 2.2 x 10
6

s (which is the

lifetime of the muon p
+

itself) while in positronium the electron and the

positron may annihilate, their total energy including their rest mass energy

being completely converted into electromagnetic radiation (photons).
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One-electron atoms 3.5

Muonic atoms

In all the hydrogenic systems we have considered until now the negative particle

is an electron. In 1947 J. A. Wheeler suggested that other negative particles

could form a bound system with a nucleus. These negative particles can be

leptons such as the negative muon p~ (which is a kind of ‘heavy electron’ having

the same mass and lifetime as the positive muon p '

, but a negative charge —e)

or hadrons (particles which can have strong interactions). The unusual ‘atoms’

formed in this way are sometimes called ‘exotic atoms’. We shall return shortly

to hadronic atoms and examine for the moment the muonic atoms which are

formed when a negative muon p~ is captured by the Coulomb attraction of a

nucleus of charge Ze as the muon is slowing down in bulk matter.

As a first example, let us consider the simplest muonic atom (pp~) which

contains a proton p and a muon p~

.

Since the muon has a mass which is about

207 times that of the electron, the reduced mass of the muon with respect to the

proton is approximately 186 times the electron mass. As a result, the ‘radius’ a

of the muonic atom (p/O is 186 times smaller than that of the hydrogen atom,

the ionisation potential IP of (pp ~) being 186 times larger than the correspond-

ing quantity for atomic hydrogen (see Table 3.2). The frequencies of the

spectral lines corresponding to transitions between the energy levels of (pp~)

may thus be obtained from those of the hydrogen atom by multiplying the latter

by a factor of 186. For transitions between the lowest energy levels of (p/u.~) the

spectral lines are therefore lying in the X-ray region.

Let us now assume that the negative muon p is captured by the Coulomb

field of a nucleus A
-

of charge Ze. Assuming that we are dealing with a heavy

nucleus, so that we may neglect the reduced mass effect, we see that equation [3 .86]

would then yield for the bound system (Np~) the value a — ao/(207 Z), while

[3.85] would give an ionisation potential /P larger than that of hydrogen by

a factor of 207 Z 2
. Thus for the case of muonic lead (corresponding to a nucleus

Table 3.2 The reduced mass p, ‘radius’ a and ionisation potential /P of some ‘unconventional’

hydrogenic systems, compared with the corresponding quantities for the hydrogen atom (pe ). Atomic
units are used. The masses of the particles considered are Mp = Mp =* 1836, Al,, = M

(J ,
— 207,

M„_ = 273, MK - = 966, M,- = 2343, the unit of mass being the electron mass m.

System Reduced mass
‘

Radius' Ionisation potential

M a IP

1836 e
2

(pO - a0 = 1 = = 0.5
1837

~
(4rr£0)2a0

(e
+
e-) 0.5 2 0.25

(m
+0 207

208
~~ = a0 = 1 = 0.5

(PiO = 186 = 5.4 x 10~ 3 “ 93

(prr )
= 238 = 4.2 x 10~ 3 = 119

(pK-) = 633 = 1.6 x 10^ 3 - 317

(PP) = 918 = 1.1 x 10~ 3 = 459

(P2-) = 1029 = 9.7 x 10
4 = 515
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with Z = 82) we would have 7P — 19 MeV (1 MeV = 10
6 eV) and

a — 3 x 10
15 m = 3 Fermi. In fact this value of a is smaller than the radius R

of the lead nucleus, which is given by R — 6.7 Fermi, so that the expression!

[3.85]-[3.86]cannot be used any more! Indeed, they have been derived on the

assumption that the two particles of the hydrogenic system interact by means of

the Coulomb potential [3.1] for all values of the relative distance r, i.e. that both

particles are considered to be point-like. This assumption is an excellent one for

‘usual’ (electronic) atoms or ions such as hydrogen, deuterium, tritium, He+
,

Li
2+

, etc., where the finite extension of the nucleus gives rise to very small

effects such as the volume effect which will be shown in Chapter 5 to yield tiny

shifts of the energies associated with low-lying s-states. However, for muonic

atoms with large values ofZ (such as muonic lead) the volume effect may lead to

important shifts of the low-lying levels (in particular of the Is and 2s statea).

Nevertheless the main qualitative features predicted by [3.85]—[3.86J art

correct: the ionisation potential 7P is of the order of several MeV, the spectral

lines corresponding to transitions between the lowest energy levels lie at the

limit of the X-ray and y-ray regions, and in the Is state the muon spends a

significant fraction of its time within the nucleus. The fact that the muon acts as

a probe of the nucleus and that the energy spectrum of muonic atoms la

therefore sensitive to the internal structure of the nucleus constitutes one of the

major interests of the study of muonic atoms.

We conclude this brief discussion of muonic atoms by three remarks. Firstly,

muonic atoms are unstable, since the negative muon p has a finite lifetime

r — 2.2 x 10
-6

s (which is the same as that of its antiparticle, the positive

muon iff). Secondly, muonic atoms usually keep an electron cloud, but the

influence of the electrons on the hydrogenic system (nucleus + muon p ) is

almost always negligible, since the muon p remains on the average much closer

to the nucleus than the electrons. Thirdly, the muon is often captured into an

excited state of the (nucleus + muon) system. It will then ‘cascade’ down to the

ground state, either by emitting radiation in the form of X-rays or by means of

radiationless transitions known as Auger transitions, in which electrons from the

cloud are ejected.

Special hydrogenic lyttenu

Hadronic atoms

In contrast with the leptons (such as the electron e“, the positron e
+
and the

muons /uT and p~) which participate only in the electromagnetic and weak

interactions, the hadrons participate in the strong (nuclear-type) interactions in

addition to the electromagnetic and weak interactions. There are two kinds of

hadrons, the baryons (such as the proton p, the neutron n, the antiproton p, the

antineutron n, the hyperons X, H, . . .) which have half-integer spin (}

,

5 ,...) and are therefore fermions, and the mesons (such as the rr-mesons, the

K-mesons, etc.) which have integral spin (0, 1, . . .) and hence are bosons.

Among the hadrons, those having a negative charge can form with a nucleus Jf a

‘hydrogenic-type’ system which is referred to as a hadronic atom. In particular,
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One-electron atoms 3.S

the system (Afn) is called a pionic atom , (XK ) is known as a kaonic atom while

(Xp) is called an antiprotonic atom. Hydrogenic-type systems containing a

nucleus and a negative hyperon — for example (XX )
- are known as hyperonic

atoms. All these hadronic atoms are unstable, but their lifetime is long enough so

that some of their spectral lines have actually been observed.

Since hadrons interact strongly with nuclei, it is clear that the theory of

hydrogenic systems which we have developed in this chapter - and which only

takes into account the Coulomb interaction [3.1] - cannot be directly applied to

hadronic atoms. Thus the values of a and 7P listed in Table 3.2 only give a rough

estimate of the ‘radius’ and of the ionisation potentials of the hadronic atoms

(P77~)> (pK“), (pp) and (pX ). However, because the strong interactions have a

short range, excited states of hadronic atoms and in particular those with 1^0
for which the wave function is very small in the vicinity of the origin can

essentially be studied by using the theory of this chapter. The energies of these

excited states are thus given by

and their ‘radii’ by

En — 2
[3.87]

n

a„ — n
2
a [3.88]

where 7P and a are given respectively by [3.85] and [3.86],

Rydberg atoms

A highly excited atom (or ion) has an electron with a large principal quantum

number n. The electron (or the atom) is said to be in a ‘high Rydberg state’ and

the highly excited atom is also referred to more simply as a ‘Rydberg atom’.

Several characteristic quantities of the hydrogen atom are compared in Table

3.3 for n = 1, arbitrary n and n = 100. It is clear from the examination of this

table that highly excited hydrogen atoms with n — 100 exhibit some remarkable

properties. For example, their size is enormous on the atomic scale. Indeed, with

electron orbital radii of the order of 10 m, such atoms are as big as simple

bacteria! Also, their geometrical cross-section being proportional to n is

therefore 10
8
larger when n = 100 than in the ground state n = 1. On the other

hand, the electron in a high Rydberg state is very weakly bound, its binding

energy being smaller than the binding energy of the ground state by a factor n .

For example the energy required to ionise a hydrogen atom with n — 100 is only

1.36 X 10~ 3
eV. We also remark that the energy separation AA between

adjacent levels is given for large n by

AE = En+1 -En = Ir(y-(n+ 1)2
) [3.89]

- 27p/n3

where 7p = 13.6 eV is the ionisation potential of the hydrogen atom. Thus for

n = 100 this energy separation is given by AE — 2.7 x 10
s eV (-0.22 cm
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Table 3.3 Comparison of some characteristic quantities of the hydrogen atom for different valuM

of the principal quantum number n

Quantity n = 1 Arbitrary n n m 100

Radius a„ of Bohr orbit u0 = 5.3 x 10
11 — n

2a0 5.3 x 10
7

(in m)
Geometric cross- nal = 8.8 x 10“ 21 4 2— n 7Tflo 8.8 x 10-'*

section m2
(in m2

)

Binding energy \E„\ rH = 13.6 W/n2 1.36 x 10
'

(in eV)

Hnergv separation AE = 2/p/n 3
2.7 x 10

»

between adjacent levels

(in eV)

(n large)

10*Root-mean-square — cot “ vjn 2.2 x

velocity of electron

v„ (in ms 2

)

= 2.2 x 10
6

10- 10
Period T„ (in s) To = 1.5 x 10~ 16 = «

3r0 1.5 x

in units of reciprocal centimetres), so that the selective excitation of atom! in

highly excited states requires experimental techniques with extremely high

resolution. A highly excited hydrogen atom left to itself has a relatively long

lifetime, increasing roughly as n
3

for a fixed angular momentum quantum

number /. However, even thermal collisions can transfer enough energy to the

atom to ionise it, although it is possible that a neutral system passing through

the (very large) Rydberg atom will leave it undisturbed.

Many of the studies concerning Rydberg atoms also deal with excited states of

atoms other than hydrogen. However, for a large enough n, a Rydberg atom of

any kind may be considered as an ‘ionic core’ plus a single highly excited

electron. If this electron has enough angular momentum, so that it does not

significantly penetrate the core, it will essentially move in a Coulomb field

corresponding to an effective charge ZeS = 1 (in atomic units). Such Rydberg

atoms are therefore very similar to highly excited (Rydberg) hydrogen atoms.

Rydberg atoms have attracted much attention in recent years. In addition to

their intrinsic interest they are also important in such diverse areas as

radioastronomy, plasma physics and laser physics.

PROBLEMS

3.1 Using the explicit expressions of the hydrogenic wave functions given in

Table 3.1, calculate the expectation values (r), (r
2
), (1/r), (p) and (p

2
) for

the following states: (i) Is, (ii) 2s, (iii) 2p. Verify that the virial theorem

[3.77] is satisfied.

3.2 Any region of space in which the kinetic energy T of a particle would

become negative is forbidden for classical motion. For a hydrogen atom in

the ground state, of total energy £ls = a.u.

(a) Find the classically forbidden region.

(b) Using the ground state wave function </u s(r), calculate the probability

of finding the electron in this region.
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3.3 Consider a hydrogen atom of which the wave function at l
— 0 is the

following superposition of energy eigenfunctions iA„/m(r)

^(r, t = 0) = -j= [2 1

A

100(r) 3 1^200(f) + feto]

(a) Is the wave function an eigenfunction of the parity operator?

(b) What is the probability of finding the system in the ground state (100)?

In the state (200)? In the state (322)? In another eigenstate?

(c) What is the expectation value of the energy? Of the operator L2
? Of

the operator Lz7

3.4 Consider a tritium atom, containing a nucleus,
3H (the triton) and an

electron. The triton nucleus, which consists of one proton (Z = 1) and

two neutrons, is unstable, since by beta emission it decays to
3He, which

contains two protons (Z = 2) and one neutron. This decay process occurs

very rapidly with respect to characteristic atomic times, and will be

assumed here to take place instantaneously. As a result, there is a sudden

doubling of the Coulomb attraction between the atomic electron and the

nucleus when the tritium nucleus
3H decays by beta emission into

3He.

Assuming that the tritium atom is in the ground state when the decay takes

place, and neglecting recoil effects {M = 3°) find the probability that

immediately after the decay the He +
ion can be found:

(a) In its ground state Is?

(b) In any state other than the ground state? (Total probability for

excitation or ionisation.)

(c) In the 2s state?

(d) In a state with / ^ 0?

3.5 The electron and the proton of an hydrogen atom interact not only

through the electrostatic potential [3.1], but also by means of the

gravitational interaction. Using perturbation theory (Section 2.8), obtain

the relative energy shift AE/Eu ,
where AE is the energy change due to

the gravitational force and Eu is the ground state energy of hydrogen, as

given by [3.29] with Z = 1 and n — 1.

(Note: The gravitational constant is G = 6.672 x 10
11 N m2 kg 2

.)

3.6 Using the definition [2.21], obtain the momentum space wave functions of

the hydrogen atom for the Is, 2s and 2p states. Compare your results with

those of Appendix 5.

(Hints: Use the expansion [2.261] of a plane wave in spherical harmonics,

and the known integral

f”
, , (2 b)

l

l\

0

e
aX]

‘
{bx)X

+ dx =
{a

2 + b
2
~T

l

Note that integrals involving higher powers of x can be obtained by

differentiating this result with respect to the parameter a.)
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Interaction of one-electron atoms with

electromagnetic radiation

In this chapter, we shall first discuss the interaction of hydrogenic atomi with

electromagnetic radiation and show how spectral lines arise, and at a later Stage

we shall study the photoelectric effect. In considering the interaction of an atom

with radiation, there are three processes to analyse. First, just as a classical

oscillating charge will radiate spontaneously, an atom can make a spontaneous

transition from an excited state to a state of lower energy, emitting a photon

which is the quantum of the electromagnetic field. This process is called

spontaneous emission. Second, an atom can absorb a photon from a beam of

radiation, making a transition from a state of lower to a state of higher energy.

The rate of absorption is proportional to the intensity of the applied field.

Finally, atoms can also emit photons under the influence of an applied radiation

field. This is called stimulated emission and it is distinguished from spontaneous

emission because the transition rate, like that for absorption, is proportional to

the intensity of the applied field. Stimulated emission finds an important

practical application in the laser which produces intense beams of coherent

radiation and which will be discussed in Chapter 14.

In a rigorous treatment, we would have to start by studying quantum

electrodynamics, in which the electromagnetic field is expressed in terms of its

quanta - the photons. Each photon corresponding to a field of frequency v carries

an amount of energy hv. Even in comparatively weak fields the photon density

can be very high (see Problem 4.1) and under these circumstances the number

of photons can be treated as a continuous variable and the field can be described

classically by the usual Maxwell equations. We shall proceed by using a

semi-classical model in which the radiation field is treated classically, but the

atomic system is described by quantum mechanics. The approximation will also

be made that the influence of the atom on the external field can be neglected.

Clearly these assumptions do not hold in the case of spontaneous emission,

because only one photon is concerned - and one is not a large number! The

proper treatment of spontaneous emission is well understood, but is beyond the

scope of this book. However, in this case, we shall be able to find the transition

rate indirectly using a statistical argument due to Einstein.
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Interaction of one-electron atoms with electromagnetic radiation

4.1 THE ELECTROMAGNETIC FIELD AND
ITS INTERACTION WITH CHARGED PARTICLES

The classical electromagnetic field in vacuo is described by electric and magnetic

field vectors % and 96, which satisfy Maxwell’s equations [1]. We shall express

these and other electromagnetic quantities in rationalised MKS units, which

form part of the standard SI system. The electric field % and magnetic field 96

can be generated from scalar and vector potentials <t> and A by

*(r, i) = -Vd>(r, r) - — A(r, t) [4.1]
ot

96(r, 0 = V x A(r, t)
[4-2]

The potentials are not completely defined by [4.1] and [4.2]. In particular, %
and 96 are unaltered by the substitutions A —> A + V*, </>->

<f>
~ dx/dt,

where x is any scalar field. This property of gauge invariance allows us to impose

a further condition on A, which we shall choose to be

V • A = 0 [4.3]

When A satisfies this condition, we are said to be using the Coulomb gauge.

From Maxwell’s equations (without sources) we can show that A satisfies the

wave equation (as do 4>, % and 96)

, l a
2A r „

V2A 2 TT = 0 4.4
c
2

dt
2

In what follows we shall set the scalar potential </> = 0 since in empty space the

most general solution of Maxwell’s equations for a radiation field can always be

expressed in terms of potentials such that V A = 0 and = 0.

A monochromatic plane wave solution of equations [4.3]-[4.4] corresponding

to the angular frequency w (i.e. to the frequency v = oj/Itt) is one that

represents a real vector potential A as

A(co; r, t) = 2A0(«) cos(k • r - cot + 5J
= A 0(«)[exp[i(k • r - cot + 5W )] + c.c.] [4.5]

Here A0 is a vector which, as we shall see shortly, describes both the intensity

and the polarisation of the radiation, k is the propagation vector, <5„ is a real

phase and c.c. denotes the complex conjugate. We note that [4.3] is satisfied if

k • A0(«) = 0 [4.6]

so that A0(w) is perpendicular to k and the wave is transverse. Equation [4.4] is

satisfied provided that w = kc, where k is the magnitude of the propagation

vector k.

[1] Useful texts on electromagnetism are those by Duffin (1968) and Jackson (1975).
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4,1 Electromagnetic field and charged particles

The electric and magnetic fields associated with the vector potential [4.5] are

given respectively from [4.1] and [4.2] by

% = -2 a>A 0(o))e sin(k • r - cot + 5W )

96 = -2A 0(«)(k x e) sin(k • r - wt + 8W ) [4.7]

where we have written Ao(w) = Aq(co)£. The direction of the electric field % is

along the real unit vector e, which specifies the polarisation of the radiation, and

is called the polarisation vector. From [4.6] we note that £ must lie in a plane

perpendicular to the propagation vector k and can therefore be specified by

giving its components along two linearly independent vectors lying in this plane.

We also see from [4.7] that both % and 38 are perpendicular to the direction of

propagation k, and to each other.

The expressions [4.7] describe a linearly polarised plane wave, namely a plane

wave with its electric field vector % always in the direction of the polarisation

vector £. A general state of polarisation for a plane wave propagating in the

direction k can be described by combining two independent linearly polarised

plane waves with polarisation vectors eA(A = 1,2) perpendicular to k, where

the phases in the two component waves are in general different.

In a quantum description of the electromagnetic field the energy in each mode

of angular frequency a>, in some region of volume V [2], is carried by a number

N(io) of photons, each of energy hw. The total energy in the mode is therefore

given by N(co)ha) and the energy density by N(aj)hio/V. In order to relate this

quantum description with the classical approach we are using here, we first

construct the energy density of the field, which is given by

i(e0^

2

+ 38
2
//x0) = 4e0«

2
Ao(w) sin

2
(k • r - cot + <5J [4.8]

where e0 and /u0 are respectively the permittivity and permeability of free space

[3]. The average energy density over a period (2tt/w) is

p(w) = 2eoo}
2
Ao(o>) [4.9]

Equating this result with N((d) hw/V, we have

A2
0(a>)

= -\/
N(<o) [4.10]

ZsqcoV

Similarly, the magnitude of the Poynting vector x 98)/ /x0 is the rate of

energy flow through a unit cross-sectional area normal to the direction of

propagation k. Averaged over a period, this quantity defines the intensity of the

[2] Provided V is taken to be much larger than atomic dimensions, the physical results are

independent of this quantity.

[3] Numerical values of f0 and Mo are given in Appendix 11.
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4.1Interaction of one-electron atoms with electromagnetic radial

radiation, which is given by

I(oj) = 2e0(o
2
cAo((o)

N(a))ha)
=

= p(w)c [4.11]

A general pulse of radiation can be described by taking 4> = 0 and represent-

ing A(r, t) as a superposition of the plane waves A(w; r, t). Taking each plane

wave component to have the same direction of propagation k and adopting a

given direction of linear polarisation i, so that

A0(w) = A0(w)e [4.12]

we write

A(r, t) A0(w)e[exp[t'(k • r — tot + Sw )] + c.c.] dw [4.13]

We shall be concerned with the case in which the radiation is nearly

monochromatic, so that the amplitude A0(w) is peaked about some angular

frequency w0 ,
differing from zero in a region of width Aw.

In a naturally occurring pulse the radiation arises from many atoms emitting

photons independently, which implies that the phases 8w are distributed at

random, as a function of w; in other words, the radiation is incoherent [4]. It

follows that the average energy density in a pulse of the form [4.13] is

2e 0w
2
Ao(w) dw = p(w) dw

Aa> Aco

[4.14]

As seen by comparing with [4.9], the contributions from each mode are

summed, with no interference terms. Similarly the average intensity is

/ = /(w) dw [4.15]

where the intensity per unit angular frequency range /(w) is given by [4.11].

Charged particles in an electromagnetic field

The Hamiltonian of a spinless particle of charge q and mass m in an

electromagnetic field is

H = 4- (p - qA)2 + q<{> [4.16]

[4] This remark does not apply to radiation from lasers, which exhibits a high degree of coherence.
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4.1 Electromagnetic field and charged particles

where p is the generalised momentum of the particle. The steps leading to [4. 16]

are given in Appendix 6. Ignoring for the present small spin-dependent terms,

the Hamiltonian of an electron of mass m in an electromagnetic field is given by

[4.16], with q = —e.

In order to describe a hydrogenic atom in an electromagnetic field we must

also take into account the presence of the nucleus, of charge Ze and mass M.

Since M is very large compared to the electron mass m (we are considering here

‘ordinary’ one-electron systems such as H, He +
, . . .) the interaction between

the radiation field and the nucleus can be ignored to a high degree of accuracy.

In the same spirit we shall also neglect reduced mass effects and take the nu-

cleus to be the origin of the coordinates. However, we must include in the

Hamiltonian the electrostatic Coulomb potential -Ze2
/(47re0)r between the

electron and the nucleus. It is convenient to regard this electrostatic interaction

as an additional potential energy term, while the radiation field which perturbs

the atom is described in terms of a vector potential A alone, as discussed above.

The time-dependent Schrodinger equation for a hydrogenic atom in an electro-

magnetic field then reads

ih — Tfr, t)

dt
(-ihV + eA)

2 -
2m

Ze2

(4ire0)r
^(r, t) [4.17]

where we have written p = -ihV. Because of the gauge condition [4.3], we

have

V • (A^) = A • (V'k) + (V • A)^

= A • (V¥) [4.18]

so that V and A commute. Making use of this fact, we may rewrite the

Schrodinger equation [4.17] as

ih — T(r, t)

ot

h
2

, Ze2— V2

2m (477£0)r

ihe— A
m

e
2

2

2^
A ¥(r, 0 [4.19]

We shall treat the weak field case in which the term in A2
is small compared

with the term linear in A [5]. Accordingly we shall drop the term in A2 and

treat the linear term as a small perturbation. In terms of photons, this means

that we shall only treat the emission or absorption of one photon at a time. The

simultaneous emission or absorption of two photons is generally negligible. An

exception to this arises in the very strong coherent fields generated by lasers.

[5] Although we are treating the case for which A2
is small compared with A, the photon density is

assumed to be high enough for the radiation field to be treated classically. Both conditions are

well satisfied in the emission and absorption processes we shall describe.
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4.2Interaction of one-electron atoms with electromagnetic radiation

4.2 TRANSITION RATES

Having neglected the term in A2
, we see that the time-dependent Schrodinger

equation [4.19] may be written as

3^
ih— = [//« + H'(W

ot

where

h
2

, Ze2— V2

2m (47T£o)r

[4.20]

[4-21]

is the time-independent hydrogenic Hamiltonian describing the one-electron

atom in the absence of external fields and

H’(t) = A V [4.22]
m

is a perturbation which depends explicitly on the time variable through the

vector potential A.

We shall study this problem by using the time-dependent perturbation theory

given in Chapter 2. The unperturbed eigenfunctions ipk , solutions of

Ho<Pk = Ek ijjk [4-23]

are normalised hydrogenic wave functions. Because the set of functions

(including both the discrete set studied in Chapter 3 and the continuous set

corresponding to unbound states) is complete, the general solution ¥ of the

time-dependent Schrodinger equation [4.20], which we assume to be normal-

ised, can be expanded as

* = 2 ckmk(r)t~'
Ekt/h

[4.24]
k

where the sum is over both the discrete set and the continuous set of hydrogenic

eigenfunctions i(ik . The coefficients ck(t) satisfy the coupled equations [2.336]

with A = 1,

Ch(t) = (ihr
1 2 H'bk(t)ck(ty

mkt
[4.25]

k

where

H'bk (t) =wmk)

(r)H'if>k(r) dr [4.26]

and

o>bk ~ (Eb Ek)/h [4.27]
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4.2 Transition raw

Let us suppose that the system is initially in a well-defined stationary bound

state of energy Ea described by the wave function <pa and that the pulse *of

radiation is switched on at the time t = 0. Thus the initial conditions are given

by

ck(t « 0) = 8ka [4.28]

and, to first order in the perturbation H'

,

we have (see [2.343])

4°(o =w 1 H'ba{t'y
ma,

‘

dr'

e

m
(l/»4|A

• V|l/ra> d t'

where toba = (E b - Ea)/h and

[4 .29]

<<A* I
A • V|^> = 4>*(r)A • V i/ja(r) dr [4 .30]

To proceed further, we use the vector potential A(r, t) given by [4.13] to

obtain

4r>
(t) = —

m
&coAo((t))

A to

e
!6

"(i/f(,|e’
k 'r

i • V|<AJ dt'e ,( “*”“

+ e- 5"(^|e“ lk '

r e • V|^a )

o>)r'
[4.31]

In general, the duration of the pulse will be much larger than the periodic time

{Itt/wba ) which is for example ~2 x 10
15

s for the yellow sodium D line at

5890 A. It follows that the first integral over t' will be negligible unless coha - «,

i.e. unless Eb — Ea + hw. Thus we see that in this case the final state of the

atom has greater energy than the initial state and one photon of energy tiw has

been absorbed from the radiation. On the other hand, the second integral over l'

in [4.31] will be negligible unless wba — that is unless Eb
~ Ea - fuo. In

this case the initial state of the atom has greater energy than the final state and

one photon of energy fuo is emitted. Since only one of these conditions can be

satisfied for a pair of states a and b, we can deal with the two terms separately.

We shall assume for the moment that both the initial and final atomic states

are discrete. The photoelectric effect, which corresponds to transitions from a

discrete initial state to final states lying in the continuum, will be studied in

Section 4.8.

Absorption

We start with the first term of [4.31], describing absorption. Using the fact that

the radiation is incoherent - so that no interference terms occur - we find that

161



Interaction of one-electron atoms with electromagnetic radial

the probability for the system to be in the state b at time t is

I4
1 }

(0
I

2 = 2 da>
Ato

eA0(co)

m
\Mba (co)\

2
F(t, to - coba )

4.2

[4.32]

where we have defined the matrix element Mba as

Mba = <*Ai|e
lk 'r

e • V|i/(a)

</r?(r)e
,kr£ • Vt^(r) dr [4.33]

and we recall that id = kc. Upon setting co = w - coba , the function F(t, do)

which appears in [4.32] is seen to be the same as the function F(t, co) introduced

in Chapter 2. That is (see [2.347])

1 - cos cot „
F(t, (b) = I? > co = to - t

o

ba [4.34]
CO

The properties of F(t, co) discussed in Section 2.8 may therefore be used

directly here, provided that we make the substitution co —* do. In particular,

since for large t the function F(t, do) has a sharp maximum at do = 0 (see

Fig. 2.9), i.e. at co - a

>

ba ,
we can set co = u>ba in the slowly varying quantities

Ao(co) and |Afia(a»)|
2

,
take these factors outside the integral in [4.32] and extend

the limits of integration on co to ± Hence we have

I^COI
2 = 2

eA 0((oba)

m
\Mba (coba )\

2 F (t, do) do)

and using the result [2.348], we obtain

\c
(

b

lW = 2i
eA 0(wba)

m \Mba(wba)\

2
t

[4.35]

[4.36]

Thus the probability |cj,

i:)

(f)|
2
increases linearly with time and a transition rate for

absorption Wba can be defined as

12

\Mba{coba)\

2Wba
= - kfW = 2tt

eA0(coba )

m
[4.37]

In terms of the intensity per unit angular frequency range, 1(a)), which is given

by [4.11], we have

Wba =
4tt

2
e
2

\ I(O)ba )

me 47TE0) (Oba
\

Mba(o>ba )\

2
[4.38]

The rate of absorption of energy from the beam, per atom, is (hioba)Wba . It is

convenient to define an absorption cross-section uba which is the rate of absorption

of energy (per atom) divided by I(coba). That is,

\Mba(coba )\

2
[4.39]&ba m2wba
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4.2 Transition rates

where a = 02
/4Tre0)/hc

- 1/137 is the fine structure constant. Since the

incident flux of photons of angular frequency <oba is obtained by dividing the

intensity I(coba) by ha>ba , we see that the cross-section aba may also be defined as

the transition probability per unit time and per unit atom, Wba , divided by the

incident photon flux. The cross-section crba has the dimensions of an area and

can be regarded as the area of a disc of absorbing material that, placed at right

angles to the beam, would absorb the same number of photons per second, each

of energy hu>ba ,
as the atom under consideration.

Stimulated emission

To calculate the transition rate for stimulated emission, we return to [4.31] and

in particular to the second term in the expression for c)f (r), which corresponds

to a downward transition (Eb ^ Ea - hco) in which a photon of energy hca is

emitted. It is convenient to interchange the labels of the states a and b so that the

state b is again the one with higher energy. The transition b —* a corresponding

to stimulated emission may then be viewed as the reverse transition of the

absorption process a —» b which we have just studied. Carrying out the same

manipulations as we did for absorption, we find that the transition rate for

stimulated emission, Wab is given by

Wai

4W_jM
m 2

c \47reoJ
[4.40]

where

Mab
= (t/'Je~

,k 'r
e V\fb)

</£(r)e
lk '

r
e Vtfo(r) dr [4.41]

On integration by parts, and using the fact that i • k = 0, one has

-fc-ciii
<3 [4.42]

and comparing [4.38] and [4.40], we find that

= Wba [4.43]

Thus we see that under the same radiation field the number of transitions per

second exciting the atom from the state a to the state b is the same as the number

de-exciting the atom from the state b to the state a. This is consistent with the

principle of detailed balancing,
which says that in an enclosure containing atoms

and radiation in equilibrium, the transition probability from a to b is the same as

that from b to a, where a and b are any pair of states.

A stimulated emission cross-section aab can be defined in analogy with the

absorption cross-section [4.39] by dividing the rate at which energy is radiated
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Interaction of one-electron atoms with electromagnetic radial 4.2

by the atom, by the intensity I(<oba ). From [4.43] we have

&ab = ^ba [4.44]

Despite the fact that the transition rates Wba and Wab are equal, stimulated

emission is usually much less intense than absorption. Indeed, under equilib-

rium conditions the initial population of the upper level b is smaller than that of

the lower level a because of the Boltzmann factor exp(-hcoba/kT). However, if

a population inversion is achieved between the two levels a and b , then stimulated

emission becomes the dominant process. This is the case in the MASER (an

acronym for Microwave Amplification by Stimulated Emission of Radiation)

and the LASER (Light Amplification by Stimulated Emission of Radiation)

where stimulated emission enables atomic or molecular systems to amplify

incident radiation. Masers and lasers will be discussed in Chapter 14.

Spontaneous emission

In quantum electrodynamics (QED), the part of the vector potential describing

the absorption of a single photon from an N photon state has the form [6]

Ai = e
N(at)A

2V

e

0o)

i/2

-i(k-r- wt+ S„)
[4.45]

and it can be shown that the QED transition rate for absorption is given in

first-order perturbation theory by

Wba =
47/ N(o>ba)h

V<oba
I

Mba \

2
8(oj - <oba ) [4.46]

Using [4.11] and integrating over a range of angular frequencies about ioba , this

result is seen to be identical with [4.38].

The corresponding part of the vector potential describing the creation of a

photon, adding a single photon to a N photon state, is

A2 = e
(N(co) + \)fi

2Vsoco

1/2
-t(k*r — (ot+ l

[4.47]

and the transition rate for emission is given by

Wab

[N(wba ) + 1 ]ti

Vcoba
I

Mba \

2 8(w - wba ) [4.48]

After integrating over co, this expression is seen to be identical to the

semi-classical result [4.40], provided N(coba ) + 1 is replaced by N(coba ). The

semi-classical approximation amounts to the neglect of 1 compared withiV(w6o),

[6] A detailed discussion can be found in Sakurai (1967).



4.2 Transition rates

and this is the same as neglecting the possibility of spontaneous emission. In the

absence of external field one has N = 0 and the transition rate for the

spontaneous emission of a photon, Ws

ab , is given from [4.48] by

w\ah
h

V^ba
\Mba

|2
S(o> ^ba) [4.49]

What can be observed is the emission of a photon in a particular direction

(6, d>) within an element of solid angle dfl. In order to obtain the physical

transition rate we must therefore sum [4.49] over the number of allowed

photon states in this interval. To do this we need to calculate the density pa (o>

)

of the final photon states, in accordance with the Golden Rule [2.359].

Density of states

Let the volume V be a cube of side L. (In fact the shape does not matter

provided V is large.) We can impose periodic boundary conditions [7] on the

function exp(-ik • r) which is contained in the expression [4.47] representing

the wave function of the emitted photon. That is,

,
2^

,
2tT 2.1

T

r- . rr.1
kx = — nx , ky = —— ny , kz = —j— nz [4.50]

Ij id L*

where nx ,ny , nz are positive or negative integers, or zero. Since L is very large,

we can treat nx , nv and nz as continuous variables, and the number of states in

the range dk = dkx dky dkz is

dnx dny dnz dkx dky dkz

k
2 dk dfl [4.51]

Expressed in terms of V = L 3 and o> = ck, the number of states in the angular

frequency interval dw with directions of propagation within dfl is

pa(<o) dw dfl
V a)

2

{2 iffV d co dfl [4.52]

Using [4.49] and integrating over the angular frequency w, the transition rate

for the emission of a photon into the solid angle dfl is then given by

W*ab(fl) dfl =
2irm

2
c
3

\ 47T£0
[4.53]

[7] The imposition of periodic boundar>’ conditions amounts to assuming that all space can be

divided into identical large cubes of volume L 3
, each containing an identical physical system.

The vector potential A must then be periodic with period L along each of the three Cartesian

axes.
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4.3Inttraction of one-electron atoms with electromagnetic nMflHHP

The total transition rate is found by summing over each of the two independent

polarisations of the photon, corresponding to polarisation vectors £a(A = 1,2)

and integrating over all angles of emission. That is

Ws
ab =

,

k
2 3 (-£—

)

[
dft 2 o>ba\ML(.<*>ba)\

2
[4-54]

2vm c \ 47re0 / j A = i

where Mba is given by [4.33], with e replaced by eA .

4.3 THE DIPOLE APPROXIMATION

In many cases of practical interest the matrix elementMha defined in [4.33] can

be simplified by expanding the exponential exp(zk • r) as

e
lk r = 1 + (ik • r) + (tk • r)

2 + • •
• [4.55]

Consider for example the case of optical transitions. The atomic wave functions

extend over distances of the order of the first Bohr radius of the atom, i.e. about

1 A (= 10~ 8cm). On the other hand, the wavelengths associated with optical

transitions are of the order of several thousand Angstroms, so that the

corresponding wave number k = In/X is of the order of 10
5 cm ]

. Thus the

quantity {hr) is small for r < 1 A and we can replace exp(ik • r) by unity in

[4.33], which amounts to neglecting retardation across the atom. This is known as

the electric dipole approximation [8]. In this approximation, [4.33] becomes

Mba = i {<pb\V\<Pa>

l

= £ • J ('l'b\p\4>a)

= i ’ y ^b\^a) [4-56]

since p = mi = -ihV. Now, applying the Heisenberg equation of motion

[2.113] to the dynamical variable r, we have

r = (ih)
‘

’[r, H0] [4.57]

where we have replaced H by Hq since we are working in perturbation theory

.

Therefore

(ifib \T\il/a) = (ihy l
{ipb\tHo

- H0 r|iAa>

= (ihy \Ea - EMMa) [4.58]

or, in a more compact notation,

pba = imo)baiba [4.59]

[8] The dipole approximation becomes less accurate as the frequency of the radiation increases, and

is inadequate for X-ray transitions.
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4.3 The dipole approximation

where

Pba = (<Pb\v\4>a)
= m(fb\t\fa) [4.60]

and

rba = (fblAfa) [4.61]

This allows us to express Mba in the form

tncoba „Mba =
h

E rba [4.62]

The transition rate for absorption in the electric dipole approximation may

now be obtained by substituting [4.62] into [4.38]. That is,

i ef \

wba = ^\Ĵ })
I{(1)ba)

\

i '

Tba
\

2
[4 '63]

It is convenient at this point to introduce the electric dipole moment

D = — er [4.64]

and its matrix element

= - erba [4.65]

in terms of which [4.63] reads

' DJ2 [4 -661

We note that the quantity £ • Dba is the component of the electric dipole

moment in the direction £, between the states b and a. If Dia (or rba) is

non-vanishing, the transition is said to be allowed ; ifD fto vanishes the transition

is forbidden. When the transition is forbidden, higher terms in the series [4.55],

which correspond to magnetic dipole, electric quadrupole transitions, and so on,

may be non-vanishing, but the transition rate will be much smaller than for

allowed transitions. If Mba in its unapproximated form [4.33] vanishes, the

transition is said to be strictly forbidden, but it may still occur through the

simultaneous emission (or absorption) of two photons or by processes of even

higher order in perturbation theory.

Let us now return to [4.63]. If we define 6 as the angle between the vectors £

and rba , we may write

4tt
2

/ e
2

\
' =W [T^o)

7<““,|r
J2 cos e [4'67]

where

kd
2 = kd2 + \yba \

2 + Id 2
[4-68]
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For unpolarised isotropic radiation, the orientation of i will be at random, and

cos
2
9 can be replaced by its average of 1/3 (see Problem 4.4), giving

47T
2

Wh„ =
Ich

2 \Aveq

47

r

2
/ 1

I(o>ba) k,ba\

3ch
2

\477^0
/(*>*„) |D'ba\ [4.69]

It is worth noting that because of [4.43] the expression [4.69] also represents

the transition rate for stimulated emission in the dipole approximation correspond-

ing to the transition b -* a, i.e. the dipole approximation to Wah . On the other

hand, the transition rate for spontaneous emission of a photon into the solid angle

dO is given in the dipole approximation by substituting [4.62] into [4.53]. That is,

ws

ab(n) do =
27The

3
\4tte0)

1

(

1

Irrhc
3 \4me0<

1

r
2>al da

Itrhc
3
\47T£o

<4a\i ' D ifl |

2 dO

wLlria|
2
COS

2
9 da [4.70]

where we recall that 9 is the angle between i and rba . By summing this

expression with respect to the two polarisation directions of the photon and

integrating over the angles one obtains the full transition rate for spontaneous

emission of a photon in the dipole approximation, namely

„2

W'a> =
3hc

3

4

3he
3

4

47re0

u
y 4 77£0

wba
\

Tba \

2

ba
I

^ 2
^ [4.71]

4.4 THE EINSTEIN COEFFICIENTS

We shall verify that [4.71] is the correct expression for the rate of spontaneous

emission by using the treatment of emission and absorption or radiation given

by Einstein in 1916. Consider an enclosure containing atoms (of a single kind)

and radiation in equilibrium at absolute temperature T, and let a and b denote

two non-degenerate atomic states, with energy values Ea and Eb such that

Eb > Ea . We denote by p(a>ba) the energy density of the radiation at the angular

frequency wba = (Eb - Ea)/h. The number of atoms making the transition

from a to b per unit time by absorbing radiation, Nba ,
is proportional to the total
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4.4 The Einstein coefficients

number Na of atoms in the state a and to the energy density p{u>ba). That is

Nba = BbaNap(wba ) [4.72]

where Bba is called the Einstein coefficient for absorption. Since p = I/c (see

[4.11]) and the transition rate for absorption (per atom) is Wba , we have from

(4.69)

Bba

Wba

P

4-7

r

2
/ e

2
\

3h 2

\477£o/
\*ba\ [4.73]

where in the last step we have used the dipole approximation [4.69] for Wba .

On the other hand, the number of atoms making the transition b —* a per unit

time, Nab , is the sum of the number of spontaneous transitions per unit time,

which is independent of p, and the number of Stimulated transitions per unit

time, which is proportional to p. Thus

Nab = AabNb + BabNbP(wba) [4.74]

whereNb is the total number of atoms in the state b, Aab is the Einstein coefficient

for spontaneous emission and Bah is the Einstein coefficient for stimulated emission.

In our notation Aab = W*ab . At equilibrium we have Nba = Nab ,
so that from

[4.72] and [4.74] we deduce that

Na Aab A Bahp(wha)— = —
L4.75

Nb BbaP\^ba)

We also know that at thermal equilibrium the ratio NJNb is given by [9]

111 = t
-tEa-Eh)lkT _ ^hmalkT M

Nb

where k is Boltzmann’s constant. From [4.75] and [4.76] we thus find for p(coba )

the expression

P(<»ba)
= *-ab

Bbat
h^/kT - Bab

[4.77]

Since the atoms are in equilibrium with, the radiation at temperature T, the

energy density p(w) is given by the Planck distribution law discussed in Section

1.3. Using [1.31] together with the fact that p(w) d« = p(v) dv, with a> = 2w,
the energy density at the particular angular frequency wba is

P(.Otba)

hcj\a 1

77

-

2
C
3 - 1

[4.78]

In order for [4.77] and [4.78] to be identical, the three Einstein coefficients must

[9] See for instance the text by Kittel (1958).
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be related by the two equations

Bba = Bab
[4.79a]

Aab = ~TJ Bab
[4.79b]

7T C

The relation [4.79a] expresses the principle of detailed balancing discussed

previously. Using [4.73] and [4.79], we verify that Wab (= A ab ) is indeed given

in the dipole approximation by the expression [4.71]. It is a simple matter to

generalise the above results to the case in which the energy levels Ea and (or) Eb

are degenerate. Denoting by ga and gb the degeneracy of these levels, one finds

(Problem 4.5) that [4.79a] becomes

gaB ba = g„Bab [4.80]

while the relation [4.79b] remains unchanged.

4.5 SELECTION RULES AND THE SPECTRUM OF

ONE-ELECTRON ATOMS

In the last section, we found the probability of a radiative transition between

two levels a and b, in the electric dipole approximation. For stimulated emission

or absorption of radiation with a particular polarisation vector e, the basic

expression is given by [4.63] and for spontaneous emission by [4.70]. In each

case the transition rate depends on the key quantity |e • rba \

2
. In order to study

this expression it is convenient to introduce the spherical components of the

vectors e and r. According to the definition [A4.45] of Appendix 4 the spherical

components £q(g
~ 0, ± 1) of £ are given in terms of its Cartesian components

(£x , £y) sf) by

£i
'J2

(e* + iiy). Co £

z

£-1 — (®x i£y) [4.81]

As we shall see later, if the direction of propagation of the radiation is along the

Z axis (iz = 0), ei and £_i describe states of circular polarisation.

Similarly, the spherical components r
q(q

= 0, ± 1) of the vector r are given by

1 1

r, = j= (x + iy) = 7F r sin 6 e
i<i> _

VI J2
^)

1/2

YU1{6, <}>)

'

47t\
1/2

r0 = z = r cos 6 = r
[—

j

Y <f>)

r_ l
=-L(x -iy) = -L r sin 0e-‘*= rteV

/2

y, .-,(», <t>) [4.82]

72 72 3 J
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The scalar product i • tba can be expressed in terms of spherical components as

r Sba £q iXba)q
q=0,±\

= ~ e* (Xb“ + ly'

h^ + £
*
Zba + e-i (xba - iyba) [4-83]

or

«=0,±1
[4.84]

where

Ti,,,
,* n l m ;'m' ;n/m

- /M 172

3/
dr r

3
/?„r(r)/?„,(r)

dH <£)F1;?(0, <»F,m(0, 0) [4.85]

and where we have written the quantum numbers of the levels a and b of the

hydrogenic atom as nlm and n'l'm’ ,
respectively. The radial integral in [4.85] is

always non-zero, but the angular integrals are only non-zero for certain values of

(/, m) and (/', m'), giving rise to selection rules which we shall now investigate.

Parity

Under the reflection r —> -r we have shown in Section 3.3 that the hydrogenic

wave functions behave like (see [3.64])

R nt{r)Ylm{e, <f>) R nl(r)Ylm(ir - 9, <t>
+ tt)

= Rnl(r)(-\)
lYtm(e, <t>) [4-86]

and the parity of the wave function is even or odd according to whether / is even

or odd. By making the coordinate transformation r —

*

—r in [4.85] we see that

lignin, = (~ l)'
+, ' +

m ;nlm [4-87]

Hence the quantity lqn'i'm'\nim is only non-vanishing if (/ + /' + 1) is even. In

other words, the electric dipole operator only connects states of opposite parity.

Magnetic quantum numbers

The integral over 4> which must be performed in [4.85] is of the form

fl-n

J{m, m',q) =
io

e
,(m+,-m')<i» d0 [4.88]
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We shall consider separately the two cases q = 0 and q = ± 1 , which correspond

respectively to radiation polarised parallel to the Z axis and perpendicular to the

Z axis.

1. q = 0 (polarisation vector i in the Z direction).

In this case the integral [4.88] - and therefore the matrix element [4.85] -

vanishes unless

m! = m i.e. Am = 0 [4.89a]

2. q = ±1 (propagation vector k in the Z direction).

Here the 4> integration in [4.88] yields for the matrix element [4.86] the selection

rule

m' = m ± 1 i.e. Am = ±1 [4.89b]

In a given transition, only one of the conditions Am = 0 or Am = ± 1 can be

satisfied, and hence only one of the matrix elements zba and (x ± iy)ba will be

non-zero.

Orbital angular momentum

The integral over the angles in [4.85], which we call d(l, m; /', m'; q), can be

evaluated by the methods of Appendix 4. The result, expressed in terms of

Clebsch-Gordan coefficients, is

si(l, m; m'; q )
=

J

dO Y?m{6, d»)T1>? (0, <f>)Ylm(d, 4>)

/ 3 21 + 1 \
1/2

f—
2/ , +

~
j

<n00|/'0></lm#m'> [4.90]

From the properties of the Clebsch-Gordan coefficients we note— that

sl(l, m; m'; q) vanishes unless m' — m + q, which is in agreement with the

selection rules [4.89] we have just obtained for the magnetic quantum numbers.

In addition, the properties of the Clebsch-Gordan coefficients also imply that

si(Z, m; /', m'; q) vanishes unless

l' = l ± 1, i.e. Al = ±1 [4.91]

This is the orbital angular momentum selection rule for electric dipole

transitions. This rule can also be deduced in a more elementary fashion by using

the recurrence relations satisfied by the associated Legendre functions

Pf(cos 6). Indeed, using the expressions [2.181] for the spherical harmonics,

together with the selection rules [4.89] for the magnetic quantum numbers, we
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4.5 Selection rules and one-electron atoms

see that the 0 integration in [4.90] can be written, apart from numerical factors

j" d(cos 6)PJ
1

(cos 0) Pf(cos 0) cos 0 for q
= 0 [4.92a]

d(cos 6)Pf(cos 0)P™‘ '(cos 0) sin 0 for q
= ±1 [4.92b]

From the recurrence relations [2.176],

(21 + 1) cos 0 Pf(cos 0) = (7 + 1 - m) P™+i(cos 0) + (l + m)PJ'_ l
(cos 0)

[4.93a]

and

(21 + 1) sin 0 Pr ‘(cos 0) = PT+ i (cos 0) - Pf-i(cos 0) [4.93b]

together with the orthogonality relation [2.177]

"+i
2 (l + yn) i

i

d(cos 0)PT (cos 0)Pr(cos 0) = [4.94]

we find that l’ = / ± 1, in accordance with [4.91]. Using either of the above

methods one can also obtain the explicit forms of the quantities si (l, nr,

q ), which is left as an exercise for the reader (Problem 4.6).

Electron spin

We note that the electric dipole operator does not depend in any way on the spin

of the electron. It follows that the component of the electron spin in the

direction of quantisation remains unaltered by the absorption or emission of

dipole radiation.

The spin of the photon

The selection rules for electric dipole transitions have a simple interpretation in

terms of the spin of the photon. To discuss this point, we must first explore in

more detail the possible states of polarisation of an electromagnetic wave. In

Section 4.1 we saw that a general state of polarisation for a plane wave

propagating in the direction k can be described by combining two independent

linearly polarised plane waves (having in general different phases) with polarisa-

tion vectors cA (A = 1, 2) orthogonal to k. The resulting polarisation vector i

lies in a plane perpendicular to k, so that a state of arbitrary polarisation can

always be represented as

£ = + a 2e2 ; a\ + a\ = 1 [4-95]

where e,(t =1,2) are fixed mutually orthogonal real unit vectors in a plane

perpendicular to fc. We shall take 4|, 4 2 and £ to form a right-handed system, so
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that (see Fig. 4.1)

k = ei x e2 ; e 2 = 0 [4-96]

The foregoing discussion may of course be directly generalised to pulses of the

form [4.13], for which the polarisation vector i is independent of oj.

4.1 The vectors e,, e 2 and k, forming a right-handed set of mutually orthogonal unit vectors. Also

shown is the polarisation vector e which lies in the plane of e, and e2

An alternative description of a general state of polarisation of an electro-

magnetic wave may be given in terms of two circularly polarised waves. Let us

first consider the particular case in which the direction of propagation is along

the Z axis. In place of the vector potential [4.5], we consider the potentials

Al(«; r, 0 and AR(w; r, t) defined by

Ax = AR = v 2A0(m) cos(kz - (Dt + <5
(J

Ay = ~AR = - v730(w) sin(&a - cot + 8J [4.97]

At = AR = 0

The corresponding electric field vectors %L and are such that

= _ JlwAM sin(fe — cat + 5W )

%y = -’fty - -
v 2coA0(w) cos(kz - cat + 8OJ ) [4.98]

%t - = 0

On facing into the oncoming wave, the vector %L is seen to be of constant

magnitude and to be rotating in an anticlockwise way in the (

X

, Y) plane at a

frequency a> (see Fig. 4.2(a)), while the vector is of the same magnitude but

rotates at a frequency w in a clockwise way (see Fig. 4.2(b)). The radiation

described by is said to be left-hand circularly polarised and that correspond-

ing to
C
£ R is right-hand circularly polarised. By forming the combination

ai % L V aR«
R
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4.2 In circularly polarised radiation the electric field vectors * L
, and ?

R
rotate in anticlockwise and

clockwise directions when facing into the oncoming wave.

where aL and aR are complex coefficients, radiation in any state of polarisation

can be produced. For example, if <zL = aR = 1, we obtain linearly polarised

radiation, with the electric field vector oriented along the X axis.

In terms of complex exponentials, AL and AR can be written as

AL - A 0(co)[e^e
i(kz- “,+M + c.c.] ^

AR = A 0 (tu)[e
R
e‘

(fe“ “,+ Sw) + c.c.]

where e
L and e

R
are two complex orthogonal unit vectors such that

aL _

V2
(x + ty); e

R =
72

(x - ty) [4.100]

and describing respectively the states of left-hand and right-hand circularly

polarised radiation. An arbitrary state of polarisation can be specified by a

complex vector n such that

n = a
L
e
L + a

R
e
R

; !a
L

l

2 + „R|2 _= 1 [4.101]

and this description is as general as the one given by [4.95]. We note that if the

direction of propagation is not along the Z axis, then we can write more

generally

•L _— (e! + ie2);

72

aR = -j= (®i
— i®2) [4.102]

where e! and e2 are the unit vectors introduced in [4.95].

We have already seen in Section 4.2 that the terms in A associated with

exp[i(£z - ait)] give rise to the absorption of photons (see [4.45]) and those with

exp[-i(fes - cut)] to the emission of photons (see [4.47]). From [4.49], [4.42],

[4.63] and [4.70] we see that, in the electric dipole approximation, we should

use the expressions e
L

rba or e
R

rba to describe the absorption of a left-hand or

a right-hand circularly polarised photon, respectively, while the expressions

e
L*

• r*a (=eL* • rab) or e
R* 4

rba (=eR* 4

ra4) must be used to describe the

emission of the corresponding circularly polarised photons. Thus, if a left-hand

circularly polarised photon is emitted in the Z direction, the appropriate
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expression is

iL* .

rab = -!=-(*- if) rahn
i

72
(.%ab iyab) [4.103]

If we denote by mfi the Z component of the angular momentum for the initial

(upper) state b, we see from [4.82] and [4.89] that the matrix element [4.103]

vanishes unless the final (lower) state a of the atom has a component (m — 1 )h of

angular momentum in the Z direction. A similar reasoning leads to the

conclusion that the emission of a right-hand circularly polarised photon

increases the component of the angular momentum of the atom along the Z axis

by h.

By conservation of angular momentum, each photon must have a component

of angular momentum parallel to the Z axis (the direction of propagation) of ±h.

Since photons travelling parallel to the Z axis cannot have a component of orbital

angular momentum in the Z direction, the angular momentum carried by the

photons in this case can only be due to their intrinsic spin. Further, for electric

dipole radiation, the orbital angular momentum of the photon must be zero,

since the wave function (the vector potential) is spherically symmetrical (we

have replaced exp(tk • r) by 1). From these remarks, and from the selection rule

A/ = ±1, we infer that the photon has spin of unit magnitude, that is

S 2 = s(s + 1 )h
2
with s = 1. The components of the spin in the direction of

propagation are Sz - mfi with m
s
= ±1. The component of the spin along the

direction of the propagation is called the helicity of a particle. In this case, only

two helicity states are possible, because the electromagnetic wave is transverse

and the case m, = 0 is excluded. From the definition of helicity it is clear that a

photon with helicity +h is always left-hand circularly polarised and one with

helicity —h is always right-hand circularly polarised, and this is independent of

any particular choice of axes.

Beth's experiment

If a beam of light, propagating parallel to the positive Z axis, is left circularly

polarised, each photon in the beam will have a positive angular momentum +h
along the Z axis. If the beam contains N photons per unit volume, the energy

density of the beam, p, will be p = Nhco, where co is the angular frequency of

the radiation, and a unit volume will possess an angular momentum L z = Nb

.

The ratio p/a> = Nfi is independent of frequency and is equal in magnitude to

the angular momentum Lz . Similarly, for a right-hand circularly polarised

beam p/w = -Lz (a plane polarised beam carries no angular momentum).

These facts are consistent with the results of a remarkable experiment carried

out in 1936 by R. A. Beth.
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4.5 Selection rules and one-electron atoms

In Beth’s experiment an anisotropic crystalline plate is prepared, which has

the property that (at a certain wavelength), it converts left-hand circularly

polarised light passing through it, to right-hand circularly polarised light, acting

as a half-wave plate. Because of this, the plate must be subjected to a couple of

magnitude rz per unit area, where

rz = 2cLz = 2Pc/oj [4 . 104]

The angle is measured by suspending the plate from a quartz fibre and

measuring the angle through which the plate rotates. The effect can be doubled

by reflecting the light which has passed through the plate, so it passes through

the plate a second time. A fixed quarter-wave plate must be inserted, so that the

polarisation of the light is in the correct sense to reinforce the couple (see

Fig. 4.3). The angle of deflection is extremely small, but the constancy of the

Fixed V* wave plate silvered on
upper surface

Suspended Vi wave plate which
reverses the sense of circularly

polarised light transmitted and
hence is acted upon by a torque

V* wave plate which transmits

plane polarised light or converts

it into circularly polarised light

according to the orientation of

the x,y axes round z

I Plane '

polarised light

4.3 Schematic diagram of Beth’s experiment.
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ratio p/w can be observed, and a result of the expected order of magnitude
obtained provided the experiment is carried out with due precautions. For
example, the whole apparatus must be in a vacuum to avoid the effect of
currents in the air, and the power of the source of illumination must be known
accurately.

Parity of the photon

Provided tiny effects due to the weak nuclear interactions are neglected, a

system of electrons interacting with the electromagnetic field conserves parity

[10]. From the behaviour of the vector potential A under reflections, it can be
inferred that the photon carries negative parity, which is consistent with the

selection rule [4.87] showing that an electric dipole transition causes a change in

parity of the atom.

Magnetic dipole and electric quadrupole transitions

When the electric dipole matrix elements vanish, the transition may still occur
through higher order terms in the expansion [4.55]. The next order of ap-

proximation retains the term i(k • r). If we take the direction of propagation k
to be along the Z axis, and the polarisation vector £ to be along the X axis the

part Mba of the matrix element Mha arising from this term is (see [4.33])

Mba = — [4.105]

With a little manipulation, Mba can be written as the sum of two terms (Problem

4.8), namely

Mba =
~Yf~ <<A»ILy \tf/a)

-
[4.106]

where Ly is the y component of the orbital angular momentum operator L.
Both terms in [4.106] are of the same order of magnitude. The first is

proportional to the matrix element of the component of the orbital magnetic

moment of the atom in the y direction, My
= -eLy/2m and the second is

proportional to the electric quadrupole moment of the atom. Both terms are

smaller than the electric dipole contribution toMia (when this does not vanish)

by a factor of the order of the fine structure constant a.

To obtain the complete expression for magnetic dipole radiation, the magnetic
moment due to the electron spin must be added to the orbital magnetic moment.

[10] Very small parity-violating terms in the electromagnetic interaction, involving the so-called

‘neutral currents’ have been discovered in 1978 in the deep inelastic scattering of polarised
electrons by protons and deuterons. These neutral currents, which are a consequence of a

unified description of electromagnetic and weak interactions imply very small parity-

violating effects in atomic transitions.
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4.5 Selection rules and one-electron atoms

The selection rules are found to be

A/ = 0

A

j

= 0, ± 1 [4-107]

Am, = 0, ± 1

where j and m, denote the quantum numbers associated respectively with the

operators J
2 and Jz , J = L + S being the total angular momentum of the

electron. An example of magnetic dipole transition is that occurring between

hyperfine levels of the ground state of atomic hydrogen at the wavelength of

21 cm, which we shall study in Chapter 5.

It is easy to see that the matrix elements of the products (xy), (yet) and (xz)

vanish unless a and b are states of the same parity. The selection rules for electric

quadrupole radiation are then given by

Al = 0, ± 2 (/ = 0 <-» /' = 0 forbidden)

Am = 0, ± 1, ± 2 [4.108]

We note that for A / = ±2 the contribution to Mba is coming only from the

electric quadrupole part, so that we have a pure electric quadrupole transition.

The spectrum of one-electron atoms

In Chapter 3 it was shown that in the non-relativistic approximation, and

neglecting spin-orbit coupling, the bound states of a one-electron atom were

degenerate in the quantum numbers / and m and the energy of a level depended

only on the principal quantum number n. That is (see [3.29] and [3.31])

En

1 / Ze2
~

2n
2

\477eo,

21 /m
2n

2 \m

h2

in a.u. [4.109]

where \x is the reduced mass, given in terms of the mass of the nucleus M and

the mass of the electron m by fi = mM/{m + M) (see [3.31]). Since there is no

selection rule limiting n, the hydrogenic spectrum contains all frequencies given

by the expression [3.34] which we recall here, namely

= Z2R(M)
.’2

[4.1 10]

where n = 2, 3, 4, . . . , n' = 1, 2, 3 . . . with n > n' and R(M) is given by

[1.102], The gross structure of the spectra of one-electron atoms, described in

Chapter 1 within the framework of the Bohr model, agrees with this formula.

The foregoing discussion in this chapter gives a consistent derivation of the

result [4.110]. However, it is important to note that the selection rules [4.89]
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100 oooi

4.4 Term, or Grotrian diagram for atomic hydrogen. The ordinate shows the energy above the Is

ground state in cm
' 1

(8065 cm' 1 = 1 eV) on the left and in eV on the right and the energy levels are

shown plotted against the orbital angular momentum. Transitions obeying the Al = ±1 selection

rule are indicated by solid lines. The numbers against the lines indicate the wavelength in angstrom

units (1 A = 10
8
cm). For clarity, only transitions between the lower-lying levels are shown, and

the wavelengths are shown only for a selection of lines. The splitting due to fine structure is too small

to be shown on a diagram of this scale.

and [4.91] limit the values of the quantum numbers m and l of the level

concerned. This is illustrated in Fig. 4.4 for the case of the orbital angular

momentum quantum number l.

4.6 LINE INTENSITIES AND THE LIFETIMES OF EXCITED STATES

As we have seen in Section 4.3, the intensity of a transition between a pair of

states a and b is proportional, in the dipole approximation, to the quantity |rfta |

2
.

Thus the relative intensities of a series of transitions from a given initial state a

to various final states k are determined by the quantities |r*a |

2
.
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4.6 Line intensities and lifetimes of excited ttatet

Oscillator strengths and the Thomas-Reiche-Kuhn sum rule

In discussions of intensities it is customary to introduce a related dimensionless

quantity fka , called the oscillator strength. It is defined as

/L = -^|rJ2
[4.111]

with wka = (Ek
- Ea)/h. We note that this definition implies that fka > 0 for

absorption, where Ek > Ea . On the other hand we have fka < 0 for emission

processes.

The oscillator strengths [4.111] obey the sum rule, due to Thomas, Reiche

and Kuhn

? fka = 1 [4.112]

where the sum is over all levels, including the continuum. This sum rule can be

proved as follows. Let f\a be defined as

ft. =~w2

3h

2mo)ka

3>h
(a|x|£)(&|x|a) [4.113]

where we have used the simplified notation (a\x\k) = (dia \x\tjjk). From [4.59], we
have

xka = (k\x\a) = —
<k\px \a) [4.114a]

*ak = {a\x\k) = —— {a\p x\k) [4.114b]
mo)ka

and hence

fka = (a\px\k)(k\x\a) [4- 1 1 5a

J

= (a\x\k)(k\px\a) [4.115b]

= ~T i(a|pxl^K^|x|a) - (a\x\k)(k\px\a)\ [4.115c]

where the last line has been obtained by taking half the sum of the two

expressions [4.115a] and 1 4. 1 15b].
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We can now use the closure property of the hydrogenic wave functions which

form a complete set, namely £* \k)(k\ = 1 to find from [4.115c] that

'Zfka = 4? (a\pxx - Xpx\a) [4.116]

k

But since [

x

, px] = ih, we have the sum rule

2/L = ^
[4.117]

The same argument holds for fyka and /£a , which proves the sum rule [4.112].

The oscillator strengths and transition probabilities can be easily calculated

for one-electron atoms and ions, because the hydrogenic wave functions are

known exactly. The labels a and k infka include all the quantum numbers of the

initial and final states, and in particular fka depends on the magnetic quantum

numbers. It is convenient to define an average oscillator strength for the transition

nl —* n'l', which is independent of the magnetic quantum numbers and hence of

the polarisation of the radiation by

fn’l.nl
- TTTT 2 2 fril'm' ,nlm [4.118]

Zt + 1 m' = -f tn= —l

It is easy to see that the average oscillator strengths also obey the sum rule

[4. 1 12]. Some calculated values off„rM for hydrogenic atoms (or ions) are given

in Table 4.1.

The transition rates for spontaneous emission in the dipole approximation are

given in terms of oscillator strengths (see [4.71] and [4.111]) by

IT
S

ka

2of’ka

me
[4.119]

For hydrogenic atoms the oscillator strengths and transition probabilities

decrease as the principal quantum number n of the upper level increases, Ws

ka

decreasing like n
3

for large n.

Table 4.1 Average oscillator strengths for some transitions in hydrogenic atoms and ions+

Initial Final
Discrete spectrum £ Continuum

level level n = 1 n = 2 n = 3 n = 4 n=

5

spectrum

Is np 0.416 0.079 0.029 0.041 0.435

2s np — 0.435 0.103 0.111 0.351

2p ns -0.139 — 0.014 0.003 0.003 0.008

2p nd — _ 0.696 0.122 0.109 0.183

t More complete tabulations can be found in Bethe and Salpeter (1957).
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4.7 Line shapes and widths

Atomic lifetimes

If N(t) atoms are in an excited state b at a particular time t, the rate of change of

N(t) is

M0 = -N(r)2lF|i [4.120]
k

where W\ h is the transition rate for spontaneous emission and the sum is over all

states k, of lower energy, to which decay is allowed by the selection rules. On
integration, N(t) can be expressed in terms of N(t = 0) by

N(t) = N(t = 0)e“'
/T

[4.121]

where r is called the lifetime or half-life of the level b, and

W%b [4.122]
k

In the absence of external fields, the lifetime of an atomic level cannot depend

on the orientation of the atom, and hence cannot depend on the magnetic

quantum number m of the level b. This property can also be verified by

evaluating [4. 122] explicitly in the dipole approximation, and remembering that

the sum over k includes all the magnetic substates of the final levels k to which

the atom can decay. The lifetimes r of some of the lower levels of atomic

hydrogen are shown in Table 4.2. The corresponding lifetimes of hydrogenic

ions, with nuclear charge Z, are shorter and are given by

t(Z) = Z“ 4
t(Z = 1) [4.123]

Table 4.2 Lifetime of some levels of atomic hydrogen (in 10
8

s)

Level 2p 3s 3p 3d 4s 4p 4d 41'

Lifetime 0.16 16 0.54 1.56 23 1.24 3.65 7.3

In general the lifetime of a highly excited state is longer than that of a

low-lying level. It is also interesting to note that the 2s level has an infinite

lifetime in the dipole approximation. In fact the 2s level has a lifetime of 1/7 s,

the dominant decay process, 2s —» Is, occurring by the emission of two photons

(i.e. through higher order in the interaction betweeri the atom and the

electromagnetic field). The lifetime of 1/7 s is very long on the atomic

time-scale, and the 2s level is said to be metastable.

4.7 LINE SHAPES AND WIDTHS

In the approximation used in Section 4.2 to calculate transition rates, we found

that the angular frequency of the radiation emitted or absorbed between two

atomic levels of energies Ea and Eb (with Eb > Ea) was exactly

i

o

ba = (E b - Ea)/h, so that the spectral line was infinitely sharp. This cannot

be completely accurate for the following reason. All atomic levels, except the
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ground state, decay with a finite lifetime r. By the uncertainty principle, the

energy of such a level cannot be precisely determined, but must be uncertain by

an amount of order h/r. Therefore there is a finite probability that photons will

be emitted with energies in an interval about (Eb - Ea ) of width (h/ra +
h/rb ), where ra and r h are the lifetimes of the states a and b, respectively.

Let us consider for example the spontaneous decay of an excited state b of the

atom to the state a which we choose to be the ground state. We return to the

coupled equations [4.25] - with the perturbation H' given by [4.22] - and

retain only those terms which contain the two atomic states a and b. The initial

state of the system is characterised by an amplitude cb{t), while the final state

consists of a photon of angular frequency to, emitted in a direction (6, 4>) with a

polarisation eA , in addition to the ground state atom. The corresponding

amplitude depends on to, ( 8, 4>) and A, but we will write it in shortened form as

ca(u>, t). When summing over the possible final states, we must make use of the

density of states factor [4.52]. Using [4.22], the expression [4.13] of A(r, t) and

remembering that M ba is given by [4.33], with e replaced by the

equation [4.25] for c b (t) can be written in explicit form as

« V
Cb(t) =

* (2rr)
3
c
3A dto or dnA 0(co)MUo>)e

i(m°~ M)t+i 5" ca(w, t)

[4.124]

where we have only retained the part of A(<w) that corresponds to the emission of

a photon. Since a single photon is emitted A0(to) is found from [4.47] with

N(a>) = 0, namely

v
1/2

A0((o) -
h

2Vs 0w
[4.125]

The equation for the time derivative of the amplitude ca(w, t) is again given by

[4.25], with the same value of A0(to). We find that

ca(co, 0 = A 0(co)Mab (<o)e‘
(o>- o>b" >t

~ ,s“ c h (t)m
[4.126]

Since there is only a single amplitude ch(t), there is no sum over states on the

right-hand side of [4.126],

In our previous treatment we solved the coupled equations by making the

approximation cb(t) = 1 on the right-hand side of [4.126], but we now allow for

the decay of the upper level by writing

c b (t)
= 1

ch(t)
= e-'

/2T

t < 0

t - 0
[4.127]

This is still an approximation, but it has been shown that the departure from

exponential decay is exceedingly small. We can now integrate [4.126] over t to
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"*T"

Line shapes and widths

find ca(co, t),

ca((0, t) =
m
A0(oj)Mah(oj)e

-iS*

= A0((o)M b̂(co)cm
-t'Sa

^i(a»— <oba)t'
£
— f/2 t^

/

gi(a)— wba)^— 1/2 r
j

[4.128]
t(G> “ Wfta)

_ l/2r

At times t > r the probability that a photon has been emitted is given by

|ca(co, t)

\

2
,
which is proportional to

2
1

[4.129]
1

tO - (oba)
- l/2r (<o - (oba)

2 + 1/4r
2

The intensity of the emitted radiation therefore reaches a maximum when
w = <oba = (Eb - Ea)/h, and decreases to one-half of the maximum value at

= uba ± 1/(2t)

= (£* - Ea ± T/2)/h

where

[4.130]

h
r = -

T
[4.131]

is the width of the line. The intensity distribution given by [4.129] is said to be

Lorentzian in shape (see Fig. 4.5). We note that this intensity distribution may

/(») =
l'
2/Ah 2

Co - u>bay + r 2/A

a

2

Note that f(co ia ) = 1 and /(to) = 1/2 when oi = u> h<1 ± l/(2r) = wba ± T/(2h).
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also be written as

r2
/4

4.7

S(w) = S 0
(hco + Ea

- Eb)
2 + r2/4’

Sq = const [4.132]

To calculate the lifetime r, we insert the expression [4.128] for ca((o, t) into

[4.124]. Using [4.125] for A0(co) we find that

cb(0 = -
h

47re0 J 4n2m2
c
3 2̂ d(oo)\M ba(M)\

2

t/lT __ gi(u>ba— lo)t

i(o) - ioba )
- 1/2T

[4.133]

The function in square brackets is sharply peaked about io = coba . The term

co\M ba (o>)|
2

is slowly varying, and so can be evaluated at w = wba . The range of

integration can then be taken from wha - r) to ojha + 17, with 17
—> +00. Using

[11] .

— dx = —in [4.134a]
lim

x — a + i/

3

— dx = -2 nie~' {0,
-mt

j-x x - a + i)

3

with x = (o, a = a>ba and (i = 1/2 t, we find that

[4.134b]

cb(t)
= - dfl 2 uJMUwiJ

\

2
e~

t/2T

A= 1[
47re0 ) 4rrm

2
c

This is consistent with [4.127], from which we see that

1

[4.135]

c»(0
2r

r ^ 0 [4.136]

The transition rate is given by Ws
ab = r

1 and we have therefore

,2

ab
r 27rm

z
c
3

\ 4neo
dfl 2 uJMb\(w ha ) I

2
[4.137]

A = 1

which agrees with our previous result [4.54].

The intensity distribution of the spectral lines corresponding to absorption

and stimulated emission can be shown, in the same way, to have the Lorentzian

shape [4.132], By using the identity

lim
T/2

:0 (fio> + Ea - Eb )

2 ^ r /4
778(hco + Ea -Eb ) [4.138]

it may also be verified that the total absorption cross-section aba (integrated over

all angular frequencies w) has the value previously found in [4.39].

[11] The second integral can be evaluated by using contour integration.

186



4.7 Line shapes and widths

As the uncertainty principle suggests, a more complete treatment demon-

strates that the width of a line from one excited level b to another excited level a

is given by

r =
h h

Ta n
[4.139]

where ra and rb are the half-lives of each of the levels, taking into account all

possible ways in which the levels can decay.

When the final state a is the ground state (in which case ra = <*) the width

h/

T

b is called the natural width of the level b. From Table 4.2 we see that the

half-life of the 2p level of atomic hydrogen is 1.6 x 10
9

s, giving a width of

r ~ 4.11 x 10~ 7 eV — 3.32 x 10~ 3 cm-1
. In general the natural widths of

spectral lines are very small and are usually masked by other effects, which

contribute to the broadening of spectral lines. Among the most important of

these are the pressure broadening effect and the Doppler effect.

Pressure broadening

The atoms emitting or absorbing radiation in a gas undergo collisions. In each

collision there is a certain probability that an atom initially in an excited state b

will make a radiationless transition to a lower state, so that the lifetime of the

excited state b will be decreased. If the number of collisions per second

removing atoms from the state b is Wc , the total number of transitions out of the

state b, per second, is Wc + l/r A , where r b is the natural lifetime of the state b.

The total observed breadth of the line will then be

F = h [4.140]

The shape of the line remains Lorentzian. The number of collisions per second

depends on the pressure of the gas, and this effect is therefore called pressure

broadening. Thus, in order to observe experimentally the natural line width it is

essential that the pressure in the spectral source should be low. By changing the

pressure and observing the corresponding change in line width, information

about the collisions occurring in a gas can be obtained.

Doppler broadening

The wavelength of the light emitted by a moving atom is shifted by the Doppler

effect. If the gas atoms are moving at non-relativistic speeds, and the radiation is

viewed in the X direction, the wavelength A of light emitted by an atom with a

component of velocity vx in the x direction is

A = A0(l±^) [4.141]
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Interaction of one-electron atoms with electromagnetic ra< 4.8

where A0 = cj v0 is the natural wavelength of the line and v0 the natural
frequency. The plus sign in [4.141] corresponds to an atom receding from
the observer and the minus sign to an atom approaching the observer. The
frequency v = c/X of the light emitted by the moving atom is thus related to the
natural frequency v0 by

1 + yj
[4.142]

c

The Maxwellian velocity distribution of the gas atoms is

dN(vx ) = N0 exp(-Mv
2J2kT) dvx [4.143]

where M is the atomic mass, k is Boltzmann’s constant, T is the absolute
temperature and N0 is a constant.

r ;
/4h

1

(to - a,baf + r2
/4ft

2

The intensity .9 (v) of light emitted in the frequency interval (v, v + dp), with
v close to v0 , is proportional to the number of atoms emitting light of frequency
between v and v + dv, i.e. having a velocity component vx between vx and
vx + dz>x . Using [4.142] and [4.143], we then have

I

d'O) = d’Oo) exp
Me2

/

v

- y0\
2

2hT\ v0 )

[4.144]
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4.8 The photoelectric effect

The width Ay of the curve $(v) at half-maximum is given by 2| v0 - V] |,
where

v\ is the frequency at which the exponential is equal to 1/2. Thus

Ay
2y0

c

2kT log 2

M
1/2

[4.145]

This quantity is usually much greater than the natural width of the line. It is

clear that since Ay is proportional to T 1 ' 2 one should work at low temperatures

to decrease the importance of Doppler broadening. We also note from [4. 145]

that the Doppler broadening is proportional to the frequency y0 and inversely

proportional to the square root of the atomic mass M.
Although pressure broadening does not alter the line shape, which remains

Lorentzian, the Gaussian shape produced by the Doppler effect is quite

different. However, the Gaussian decrease exhibited by [4.144] is so rapid that

for |v - v0
|

greater than a few times the width Av, the observed intensity is

due to the ‘tail’ of the Lorentzian intensity distribution, as shown in Fig. 4.6.

4.8 THE PHOTOELECTRIC EFFECT

If electromagnetic radiation of sufficiently high frequency is absorbed by an

atomic system A the final state may lie in the continuum and one or several

electrons will be ejected from A. This is known as photoionisation and is the

process responsible for the photoelectric effect (see Section 1.4).

In this section we shall obtain the cross-section for a particular (single)

photoionisation process, in which the electron is ejected from a hydrogenic atom

(ion). We assume that this atom (ion) is initially in the ground state (Is),

described by the wave fui tion ipjr) = yV ls(r) and having the energy £ ls . We
denote by E = hv = fuo tuc energy of the absorbed photon. Let kf be the wave

vector of the electron in the final state and pf = /zkr its momentum. Assuming

that the ejected electron is non-relativistic, its kinetic energy in the final state is

given by h
2
k
2/2m, and energy conservation yields

h 2
kl

hco + E 18 =^ [4.146]

a relation which is valid in the non-relativistic regime, for which

hco(or h
2
kf/2m) < me2

[4.147]

The final state ipb{kf, r) represents a continuum state corresponding to an

electron with a wave vector kf and a (positive) energy h
2
k
2/2m moving in the

field of a nucleus of charge Ze (which we assume to be infinitely heavy). Thus

tA(,(kf, r) is a (positive energy) Coulomb wave function satisfying the equation

h
2

2m
V 2

Ze2

(4ire0)r

h2
kj\

2m I
Mkf, r) = 0 [4.148]
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Interaction of one-electron atoms with electromagnetic 4.8

For sufficiently high energies of ejection (i.e. when h2k}/2m > IF i,|) the

interaction with the nucleus can be neglected and t/>A (kf, r) can be represented

by a plane wave:

r) = V
_

1/2
e‘

kf ' r
[4.149]

where we have normalised the system in a box of large volume V.

The photoelectric cross-section can be obtained from [4.39] by summing over

the continuous states of the ejected electron, in a manner analogous to the one

described in Section 2.8. Thus we find that

o- = p b [
\Mba{o>)\

2
dfl [4.150]

mi
a J

where fl = (6, <f>) denotes the angular coordinates of the ejected electron (see

Fig. 4.7) and p b - (2tt)~
3 Vm kfh

1

is the density of final states (see Problem

4.11). The differential cross-section for an electron to be ejected within the solid

angle dfl in the direction (6 , 4>) is therefore

dcr .. 4w2ha f kr\
. ,

,, , ,— = (27rr
3 -fv\w

dfl m \ co
[4.151]

From [4.33] and using [4.149] the matrix element Mba is given by

Mba = U~ 1/2

J
e^‘

k, r
e
,k re • V^ ls (r) dr [4.152]

Upon integration by parts, we find that

V1/2Mha = ' (k - kf)

Since k • i = 0, we have

*i(k-kf)-r
<Ais(r) dr

e (k — kf)
= -kf cos y

[4.153]

[4.154]

where y is the angle between the direction of ejection and the direction of

polarisation (see Fig. 4.7). The integral appearing in [4.153] is proportional to

the Fourier transform of the ground state wave function </'i s (r), namely

e
’K

Vis(r) dr — 87r

j

j
Z 3

\
1/2 Z/

a

0

\ naif \(Z/

a

0)
2 + K2

]

2
[4.155]

where we have introduced the vector

K = k - kf [4.156]

From [4.151] and [4.153] - [4.156], the differential cross-section is seen to be

given by

do- ^ / h \ / k
3
\ Z 5

flo cos
2
y

dfl
= 32“ im/ 1^7/ [Z

2 + K2a2
oT

[4.157]
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4.8

'"3T
— "

The photoelectric effect

Without loss of generality we can take the direction of propagation, £, of the

radiation to be along the Z axis and the direction of the polarisation vector i

to be the X direction. Then, as k f is in the direction fi = (0, <f>), we have (see

Fig. 4.7)

cos y = sin 9 cos <j> [4 . 158]

and

K 2 = k
2 + kf

— 2k k{ cos 9 [4 . 159]

At incident photon energies well in excess of the ionisation threshold

(=13.6 eV for atomic hydrogen), i.e. when hco > |Zi Js ), we have from [4 . 146]

so that

Aw
h2

k\

\

2m

k hkf V(

k{ 2mc 2c

[4 . 160]

[4 . 161 ]

where v{ is the velocity of the ejected electron. In the non-relativistic regime, for

which Vile < 1, we use this result to write

K2 = Jfe^l - y cos ej [4 . 162]

x

4.7 The angles employed in the discussion of the photoelectric effect. The incident radiation ii

in the Z direction, with polarisation vector in the X direction. The momentum of the ejected

electron is hV.( .
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Interaction of one-electron atoms with electromagnetic radtA 4.8

Moreover, since hw — h2k2/2m > [£"

j

s |

and Eu = —Z2
(e

2
/4rreo)/2a0i we have

2m
khl > -tt \EuWl = Z 2

h
so that

Z 2 + Kz
ao — kjao\ 1 cos 9

c

Vf

and the differential cross-section [4.157] reads

dcr

dft
= 32a .

h sin
2
6 cos

2
(J)

m / M(kfa0y j
v{

1 cos 9

[4.163]

[4.164]

[4.165]

We note that the ejected electrons have a cosine-squared distribution with

respect to the polarisation vector £ of the incident radiation. For an unpolarised

photon beam an average must be made over the polarisations of the photon, so

that we have in that case

'

dcr\

dll
/ unpol

Z 5

w(k{a0)
s

sin
2
9

,
v(

1 cos 9
c

[4.166]

We remark that both cross-sections [4.165] and [4.166] exhibit a sine-squared

distribution in the angle 9, which favours the ejection of the electrons at right

angles to the incident photon beam. The quantity (1 - vf cos 9/cY
A
also affects

the angular distribution, but since v{/c < 1 it only yields a small correction to

the sin
2

9 distribution. In fact, since

^1 cos dj = 1 + 4 — cos 9 + [4.167]

we see that if we drop terms of order (Vf/c)
2 we may write the differential

cross-section [4.166] as

dcr\

dff / unp0 i

Z 5

co(k fao)
5
sin

2
9 ^1 + 4

Vf— cos 9 [4.168]

Upon integration over the angles (9, <j>) of the ejected electron, the total

cross-section (for an unpolarised incident photon beam) is given by

12877 ih\ Z 5

3 \m) w(k {a0 )
5

[4.169]

Using [4.160] and the fact that £ ls
= —

Z

2
(e

2
/477e0)/2a0 = — (1/2) mc 2(Za)2

,

we may also write [4.169] as

25677
€7 aZ I

E IS

'

hw

7/2

a 2
o [4.170]
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Problmt

or

(T

\6J1tt
t
8Z 5

me

hw

7/2

al [4.171]

We note from [4.171] that the photoelectric cross-section cr decreases like

(iho))~
7/

2

with increasing photon energy and increases like Z 5 with increasing

nuclear charge. This formula can be applied not only to the ionisation of

one-electron atoms and ions, but also (approximately) to the ejection of

electrons from the inner shell of atoms by X-rays, although the dipole

approximation worsens with increasing photon energy.

PROBLEMS

4.1 Calculate how many photons per second are radiated from a

monochromatic source, 1 watt in power, for the following wavelengths

(a) 10 m (radio wave) (b) 10 cm (microwave) (c) 5890 A (yellow sodium

light) (d) 1 A (soft X-ray). At a distance of 10 m from the source,

calculate the number of photons passing through unit area, normal to the

direction of propagation, per unit time and the density of photons, in

each case.

4.2 Show that the Schrodinger equation [4.17] representing a'hydrogenic

atom in an external electromagnetic field, can be transformed to the form

Ze 2

(4-77e0)r
+ e(% r)

provided the vectc potential A does not vary over the atom (the electric

dipole approximat. i) and where

'k = exp r and % = 3A

dt
’

4.3 Starting from the transformed Schrodinger equation of Problem 4.2 and

taking % = 2coA 0 sin(wt), use first-order perturbation theory to obtain

the transition rate for absorption in the electric dipole approximation

given by [4.66].

4.4 (a) Establish the result [4.6*5] starting from equation [4.67].

(b) The full transition rate for spontaneous emission of a photon from an

atom is obtained from [4.70], by integrating over all angles of

emission and summing over two independent polarisation directions

£l, Ei'.

=
2^b ( 4^) "*

j
dfl {|il ' r‘-P + ' r*" |2)

Starting from this expression obtain the result [4.71].
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Problems

4.5 Generalise the results of Section 4.4 to the case in which the level Ea is ga

times degenerate and the level Eb is gb times degenerate, and show that

the Einstein coefficients satisfy the relations

^ A
h<i) ba n

Sa^ba Sb^ab^ ^ab 2.3 ^ab
n c

4.6 Obtain the explicit forms of the coefficients s&(l, m; m'; q), either by

using a table of Clebsch-Gordan coefficients, or by using the recurrence

relations [4.93],

4.7 Show that

2 |^(Z, w; l' >
~ m )\

2

m

if /' = / 4- 1 and

^ |

d(l, m; m'; m' - m)\
2

m'

if /' = (/ - 1); find the transition rate for absorption of unpolarised

isotropic radiation by a hydrogenic atom from a level («/) to the ill' + 1)

degenerate levels («'/') and show that it is independent of the magnetic

quantum number of the initiaj sublevel.

4.8 Show that the matrix elementMba given by [4.105], can be obtained from

[4.33] and deduce [4.106],

4.9 Calculate the oscillator strength for the 2p—»• Is transition in a hydro-

genic atom, and find the half-life of the 2p level, checking the answer

against Table 4.1.

4.10 For a given initial level a, of a hydrogen atom, show that

2 aba
~ = 2v 2

r0C,

b b

where <jba is the absorption cross-section, in the electric dipole approxi-

mation, and the sum lb is over all states (including continuum states)

with Eb > Ea , and &ha is the corresponding cross-section for stimulated

emission and the sum 2* is over all states with E b < Ea . On the

right-hand side r0 is the classical electron radius, r0 = e
2
/{ArTe0mc

2
).

4.11 Show that the number of states of a free electron moving in a direction

(8 , 4>) within a solid angle dfl in a large cubical box of volume V ,
with

energy between E and E + dE is given by

Pb(E) da = (277-r
3 V mk <m/h 2

3 Z

4tt 2/ + 1

/

477 \2l + 1
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where e = h 2k
2/lm. In terms of the angular frequency 10 = E/h we

have p(<w) d« = p(E ) dE = hp(E) dw



c
y One-electron atoms: fine structure, hyperfine

structure and interaction with external

electric and magnetic fields

Our discussion of the energy levels and wave functions of one-electron atoms in

Chapter 3 was based on the simple, non-relativistic Hamiltonian

H =
f~(T~Y [5,1]
2/j. (477e0)r

where the first term represents the (non-relativistic) kinetic energy of the atom

in the centre of mass system, and the second term is the electrostatic (Coulomb)

interaction between the electron and the nucleus. Although the energy levell

obtained in Chapter 3 from the Hamiltonian [5.1] are in good qualitative

agreement with experiment, the very precise measurements carried out in

atomic physics demonstrate the existence of several effects which cannot be

derived from the Hamiltonian [5.1] and require the addition of correction

terms to [5.1]. In this chapter we shall discuss several of these corrections and

we shall also consider the problem of the interaction of one-electron atoms with

external (static) electric and magnetic fields.

We begin by analysing the relativistic corrections to [5. 1], which give rise to a

splitting of the energy lev, known as fine structure. Next, we discuss the effect

of an external magnetic fit.d (the Zeeman effect) or electric field (the Stark

effect) on the spectra of one-electron atoms. We then describe a subtle effect

called the Lamb shift, which displaces certain of the fine structure components

and is therefore responsible for additional splittings of the energy levels.

Finally, we consider various small corrections such as the hyperfine structure

splitting and the volume effect, which take into account the fact that the nucleus

is not simply a point charge, but has a finite size, and may possess an intrinsic

angular momentum (spin), a magnetic dipole moment, an electric quadrupole

moment, and so on.

5.1 FINE STRUCTURE OF HYQROGENIC ATOMS

The fine structure of the energy levels of hydrogenic atoms is due to relativistic

effects. In order to analyse these effects we therefore need for the electron a basic

wave equation which satisfies the requirements of special relativity as well as

those of quantum mechanics. This is the Dirac equation, which is discussed

briefly in Appendix 7, and which provides the correct relativistic wave equation

for electrons.
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One-electron atoms 5.1

The most rigorous way of obtaining the relativistic corrections to the

Schrodinger (Bohr) energy levels of one-electron atoms is to solve the Dirac

equation for an electron in the central field V(r) = -Ze2
/{Attest of the nucleus

which is assumed to be of infinite mass and at the origin of the coordinates. It

turns out that the Dirac equation for a central field can be separated in spherical

polar coordinates and that the resulting radial equations can be solved exactly

for the Coulomb potential V(r) = -Ze 2
/(4ire0)r [1], However, these calcula-

tions are rather lengthy and since the relativistic corrections are very small

(provided that Z is not too large), it is convenient to use perturbation theory,

keeping terms up to order v
2
/c

2
in the Dirac Hamiltonian. We shall therefore

start from the Hamiltonian [A7.65] of Appendix 7 which we rewrite as

H = H0 + H' [5.2]

where

H0 =
Ze 2

2m (4-77£o)r

is simply the Hamiltonian [5.1] with jx = m [2] and

H' = H\ + H'2 + H'i

with

H i
= -

8mi
c
3.2

2m e r dr

and

Hk
7rh

2
( Ze

2

m

2
c
2

\4-7rfo
S(r)

[5.3]

[5.4]

[5.5]

[5.6]

[5.7]

The physical interpretation of the three terms which constitute H' is

discussed in Appendix 7. We simply note here that H\ is a relativistic correction

to the kinetic energy, H'2 represents the spin-orbit interaction and H'3 is the

Darwin term.

Before we proceed to the evaluation of the energy shifts due to these three

terms by using perturbation theory, we remark that the Schrodinger theory

[1] See for example Bethe and Salpeter (1957).

[2] For the sake of simplicity we shall ignore all reduced mass effects in discussing the fine structure

calculations. It is of course straightforward to incorporate the reduced mass effect in H0 and in

the corresponding unperturbed energy levels E„ by replacing the electron mass m by its

reduced mass /a. On the other hand, the reduced mass effects arising in H' cannot be obtained

by just replacing m by n in the results of the perturbation calculation. Fortunately, these latter

reduced mass effects are very small since H' is already a correction to //<>•
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5. / Fine structure of hydrogenic atoms

discussed in Chapter 3 does not include the spin of the electron. In order to

calculate corrections involving the spin operator - such as those arising from

H'2 - we start from the ‘unperturbed’ equation

Ho^nlm
l
ms

En^nlm
l
m

s
[5.8]

where En are the Schrodinger eigenvalues [3.29] (with fx = m) and the zero

order wave functions >tinimim ,

are modified (two-component) Schrodinger wave

functions (also referred to as Pauli wave functions or ‘spin-orbitals’) given by

= 4>nlmf*)X\/2,m, [5.9]

where q denotes the space and spin coordinates collectively. The quantum

number W; which can take the values —/,—/+ 1, ..., + / is the magnetic

quantum number previously denoted by m [3], i/'„/m,(r) is a one-electron Schrodin-

ger wave function (see [3.48]) such that

= En 4>nlm (j) [5.10]

and X\/2,m are the spin eigenfunctions for spin one-half (s = 1/2) introduced in

Section 2.5, with ms
= ±1/2. We recall that xi/2 ,m, ’ s a two-component spinor

and that the normalised spinors corresponding respectively to ‘spin up’

(m
s
= +1/2) and ‘spin down’ (m

s
= -1/2) are conveniently denoted by

« =
(q)

and ^ s
(i)

C5 - 11 ]

Since Ef0 does not act on the spin variable the two-component wave functions

[5.9] are separable in space and spin variables. It is also worth noting that we
now have four quantum numbers (n, /, mh ms) to describe a one-electron atom,

the effect of the spin on the
*•

'perturbed’ solutions being to double the

degeneracy, so that each Schrddii± r energy level En is now 2n
2
degenerate.

Energy shifts

We now calculate the energy corrections due to the three terms [5.5]—[5.7],

using the Pauli wave functions as our zero-order wave functions.

p
4

7. H\ = 5 ( relativistic correction to the kinetic energy)

Since the unperturbed energy level E„ is 2n
2
degenerate, we should use the

degenerate perturbation theory discussed in Section 2.8. However, we first note

that H[ does not act on the spin variable. Moreover, it commutes with the

components of the orbital angular momentum (see Problem 2.12) so that the

[3] When no confusion is possible, we shall continue to write m instead of m, for the magnetic

quantum number associated with the operator Lz .

197



One-electron atoms

perturbation H[ is already ‘diagonal’ in l, mi and ms . The energy correction AEi
due to H\ is therefore given in first-order perturbation theory by

AEi =
{
'Kim,

=
\
Kim,

1

8mV
,.4

8m 3
c
2

'Klm,m

Kim,

2me'
(Klm\T

2
\Klm) [5.12]

where T = p
2/lm is the kinetic energy operator. From [5.3] we have

Ze 2

T = H0 +
(4ire0)r

[5.13]

and therefore

Ze 2
\

A£i =
vnim

' r°
+ (wj [

Ho

+

Ze 2

(4vS0)r

1

2mc
El + 2E„

Ze 2

-> +
nlm

i

Ze 2 \ 2

47re0

Kim)

1

r
2
/nlm,

[5.14]

\ 477£o/ \rj

where we have used [5.10]. From the results [3.30], [3.71] and [3.72] (with

H - m) we finally obtain

AE
X
= — 1 mc2(Za)2

2me 2

( Ze 2 x2

2n
2

Ze 2
\ mc 2(Za)

2 Z

4ire0 2n a^n

\47re0 / aW{l + 1/2)

1

me
(Za)

2 (Za)2

l + 1/2

2. Hz =

= ~E,

1 1 d V

(Za)
2

L • S

4 / + 1/2

(spin- orbit term )

[5.15]

72 “
2m2

c
2

r dr

We shall first rewrite this term more simply as

H'i = f(r)L • S

where we have introduced the quantity

1 1 dV
f(r)

=
2m2

c
2

r dr

[5.16]

[5.17]
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5.1 Fine structure of hydrogenic atom

In our case V(r) = -Ze1
/(4'neo)r, so that

- 1 Zg2 1^
2m2

c
2
4tte0 r

3
[5.18]

Since the operator L2
does not act on the radial variable r nor on the spin

variable, and commutes with the components of L, we see from [5.16] that L

commutes with H It follows that the perturbation H'i does not connect states

with different values of the orbital angular momentum l. For a given value of n

and / there are 2(2 1 + 1) degenerate eigenstates of H0 (the factor of 2 arising

from the two spin states), so that the calculation of the energy shift due to Hi

requires the diagonalisation of 2(21 + 1) x 2(2 1 + 1) submatrices.

This diagonalisation is greatly simplified by using for the zero-order wave

functions a representation in which L S is diagonal. It is clear that the

functions given by [5.9], which are simultaneous eigenfunctions of the

operators H0
', L2

, S 2
, L2 and Sz are not adequate because L S does not

commute with Lz or Sz . However, we shall now show that satisfactory

zero-order wave functions may be obtained by forming certain linear combina-

tions of the functions i - T° this end, we introduce the total angular

momentum of the electron

J = L + S [5.19]

and we note that

so that
J
2 = L2 + 2L • S + S 2

L S = i(J
2 - L2 - S2

)

[5.20]

[5.21]

Consider now wave functions ’"hich are eigenstates of the operators H0 ,

L2
, S

2
, J

2 and Jz , the correspond g eigenvalues being E„, /(/ +

s(s + 1)h
2

, j(j + 1)h
2 and m/i. In this particular case we have s = 1/2 and

therefore (see Section 2.5)

j = l ± 1/2, / f 0

j = 1/2, l = 0

rtij =-/,-/+ 1 ,
... + j

[5-22]

[5.23]

By using the methods of Section 2.5 and Appendix 4, we can form the func-

tions i from linear combinations of the functions t W- Since L • S

commutes with L2
, S

2
, J

2 and Jz it is apparent that the new zero-order wave

functions form a satisfactory basis set in which the operator L S (and

[4] Specifically, if we use the Dirac notation so that the ket \nlsm,ms>
corresponds to the wave

function and the ket \nhjm) to the wave function (with s = 1/2), we have

|

nlsjrnj) = 2 {Ismfn^jm,)

The Clebsch-Gordan coefficients (Ism/n^jm,) are not needed in the present calculation since we

are only interested in expectation values.

199



One-electron atoms

hence the perturbation H'2 ) is diagonal. Using [5.16] and [5.21], we see that for

1^0 the energy shift due to the term H'2 is given by

AEi =
y

p„ijmj
\ £(

r)[J
2 L2 - S2

*Pnljm)

h
2

= T {m j(j + 1) — /(/+!) — - [5.24]

where (£(/)) denotes the average value of £(r) in the state . From [5.17] and

[3.73], we have

<m)
1

2m2
c
2
KAtteq) \r

Ze 2

1 Ze 2

2

m

2
c
2
\4ire0) aon

2
l(l + l/2)(/ + 1)

Thus, for / ^ 0, we obtain from [5.24] and [5.25]

[5.25]

AEi =
mc2(Za)A

4n
3
l(l + 1/2)(Z + 1)

x

~E„
(Za)2

l for j — l + 1/2

— / — 1 for j = l
— 1/2

[/ for j = l + 1/2

" 2nl(l + 1/2)(/ +1) -/ - 1 for j = l
- 1/2

[5.26]

For 1 = 0 the spin-orbit interaction [5.16] vanishes and therefore AE2 — 0 in

that case.

3. =
rrh

2

2

m

2c2 \47re

Ze2

<5(r) (Darwin term)

This term does not act on the spin variable, is diagonal in /, m, and ms
and

applies only to the case / = 0. Calling A

£

3 the corresponding energy correction

and using the result [3.60], we have

AEi =
vh 2 Ze2

2

m

2
c
2
4irs0

nh 2 Ze 2

2

m

2
c
2

4-Treo

(<AnOo|5(r)|i/'„oo)

I
*AkOo(0)

|

2

1 2= — me
(Za)2 (Za)

2

= —E,
(Za)

2

/ = 0 [5.27]

We may now combine the effects ofH \ , H'2 and Hi to obtain the total energy

shift AE = AE] + AE2 + AE3 due to relativistic corrections. From [5.15],
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5.1 Fine structure of hydrogenk atom

[5.26] and [5.27] we have for all l

AEnj = me
(Za)

2 (Za)2

j + 1/2

(Za)2
/ n _ 3\

n
2 + 1/2 4)

(' II
1

[5.28]

where the subscripts nj indicate that the correction depends on both the

principal quantum number n and the total angular momentum quantum

number/, with/ = 1/2, 3/2, . . . n - 1/2. To each value of/ correspond two

possible values of l given by / = j ± 1/2, except for/ = n — 1/2 where one can

only have / = / — 1/2 = n — 1.

Adding the relativistic correction AEnj to the non-relativistic energies E„ , we
find that the energy levels of one-electron atoms are now given by

Enj = En 1 +
(Za)2

/ n

~nT
~

\/ + 1/2
[5.29]

so that the binding energy \Enf\ of the electron is slightly increased with respect

to the non-relativistic value \En \, the absolute value \kE n]\ of the energy shift

becoming smaller as n or / increases, and larger as Z increases. The formula

[5.29] is easily shown to agree through order (Za)2 with the result

rrexact __ .2
tLnj — me i + (-

Za
-j — 1 /2 + [(/ + 1 /2)

2 — Z2a 2
]

1 /2 '

- 1/2

- 1 [5.30]

obtained by solving the Dii equation for the potential V(r) =

-Ze 2
/(4TT£0)r [1]

Fine structure splitting

Starting from non-relativistic energy levels E„ which are 2n
2
times degenerate

(the factor of two arising from the spin) we see that in the Dirac theory this

degeneracy is partly removed. In fact, a non-relativistic energy level E„

depending only on the principal quantum number n splits into n different levels

in the Dirac theory, one for each value / = 1/2, 3/2, ... n - 1/2 of the total

angular momentum quantum number /. This splitting is called fine structure

splitting, and the n levels / = 1/2, 3/2, . . . n - 1/2 are said to form a fine

structure multiplet. We note that the dimensionless constant a — 1/137 controls

the scale of the splitting, and it is for this reason that it has been called the fine

structure constant.

The fine structure splitting of the energy levels corresponding to n = 1, 2, 3

is illustrated in Fig. 5.1. We have used in that figure the spectroscopic notation
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0.018 cm 1

3dw 0 = 5/2, 1 = 2)

3p„ 2 0 = 3/2, 1 = 1); 3dw 0 = 3/2, 1 = 2)

3s 1;2 0= 1/2, 1=0); 3p„ 2 0= 1/2,1= 1)

2pM 0 = 3/2, 1 = 1)

2s„2 0 = 1/2, 1 = 0); 2p„ 0 = 1/2, 1 = 1)

"7
1.46 cm 1

*- Is
,,2 0 = 1 /2,

1

= 0)

(a) (b)

5.1 Fine structure of the hydrogen atom. The non-relativistic levels are shown on the left in column
(a) and the split levels on the right in column (b), for n = 1,2 and 3. For clarity, the scale in each

diagram is different.

nlj (with the usual association of the letters s, p, d, ... with the values

l = 0, 1 , 2, . . . and an additional subscript for the value of;) to distinguish

the various spectral terms corresponding to the Dirac theory [5].

It is important to emphasise that in Dirac’s theory two states having the same

value of the quantum number n and; but with values of / such that l = j ± 1/2

have the same energy. The parity of the solutions is still given by (- )'. Thus to

each value of ;' correspond two series of (2; + 1) solutions of opposite parity,

except for j — n —
1 /2 where there is only one series of solutions of parity

(—
)"_1

. It is also worth remarking that although the three separate contributions

A£i, AE2 and AE3 depend on / (see [5.15], [5.26] and [5.27]), the total energy

shift AZj,y (given by [5.28]) does not! This is illustrated in Fig. 5.2, where we
show the splitting of the n = 2 levels of atomic hydrogen due to each of the

three terms H[ , H'2 and , as well as the resulting degeneracy of the 2si/2 and

2p 1/2 levels. We shall see in Section 5.4 that this degeneracy of the levels with

l = j ± 1/2 is actually removed by small quantum electrodynamics effects,

[5] A similar notation with capital letters, such as lS 1/2 , 2S 1/2 ,

2

Pi/2 , 2P3/2 , etc., is also frequently

used. We shall reserve capital letters for atomic systems with more than one electron.
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n = 2-
0.21 cmi win

Pl/2 J P*2“^ ^

—

1.19 cm-1

, L

p J;
0.12 cm“\ 0.73 cm

0.09 cm

P^P~
Pi . ; P- Pill

0.24 cm-'

0.46 cm
& |12 Fill

AE
x

\E2 A£, A£ = AE, + A£ 2 + AE,

5.2 The contributions AE\, AE2 , A

£

3 to the splitting of the n = 2 level of hydrogen.

known as radiative corrections, which are responsible for additional energy

shifts called Lamb shifts.

Another interesting point is that the three relativistic energy shifts AE
} , AE2

and AE3 we have obtained above have the same order of magnitude, and must
therefore be treated together. This is a special feature of hydrogenic atoms. For
many-electron atoms (and in particular for alkali atoms) we shall see in

Chapter 7 that it is the spin-orbit effect (due here to the term H'2) which is

mainly responsible for the fine structure splitting.

According to [5.28], for any Z and n f 1, the energy difference between the

two extreme components of a fine structure multiplet (corresponding respec-

tively to the values /i = n - 1/2 and j2 = 1/2) is given by

SEUi = » " 1/2, h = 1/2) = \En \(Za?

a 2Z\n -
1)

2r?
vu., n f 1 [5.31]

We may also use [5.28] to obtain for any Z, n f 1 and If 0 the energy

separation between two levels corresponding respectively to j1
= l + 1/2 and

j2 ~ l
~ 1/2. The result is

SEUi = / + 1/2, h = l- 1/2) = (Za)
2

til(l + 1)

a2Z4

2n
3
l(l + 1)

3 'U ' [5.32]

For example, in the case of atomic hydrogen the splitting of the levels / =3/2
and j = 1/2 for n = 2 and n = 3 is, respectively, 0.365 cm-1

(4.52 x 10~ 5 eV)

and 0.108 cm' 1

(1.34 x 10~ 5
eV), while the splitting of the levels/ = 5/2 and

/ = 3/2 for n = 3 is 0.036 cm-1
(4.48 x 10

-6 eV) as shown in Fig. 5.1.

Fine structure of spectral lines

The set of spectral lines due to the transitions nlj —> n'l’j' between the fine

structure components of the levels nl and n'l' is known as a multiplet of lines.



One-electron atoms S.l

Since the electric dipole operator D = — er does not depend on the spin, the

selection rule derived in Chapter 4 for the quantum number l (in the dipole

approximation) remains

M=±\ [5.33]

from which it follows that the selection rule with respect to the quantum

number j is

Aj = 0, ± 1 [5.34]

Using [5.33] and [5.34], it is a simple matter to establish the character of the

fine structure splitting of the hydrogenic atom spectral lines. For example, we

see from Fig. 5.3 that the multiplet np-n's has two components. Thus each line

of the Lyman series (lower state n = 1) is split by the fine structure into a pair of

lines called a doublet, corresponding to the transitions

MPl/2-lSi/2, «p3/2-lSi/2

This is illustrated in Fig. 5.4 for the Lyman a line (upper state n = 2).

Referring to Fig. 5.3, we see that the multiplet np-n's has two components,

while the multiplet nd-n'p has three components. Thus, in the case of the

Balmer series (lower state n = 2) the following seven transitions are allowed:

«Pl/2-2Si/2, «P3/2~2Si/2

nSi/2-2pi/2, WSi/2-2p3/2

nd3/

2

-2p 1/2 ,
«d3/2-2p3/2 ,

nd 5 / 2
-2p3/2

1

(a) (b)

5.3 Allowed transitions in (a) the multiplet np -n's and (b) nd-n'p.



5. / Fine structure of hydrogenic atom

5.4 Allowed transitions between the n = / and n = 1 levels of atomic hydrogen giving rise to the

Lyman alpha doublet (L„).

However, since the levels wsi /2 and «pi /2 coincide, as well as the levels np3/2 snd

«d3/2 , each Balmer line only contains five distinct components. This is

illustrated in Fig. 5.5 for the case of the fine structure of the H„ line, i.e. the red

line of the Balmer series at 6563 A, corresponding to the transition between the

upper state n = 3 and the lower state n = 2.

Because the energy differences [5.31] or [5.32] rapidly decrease with increas-

ing n, the fine structure splitting of a spectral line corresponding to a transition

between two levels of different n is mainly due to t' ' fine structure of the lower

level, with additional (finer) fine structure arising fi i the smaller splitting of

the upper level. For example, each line of the Balmer series essentially consists

of a doublet, or more precisely of two groups of closely spaced lines. The distance

between these two groups is approximately given by the fine structure splitting

of the lower (n = 2) level (i.e. about 0.365 cm-1
) and this distance is constant

for all the lines of the series. Within each of the two groups the magnitude of

the (small) residual splitting due to the fine structure of the upper level rapidly

falls off as n increases, i.e. as one goes to higher lines of the series. Similarly,

each line of the Paschen series (lower state n = 3) consists of three groups of

closely spaced lines, etc. Finally, we remark that for hydrogenic ions the fine

structure splitting is more important than for hydrogen since the energy shift

AEnj given by [5.28] is proportional to Z 4
.

Intensities of fine structure lines

Since the radial integrals in [4.85] are the same for both the transitions

np3/2
_n '

Sl/2 and np 1/2-n's 1/2 , it is easy to obtain from the angular parts of those

integrals (that isfrom angular momentum considerations) the ratio of the two

transition probabilities, which is found to be equal to 2 (Problem 5.1). More

generally, the ratios of the transition probabilities for the most important special
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5.5

(b)

3 and n = 2 levels
(a) Transitions contributing to the Balmer alpha (H„) line between the n

(b) The relative intensities of the lines (a), (b)-(g). Note that (b) and (g) have the same upper

level so that the wave number difference between the lines is determined by the Zp 1/2 , Zp3/2

energy difference and is 0.36 cm' 1

. In the same way, the wave number difference between lines

'a) and (e) is also 0.36 cm' 1
. We note that the lines (d) and (e) should coincide according to

Dirac theory, as well as the lines (f) and (g).



5.2

'i- 1,1 LI? lJ

Tht Zuman tffict

cases are (Bethe and Salpeter, 1957)

for sp transitions: Si/ 2-p3/2
:s 1 /2-Pi /2 = 2:1

pd transitions: P3/2
~^5/2 -Pi/2-<i}/2 -Pi/2-^i/2 ~ 9:1:5

df transitions: d5 / 2
-f7/2:d5/2-f5/2:d3/2-f5/2

= 20:1:14

[5.35]

Under most circumstances the initial states are excited in proportion to their

statistical weights, that is the (2j + 1) degenerate levels corresponding to an

initial state with a given value of j (but differing in m, = -j, -j + l, .. . +j)

are equally populated. In this case the ratios of line intensities are the same as

those of the corresponding transition probabilities. The relative intensities of

the fine structure components of the Ha line are shown in Fig. 5.5.

Comparison with experiment

The fine structure splitting of the spectral lines of atomic hydrogen and of

hydrogenic ions (in particular He ) has been the subject of many spectroscopic

investigations. The experimental results are in good semi-quantitative agreement

with the formula [5.28] obtained from the Dirac theory. Nevertheless, and in

spite of the fact that precise optical measurements of fine structure are very

difficult to perform, small deviations from the theoretical predictions of [5.28]

were observed as early as 1934. In particular, detailed experimental studies of

the Ha line of atomic hydrogen indicated that the energy separation of the 2s| /2

and 2pi /2 levels is not exactly zero, as predicted from the Dirac theory (see

[5.28] or [5.30]) but is about 10 per cent of the fine 'ucture splitting of the

n = 2 levels. However, the Doppler broadening of the spectral lines prevented

precise results being obtained from optical spectroscopy, and the situation

remained ambiguous until the first measurements of Lamb and Retherford were

published in 1947. Using new methods of microwave spectroscopy, Lamb and

Retherford demonstrated in a decisive way the existence of an energy difference

between the two levels 2si/2 and 2pi/2 - This ‘Lamb shift , to which we have

already alluded in the discussion following [5.30], will be considered in

Section 5.4 after we have familiarised ourselves with the behaviour of hyd-

rogenic atoms in external magnetic and electric fields.

5.2. THE ZEEMAN EFFECT

In 1896, P. Zeeman observed that the spectral lines of atoms were split in the

presence of an external magnetic field. In order to explain this effect, we shall

discuss in this section the interaction of hydrogenic atoms with constant

magnetic fields, which can be taken to be uniform over atomic dimensions. The

vector potential A can then be written as

A = i(» x r) [5.36]
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where 96 is the constant magnetic field, which satisfies the relation 9 V x A.

If 96 is directed along the Z axis, the components of A are

f-y9L/2, +x35z/2, 0). .
. .

The non-relativistic Schrodinger equation for a hydrogemc atom in the

presence of a constant magnetic field is given by (see Appendix 6 and

Section 4.1)

V 2

2m

Ze2

(4m£0)r

ihe e ,2— A • V + —- A2

m 2m
iKr) = E i/i(r) [5.37]

where reduced mass effects have been neglected, A is given by [5.36] and we

have used the fact that V • A = 0.

The linear term in A becomes, in terms of 9

the _
A • V =

m

ihe

2m

ihe

2m

(98 x r) • V

96 • (r x V)

=— 96 L
2m

[5.38]

where

L = r x p = -ih(r x V) [5.39]

is the orbital angular momentum of the electron. The quadratic term in A

appearing in [5.37] can be reduced as follows:

e
2 e

2
,— A2 =— (96 x r)
2

2m 8m

8m
[35

2
r
2 - (96 • r)

2
]

[5.40]

The relative magnitude of the two terms [5.38] and [5.40] can now be

estimated. Assuming that tne dimensions ot the atomic system are of the order

of an, the Bohr radius of hydrogen, the quadratic term is of the order

e
2
ao3&

2/8m, while if we are dealing with states of low orbital angular momentum

(say about h) the linear term is approximately given by eh9Ji/2m. The ratio oft e

quadratic to the linear term is then

ea^Si

~4T
'3510' [5.41]

where a is expressed in Tesla (T). In the laboratory, the fields encountered do

not exceed 10 T, so that for most purposes the quadratic term is negligible.
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5.2 The Zeeman effect

The linear term [5.38] corresponds to the interaction energy of a 'magnetic

field 98 with a magnetic dipole moment M, if M is defined as the operator

M = -^-L = -MbL/A
2m

[5.42]

where

eh

Mb =
"r2m

[5.43]

is called the Bohr magneton and has the value 9.27408 x 10

m2
A. The interaction energy [5.38] then takes the form

24
joule/tesla or

H[ = -M 98 [5.44]

It is useful to express HI in various units. For example

H{ = 2.13 x 10“ 6
98 • L a.u.

= 0.4669 98 • L/h cm^ 1
[5.45]

where in both cases 91 is to be given in Tesla.

Until this point we have not taken into account the intrinsic magnetic

moment of the electron, revealed by experiments of the Stern-Gerlach type (see

Chapter 1). This intrinsic magnetic moment, due to the electron spin, is given

by
1

/
[5.46]

or

M-s
= -£

sMbS/7i [5.47]

where S is the spin operator of the electron and gs its spin gyromagnetic ratio.

Dirac’s relativistic theory predicts for gs the value gs
= 2 (see Appendix 7)

which is in very good agreement with experiment [6]. The spin magnetic

moment Ms
gives rise to an additional interaction energy

H'2 = -M.
s

' 98 = ‘ S/h [5.48]

The complete Schrodinger equation for a one-electron atom in a constant

magnetic field, including the spin-orbit interaction, but neglecting the reduced

mass effect, the relativistic kinetic energy correction, the Darwin term and the

quadratic (A2
) term, is (with gs

= 2)

V2 - + £(r)L • S +— (L + 2S) • S <//« = EiKr) [5.49]

2m (47re0> ' h \

[6] The corrections to the Dirac result g,
= 2 come from quantum electrodynamics, which yields a

value g,
= 2(1 + a/2ir + • • •) in excellent agreement with the experimental result

gs = 2 x 1.001 159 657.
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where £(r) is given by [5.18] and t//(r) is now a ‘spin-orbital’ with two

components.

The nature of the solution depends on whether the magnetic interaction is

greater or less than the spin—orbit interaction. We shall first discuss the former

case (strong magnetic fields) and then analyse the so-called anomalous Zeeman

effect’ which corresponds to weak fields.

Strong fields

The fine structure splitting of the n = 2 level of hydrogenic atoms is

(0.365 Z4
) cm

-1
and decreases for larger n like w

-3
. We see from [5.45] that the

magnetic interaction energy will be greater than this for field strengths 2li > Z

Tesla. By laboratory standards, these are very strong fields even for hydrogenic

atoms with small Z, but such fields can occur in certain astrophysical situations,

such as in some stars. In the strong field limit, we first solve the Schrodinger

equation without the spin—orbit coupling, which can be subsequently treated

as a perturbation. Taking 98 to be along the Z axis, we have

2m (4rreo)r
<Kr)

= E ~
GU + 2SZ) <Kr) [5.50]

The unperturbed hydrogenic spin-orbitals iKim,m, defined by [5.9] are

eigenfunctions of L, and Sz and satisfy this equation if

E = En + nMmi + 2ms), ms
= ±1/2 [5.51]

The introduction of the magnetic field does not remove the degeneracy in /, but

by providing a preferred direction in space, it does remove the degeneracy in m,

and ms ,
splitting each level with a given n into equally spaced terms. This is

illustrated in Fig. 5.6 for the case of a p level (/ = 1). However, the energy of

the states with /«/ = +1 and ms
— — 1/2 coincides with those with mi — ~

1

and m s
= + 1/2. In the strong-field limit we are considering here (no spin-orbit

coupling) the orbital and spin angular momenta are constants of the motion and

.72,-72 -l.+l

-72 -

1

No field Strong field

5.6 The splitting of a p level into five equally spaced levels by a strong magnetic field.



5.2 The Zeeman effect

the eigenfunctions, written in Dirac notation, are of the form \nlmism,), with

5=1/2 and ms
= ±1/2.

The selection rules for electric dipole transitions require Am, = 0 and

Am, = 0, ±1. Thus the spectral line corresponding to a transition n -* n' is split

into three components. The line corresponding to Am, = 0 has the original

frequency „ and is called the tt line, while the two lines with Am, = ± 1 are called

a lines and correspond to frequencies

where

t'L

n’n ± VL [5.52]

h
[5.53]

is known as the Larmorfrequency . This splitting is called the normal Zeeman effect

and the three lines are said to form a Lorentz triplet (see Fig. 5.7). Apart from the

case of very strong fields, Lorentz triplets can be observed in many-electron

systems for which the total spin is zero, as in this case the spin-orbit coupling

vanishes.

m,

n '

d

np

•+2

+ 1

0

— 1

-2

-* * 1 +1

—i k 0

k 1

(m,= +1/2)

5.7 The normal Zeeman effect. In a strong magnetic field nine transitions are possible between the

split levels consistent with Am, = 0 or ± 1 and Am, = 0. Of these, there are only three different

frequencies and the lines form a Lorentz triplet. The frequencies of transitions associated with

m, = —J are the same as those for m, = +-J.
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The polarisation of the radiation in each of the emission lines has interesting

properties. The transition rate for spontaneous emission of radiation described j

by a polarisation vector i is given by [4.70], namely

ws
ab da =

1

277/iC
3

\ 47T£o
*ba\ dfi

— C{(O ba) I®
' rba " dfl [5.54a]

where we have set

C{<o ba )

1

Irrhc^
[5.54b]

The vector i can be expressed in terms of two independent vectors ej and 62

as in [4.95], where e l5 e2 and k form a right-handed system of axes (see [4.96]).

If we take (as can always be done) e2 to lie in the (X , Y) plane and if (0, <F) are

the polar angles of k (see Fig. 5.8), we have

(gj)x = cos 0 cos <F;

(e2)x = -sin ‘h;

{e x )y - cos 0 sin <F;

(e2 )y = cos (h;

(li)~ = -sin 0

(c2)z = 0 [5.55]

Consider first the 7r line, with Am, = 0. From the discussion given in

Section 4.5 we see that in this case xba = yha
= 0 and we are only concerned

with zba . The transition rate for emission in the solid angle dll of a photon with

z

5.8 The unit vectors e, , e2 and k form a right-handed set. The polar angles of It are (0, <t>) and e2

lies in the XY plane, e, pointing downwards.
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polarisation 6] is then

ws
ab dfl = C(o>ba ) sin

2 © \zba \

2
dfl [5.56]

and the rate is zero for emission of a photon with polarisation e 2 . When the light

is viewed longitudinally, so that k is in the direction of the magnetic field (which

is parallel to the Z axis), 0 = 0 and the tt line is absent. In transverse

observation (0 = tt/2), in a direction at right angles to the magnetic field, the tt

radiation is plane polarised with £ = £] in the direction of the negative Z axis.

Let us now consider the case in which Anti — m!i — m
t
= —

1 which corre-

sponds to the amplitude (see [4.8 1]—[4.84])

— (Tc lEy)

^

— \%ba Who) [5.57]

The transition rate for emission of a photon with polarisation £ = ei is then

1

1T^a ( 1) dfl = C((oba )
— cos © e

J2

and that for polarisation £ = e2 is

Wlb(2) dfl = C(wba )

*<I>

/— (.%ba iyba)

J2
dfl [5.58]

-4= e
i<p

2

V'2
C

-jj (
xba ~ iyba) dfl [5.59]

Summing over both independent polarisation directions, the transition rate for

the line corresponding to Am, = - m(
= — 1, which is known as the a +

line,

is

W\b(a
+

) dfl = C(<oba )
-

(1 + cos
2
0) (,Xba IVfta) dll [5.60]

In transverse observation 0 = tt/2 and the x andy components of ej vanish.

In this case the cr
+

line is plane polarised with £ = e 2 ,
where e? lies in the (X , V)

plane. In contrast, in longitudinal observation along the direction of the

magnetic field, we see from [4.102] that the radiation is left-hand circularly

polarised, that is the emitted photon has helicity +h.

In the same way, the transition rate for the a line corresponding to

Ami = mi — m
l
= +1 is given by

W%b{cT-) dfl C(wba )
- (! + cos

2
0) n (.%ba T iyba) dfl [5.61 J

The a line is right-hand circularly polarised when viewed along the direction

of the magnetic field and is plane polarised in transverse observation.

The preceding discussion of the polarisations of the cr and v components is

illustrated in Fig. 5.9. It is easily shown (Problem 5.3) that in the transverse

direction the intensity of the tt component is twice that of each rr component.
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(a) Longitudinal observation (tt line absent)

Direction of magnetic

field along Z axis

C?

Photon
with helicity +fi

,
left-hand circtilarly

polarised

|

Photon
with helicity —

R

,^-j—

n

right-hand circularly

'—|w polarised

<r
+

line a line

(b) Transverse observation

Z
a*

Direction of magnetic

field along Z axis

and e in XY plane

Z

tt line with k in XY plane

and e along negative Z axis

5.9 Polarisations of photons emitted in the direction of a magnetic field, or at right angles to a

magnetic field.

The Paschen-Back effect

At field strengths for which the spin-orbit interaction is appreciable, but still

small compared with the term in 96 in [5.49], it can be treated in first order

perturbation theory. We see that the perturbation is just £(r)L • S, and its

contribution to the total energy is therefore

AE
f
x

/ 1

q

drr2[R nl(r)]
2t(r){l-m,ms

L S l

Kimi
ms ,1*0 [5.62]

while AE = 0 for s-states (l = 0). The quantity A nl is given by

In/ = h2 drr
2
[R„i(r)]

z
^(r)

\
2Z2

, 1*0
// + -(/+!)

2 /

[5.63]

The degeneracy in l is removed, as we expect. The energy difference between

levels nlm
t
and n'l'm'i when ms

= ms
is

SE = En
- - En + - mi) + ~ hni™i)ms

[5.64]

This expression gives the frequencies 8E/h of the observed lines, with



5.2 Tht Ztman tfftei

Aw, = ml - m
t
restricted to the values 0, ±1. The observed splitting in thil

case is known as the Paschen-Back effect.

Weak fields: the anomalous Zeeman effect

For historical reasons the case of a weak magnetic field is known as the

anomalous Zeeman effect, although in fact this effect is the one most commonly

encountered. In the early days of spectroscopy, before the electron spin was

discovered, the normal Zeeman effect was predicted, on classical grounds, but

the observations did not conform to the predictions and were said to be

‘anomalous’. The explanation was finally given in terms of quantum mechanics

and the electron spin.

When the interaction caused by the external magnetic field is small compared

with the spin-orbit term, the unperturbed Hamiltonian can be taken to be

Ho

Ze 2

(4-n-e0>
+ f(r)L ‘ S [5.65]

The unperturbed wave functions are eigenfunctions of L2
, S

2
, J

2 andJz , but

not of Lz and Sz . They are therefore products of radial functions times the

‘generalised spherical harmonics’ (see Appendix 4)

%?• = 2 (kmims\jmj)Y

i

m (,d

,

[5.66]

m,,m
5

where are Clebsch-Gordan coefficients and s = 1/2.

Taking the magnetic field 98 to be along the Z axis, the perturbation is

H' = -y (L, + 2SZ)^Z

= (J, + S«)8. [5.67]

The additional energy due to the magnetic interaction H' is thus

AE = MB 2 dll (W%/2)*SZW%,2
spin

[5.68]

where we have made use of the fact that is a normalised eigenfunction of

Jz belonging to the eigenvalue m,h.

Either of two methods can be used to evaluate the second term in [ 5.68 ].

1 . The most straightforward procedure is to use the explicit expressions for the

Clebsch-Gordan coefficients {l\/2mim5 \jmj) given in Appendix 4. Setting

j = l ± 1/2, we have

G\il+ 1/2 ,m>3
1 , 1/2

X
\

Z + »!,- + 1/2

Y

/2
„ /n ^

21 )
y/,m,-l/2(0> 4>)X\/2,l/2

1 ~

aVi
1/2

)

'/2

^,--/^,

- ii rnm
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01j
/-l/2,m, _ _y
l, 1/2

l - m, + 1/2

2 / + 1

YUm .- 1 /2(0> 4>)x1/2.1/2

/ ; + M;
y (()j

[5.69b]

\ 2/ + 1 /

from which one readily obtains

2 dfl

2 dll
=

2 / + 1

21 + 1

[5.70a]

[5.70b]

2 The same result can be obtained by operator methods. A vector operator \ has

‘

three components (Vx , Vy , VM) along three orthogonal axes, where V , V

and V are operators which transform under rotations like the components o

a vector. Thus, if Vu = V • u is the component of V along the unit vector u

which defines the axis Ou, and if the unit vector u defines the axis Ou

obtained from Ou by performing the rotation ft ,
the transform off under

the rotation Sft must be the component Vu
- = V • u of V along u . It may

be shown that the components Vx , Vy ,
Vz of a vector operator

satisfy the commutation relations

[Jx ,vx]
= 0, [Jy,Vx ]

= -thVz ,
[J^VAyhV

[Jx ,Vy\ = ihVz , [Jy, vy = °,
*VX , [5. ]

[Jx , Vz]
= -ihVy, [Jy, VJ = ihVx , [Jz , v,] - o

The operators L, S and J are examples of vector operators. Using [5.71] and

the commutation relations for the components of J ,
namely

[Jx , Jy]
= ihjs , [Jy , Jz\ = «A7x 5 [J* ’^] = lhJy [5 - 72]

it may be shown after some manipulation that a vector operator V satisfies the

equations

Jx V + VxJ = 2ifiW [5.73]

auu

[J
2

, [J
2

, V]] = 2ft
2
(J

2V + VJ
2
)
- 4h\\ • J)J [5-74]

The matrix element of the left-hand side of the identity [5.74] with respect to

states having the same value of j vanishes, so that

(lsjmj\i
2\ + VJ

2
|

Isjmj) = 2(lsjmj\(V • J)J|&M) C 5 - 75 ]
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from which we have

j(j + l)h
2
(lsjmj\\\lsjmj) = </s/'m,|(V • J)J|/ym; ) [5.76]

This relationship can also be obtained by using the Wigner-Eckart theorem

discussed in Appendix 4.

Setting V = S in [5.76] and taking the z component, we have

j(j + l)h
2
(lsjmj\Sz\lsjmj) = (lsjm,j\ (S •

= mjA(lsjm
}
\S • J| lsjm} )

Since S • J = (J
2 + S 2 - L2

)/2, the matrix element of Sz is

+ 1) + s(s + 1) - /(/ + 1)'

[5.77]

(lsjnij\Szllsjtti]) = m/i [5.78]
2j(j + 1)

which agrees with [5.70] when s = 1/2 and / = l ± 1/2. The energy shift due

to the magnetic field is seen from [5.68] and [5.70] (or [5.78]) to be proportional

to and may be written as

AEm .
= g)xB'3izm,

where g is called the Lande g factor and is given by

j(j + 1) + s(s + 1) - 1(1 + I)

L5.79]

g = 1 +
2/0' + 1 )

[5-80]

Since in our case s = 1/2 we have

21 + 2
AEm =

21 + T

21

21 + 1

fJ-H-j+nij,

txgfhzm. ,

j = l + 1/2

j = l~ 1/2 15.81]

The total energy of the level with quantum numbers n, j, m, of a hydrogenie

atom in a constant magnetic field is therefore

= En + AEn>j + AE„ [5.82]

where E„ is the non-relativistic energy [3.29] [with /x - m], A.E„j is the fine

structure correction [5.28] and A

E

m is the correction due to the (weak)

magnetic field.

The splitting of levels, 8E, corresponding to the ‘anomalous’ Zeeman effect

discussed above is illustrated in Fig. 5.10. We remark that since the splitting

of the levels is not the same for each multiplet, there will be more lines in

this case than the three lines (Lorentz triplet) corresponding to the normal

Zeeman effect. This is shown in Fig. 5.11, where we display the allowed

transitions (corresponding to Al = ±1 and Am, = 0, ±1) between the tt - 2

and n = 1 levels of atomic hydrogen occurring in the presence of a weak

magnetic field.
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5.10 Splitting of np 3/2 and np l/2 levels of atomic hydrogen in a weak magnetic field.

m
i

5.11 In electric dipole transitions between the n = 2 and n - 1 levels of hydrogen, in a weak

magnetic field, four lines result from the 2p}l2 ‘ 1 s i
transitions and six lines from the

2p3/2 —> lsj /2 transitions.



5.12 The energy of the levels of a hydrogen atom in a magnetic field are a smooth function of iH,.

For small 95, , the splitting is uneven (the anomalous Zeeman effect), but for large 28,, the splitting

is even and only three lines are seen (Paschen-Back effect). A schematic diagram is shown for the 2p

levels.

As the magnitude of the magnetic field% increases from the weak field to the

strong field limit, the energy changes smoothly. This is depicted in Fig. 5.12 for

the 2p states of atomic hydrogen.

5.3 THE STARK EFFECT

The effect of static electric fields on the spectrum of hydrogen and other atoms

was studied by J. Stark and also by A. Lo Surdo in 1913. The splitting of

spectral lines observed has become known as the Stark effect. We shall assume

that the external electric field is constant over a region of atomic dimensions and

is directed along the Z axis. We also suppose that the electric field strength t is

large enough for fine structure effects to be unimportant [7], The Hamiltonian

H0 for the unperturbed hydrogenic atom, given by [5.3] (we neglect reduced

mass effects) is therefore modified by the addition of the perturbation

H' = e%z [5.83J

where we recall that —e is the charge of the electron. Since H’ does not depend

on the electron spin we shall use for the zero-order wave functions the

[7] This is a correct assumption for electric field strengths usually encountered, which are ol the

order of 10
7 V/m. On the other hand, the treatment given here must be modified for electric

fields f < 10
5 V/m, since in this case the Stark splittings are of the same order of magnitude as

the fine structure splittings studied in Section 5.1.
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Schrodinger hydrogenic wave functions 4*nim(r) where we have set m = m, [3] in

order to simplify the notation.

Linear Stark effect

Since the ground state (100) is non-degenerate, we see from [2.308] and [5.83]

that the first-order correction to its energy is given by

= e % (4*ioo\z\4*ioo)

r

\4>ioo(r)\
2
z dr [5.84]

Now our discussion at the end of Section 3.3 showed that the hydrogenic wave

functions t//nte(r) have a definite parity (even when the orbital quantum number Z

is even, odd when / is odd). On the other hand the perturbation [5.83] is an odd

operator under the parity operation since it changes sign when the coordinates

are reflected through the origin. Thus we have

= 0 [5 - 85]

since the matrix element { 4*nim\z\4*nim)
involves the product of the even function

\finim(T)\
2 times the odd Unction a under the parity operation. In particular, we

see from [5.84] and [5.85] thatE% = 0, so that for the ground state there is no

energy shift that is linear in the electric field %. Remembering that a classical

system having an electric dipole moment D will experience in an electric field %

an energy shift of magnitude —D % ,
and noting that —ez is the z component of

the electric dipole moment operator in our case, we see that atomic hydrogen in

the ground state cannot possess a permanent electric dipole moment (energy

change proportional to %).

Let us now examine the Stark effect on the first excited level (n — 2) of the

hydrogen atom. Since we assume that % is large enough for fine structure effects

to be neglected we may consider the unperturbed system in the n = 2 level to be

fourfold degenerate, the four eigenfunctions

fizoo , 4*2io> 4*2115 4*2\-i [5.86]

corresponding to the same unperturbed energy £„-2 - -mc 2a z
/8 (see [3.30]).

In principle we should therefore solve a homogeneous system [2.328] of four

equations. However, we have already shown in our discussion of selection lules

for electric dipole transitions (see Section 4.5) that matrix elements of the form

(nlm\z\n’l'm') vanish unless m = m' and l = V ± 1. Thus the qnly non-

vanishing matrix elements of the perturbation [5.83] are those connecting the

2s (200) and 2p0 (210) states, and the linear homogeneous equations [2.328]

reduce to a set of two equations which we write in matrix form as

-Ew
H221

H'n) Ci

-Ew) U 0 [5.87;
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with

'21H 12 = Hn = e % dr [5.88]

The redtictl0n
°* t^ie origina l homogeneous system of four equations to the

two eauatioi15 [5-87] may also be obtained easily by noting that (i) the operator

//' commas with the z comPonent of the angular momentum, so that

//'only confiects states the same value of the quantum number m and

(n) H' is odd under the parity operation.

The matfix dement 77 '12 can be evaluated by using the hydrogenic wave

functions given in Table 3.1 of Chapter 3. Since 2 = r cos 8, we have

H’u = e

= e

l6vao

Z l
2

8a%3 J

_3^ ^ uq/2

drr
3 Si 1

1

-
Uq

Zr\

2a0 j

e
•Zr/ao d0 sin 8 cos

2
8

2 7T

d(f>

drr
3 Sin-

a0 ,

Zr

2ao

-Zr/ao

[5.89]

and H'2l
equation

Hu since H[ 2 is real. Thus the two roots of the determinantal

-E (1)

H’u

Hu
-E iV>

= 0 [5.90]

are given by

Ew = ±\H'u
|

= ±3e % a0/Z [5-91]

U on returf*
3n8 t0 [5 .87

]
we see that for the lower root E\ l} = -3e% a0/Z one

, _ _
The corresponding normalised eigenstate ipi is given by

I12S C\

1

The second root ^2

state

(i)

[5.92a]

+ 3e % a0/Z yields c 2
= -c2 and a normalised eigen-

il>i = (*A200 + <A2io)

1

1//2
= —7= (^oo tfoio) [5.92b]

It should be emphasised that the states [5.92] are neither eigenstates of the

parity oper3tor ’ nor °f L2
> so that neither parity nor I is a ‘good’ quantum

number in this case. On the other hand, m is a good quantum number because

H' commuteS (that is, the system is invariant under rotation about the Z

axis) We als0 remark that the wave number shifts 8v corresponding to the

correCtlon
are fdven by

energy

I3ea0 %W=±irz- ±,2V 10
7 cm

"
1

[5.93]
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4 degenerate states 1

.

)7 = 0, m = 0

\l = l,m = 0,

Wave function

m ^
' (^200

_ ^210)

/
/

VT

1
= 0

1

VT C *1*200 + 4>2\o)

5.13 Splitting of the degenerate n = 2 levels of atomic hydrogen due to the linear Stark effect.

so that rather strong fields (of the order of 10
7 V/m in Stark’s experiments) are

required to demonstrate the effect. ... , .

The splitting of the degenerate » = 2 levels of atomic hydrogen due to the

linear Stark effect is illustrated in Fig. 5.13. The degeneracy is partly removed

by the perturbation, the energies of the 2p±1 (i.e. 211 and 21 )

remaining unaltered. Thus the level n = 2 splits in a symmetrical way into three

sublevels, one of which (corresponding to m = ±1) is twofold degenerate.

At this point it is worth recalling again that a classical system having an

electric dipole moment D will experience in an electric field * an energy shift

_D • %. This suggests that the hydrogen atom in the degenerate unperturbed

states n = 2 behaves as though it has a permanent electric dipole moment

(independendy of the value of *), of magnitude 3ea0 ,
which can be orientated in

three different ways (that is, gives rise to spatial quantisation) in the presence o:

the field: one state (<h) parallel to the field *, one state (*A 2) antiparallel to *,

and two states with no component along the field.

On the other hand, we found above that for the hydrogen ground state, which

is non-degenerate and hence is an eigenstate of the parity operator, there is no

energy shift linear in the electric field strength, and hence no permanent electric

dipole moment. This conclusion may readily be generalised. Indeed, apart from

tinv effects which we shall not consider here [8] all the systems studied in this

book may be described by Hamiltonians which are unaffected by the parity

operation (that is, the reflection of the coordinates of all the particles through

the origin) and therefore any non-degenerate state of such systems has a definite

naritv (even or odd). Now for a system containing N particles of charges e,

(i = 'l, 2, . . .AT) and coordinates r,
: , the electric-dipole moment operator

D = i C
(
r, ( [5.94]

is odd under the parity operation, so that its expectation value in a state of given

naritv is zero. As a result, systems in non-degenerate states cannot have permanent

electric dipole moments. Note, however, that if we have a positive ion A located

at the position r, and a negative ion B at the position r2 ,
the system (A )

[8] Parity non-conserving

weak decay processes

effects occur in the so-called weak interactions, which are responsible for

of (elementary) particles, such as those observed in beta decay.
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does possess an electric dipole moment. This does not contradict the previous

argument since the configuration for which A +
is at r2 and B " at ri has the same

energy as the first arrangement and the system is necessarily degenerate. For the

same reason, when atoms are bound together, the resulting molecules may

possess permanent electric dipole moments [9].

Another remark concerns our use of degenerate perturbation theory for the

treatment of the Stark effect on the n = 2 levels. As we know from our

discussion in Section 5.1 there are small effects (fine structure, Lamb shift)

which remove some of the degeneracies of this level, so that the situation will

then correspond to a near-degenerate case. We shall not treat this problem in

detail [10] but consider instead the simple model problem in which two

unperturbed states i//
1

0) and il/2
; do not correspond exactly to the same

unperturbed energy E (0) (En= 2 in our case) but to energies given respectively by

E\0) = E (0> - e and E^' = E (0> + e, which differ by a small amount It.

Instead of solving an equation of the type [5.87] we must now solve the matrix

equation

/£ (0) - e - E

W21

H’n

E (0) + e - E
[5 .95 j

where H[ 2 = H21 is given by [5.88], Thus we have

E = £ (0) ± [(H’n)
2 + £

2
]
1/2

[5.96]

It is apparent from this result that for very weak fields (such that |//[ 2 |

< t

and the Stark splitting is small with respect to fine structure effects), there is no

linear Stark effect. On the other hand, for strong field strengths % such that

\H[ 2
\

S> e we retrieve the results found above by using degenerate perturbation

theory (linear Stark effect). In what follows we shall continue to assume that the

field strength % is large enough for the fine structure effects to be neglected.

The splitting of the n = 3 level due to the linear Stark effect may be treated in

a way similar to the n = 2 case analysed above. It is found (Problem 5.4) that

this level is split into five equally spaced levels, as shown in Fig. 5.14.

Also displayed in Fig. 5.14 are the radiative transitions between the levels

n = 2 and n = 3 (corresponding to the spectral line H„) of atomic hydrogen in

the presence of an electric field. The selection rules with respect to the magnetic

quantum number m are the same as those we obtained in Chapter 4 without an

external field. That is

Am = 0, ± 1 [5.97|

The Am = 0 transitions are said to correspond to tt components, and the

Am = ±1 to cr components.

[9] The kind of degeneracy to which we have referred is often removed in an ‘exact’ calculation ot

molecular ground statey. However, because the splittings involved are very small, in any

experiment an average is taken over the ground and neighbouring states, of different parities,

resulting in an effective permanent electric dipole moment.

[ 10] A comprehensive treatment may be found in Bcthe and Salpctcr (1957).
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m = 0 m=± 1
">=

(s,p,d) (p,d) (d)

5.14 Splitting of the n = 3 and n = 2 levels of hydrogen due to the linear Stark effect. The various

possible transitions are shown, those with Am = 0 correspond to tt lines and those with Am - to

a lines.

On the other hand, since / is not a good quantum number in the presence of

an external electric field, it is clear that the selection rules concerning / must be

modified. In particular, because the operator [5.83] has a non-vanishing matrix

element between the 2s and 2p0 states, these two states are mixed by the

perturbation H' with the result that the metastable 2s state is contaminated by

the unstable 2p state. Thus a radiative transition from the 2s state to the Is state

can be induced by an external electric field [11], so that the lifetime of the 2s

state is considerably shortened by comparison with its value (1/7 s) in the

absence of electric field.
^

In order to examine in more detail this process, which is called quenching of

the metastable 2s state’, let us assume that at the initial time t
= 0 the hydrogen

atom is in the 2s (200) state. We then apply a constant electric field of strength %

directed along the Z axis, and use the results [5.91] and [5.92] to write the

time-dependent wave function of the atom at t > 0 as

V(r, f) = ClU^-mXE^E)t + c2 ih2(r)c-^
EME)l

[5.98]

[11] It is worth noting that this external electric field need not be a static field, as in the case studied

here, but can also be a time-dependent (oscillating) field.
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where Enu. 2 = -mc2a2
/ 8 and AE = |//J 2 |

= 3e % a0 is the absolute value of (lit

(first-order) energy shift. The coefficients c, and c2 are easily found from the

initial condition

^(r, t
= 0) = <//200(f) [5 .99]

Using [5.92] and [5.99], we find that C\ = c2 = 2
1/2

, so that

T(r, 0 = 4=- + ~ 2̂(r)e^
(,/Axi'"- 2+Afc

'

)'

V 2 v 2

A£
’hot//) cos)— /

1
+ itp2 io(r) sin(— t

A£
[5 . 100]

Thus the atom oscillates between the 200 (2s) and 210 (2p0) states, with a period

T =
77h

AE [5 . 101 ]

For example, in the case of an electric field of strength % = 10
7 V/m, we find

from [5.101] that T — 1.3 x 10
_12

s which is much shorter than the time

r — 1.6 x 10

"

9
s corresponding to the radiative transition 2p-ls (i.e. the

lifetime of the 2p state in the absence of external field). As a result, the average

population of both states 2s and 2p0 is nearly equal during the entire decay time.

This conclusion is easily seen to be true for initial conditions in which the atom

is initially (at t = 0) in an arbitrary superposition of the 2s and 2p0 states

(Problem 5.5). Thus, in the presence of a strong electric field the radiative

transitions 2s- Is and 2p-ls have the same transition probability per unit time,

which is equal to l/2r. It is apparent from this discussion that in general, an

external electric field will be able to induce n's - ns radiative transitions.

Quadratic Stark effect

We have shown above that for the ground state (100) of hydrogenic atoms there

is no linear Stark effect. In order to investigate the effect of the perturbation

[5.83] on that state we must therefore consider the second-order term of the

perturbation series. Using [2.319] we see that in our case it reads

m = e
2 « 2 2

n* 1

l,m

\{^nlm\A <Al00)l
2

£1 ~En

[5. 102]

where the sum implies a summation over the discrete set together with an

integration over the continuous set of hydrogenic eigenfunctions. It is clear from

[5.102] that the ground
7
state energy will be lowered by the quadratic Stark ef-

fect, since the energy differences E t
- E„ (n 3= 2) are always negative. In fact,

we may readily obtain a lower limit for £100 by replacing in [5.102] the energy
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differences E\ - E n by E\ - E 2 . That is,

3 cp 2 2 K^fotl0!^100)!

2

En ~ E x

1

E[Vo n+ 1

> -e 2 % 2
„ 2 K</w|2|i/'ioo>|

2

E2 - Ex n+

1

l,m

[5.103]

The summation on the right of [5.103] may now be performed as follows. We

first note that because (iAiookl*Aioo) = 0 we may write

2 10o)|
2 = 2

= ^ (^lOoW^n/mK^n/mW'/'lOo)
n,/,m

[5.104]

Using the completeness of the hydrogenic states, namely

2 \'l>nlm)( ll>nlm\
= 1 [5.105]

nlm

we have

2 <^10o!2|^/m><^ml*#10o} = <«AlOO I

^
2

|
*AlOO>

n,/,m

= <a
2
>ioo [5-106]

But

(a
2
)ioo = <*

2
>ioo = </>ioo = j(f

2
)ioo = ^2

[5.107]

so that from [5 . 103]— [5 . 1 07] and [3.29] we have

£$>~(4mto)|U 2 [5.108]

It is possible to obtain in a straightforward way another estimate for £)oo

(Problem 5.6):

m~-2(4^o)^'«
2 15.109]

The exact evaluation of the expression [5.102] is more tedious and we shall

not discuss it in detail here. One finds (Bethe and Salpeter, 1957) that

£i
(
oo
= — 2.25(47re0)

c& 2

= -3.71 X 10-41

(Ip)
joule [5.110]
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It is worth noting that about one-third of the result [5.110] arises from the

contribution of the continuum in the summation [5.102], We also remark that

the quadratic Stark effect given by [5.110] is generally very small, being

approximately 0.02 cm 1
for atomic hydrogen in the case of a field strength

% = 10
8
volt/metre.

Upon differentiation of the expression [5.102] with respect to the electric field

strength, we obtain for the magnitude of the dipole moment the result

D = — = d% [5.111]

where

a 2e
2 V \('l'nlm\z\'!'100)|

2

y En - El
l,m

[5.112]

is called the dipole polarisability of the atom in the state (100). We see from

[5.111] that D is proportional to %, so that we have an induced dipole moment. We
also note from [5.102] and [5.112] that

[5.113]

and the result [5.110] shows that

a = 4.50(47T£o)

= 7.42 x 1(T 41 Z“ 4 F m2
[5.114]

The foregoing discussion of the quadratic Stark effect has been limited to the

ground state of hydrogenic atoms, for which it is the first non-vanishing term of

the perturbation series. Similar calculations may be carried out for excited

states, where the quadratic Stark effect is a correction to the linear Stark effect

studied above. This correction is in general quite small. For example, in the case

of the H„ line, where the separation of the outermost components is about

200 cm 1
for a field strength of 4 x 10

7
volt/metre, the corresponding (red)

shift due to the quadratic Stark effect is only 1 cm 1

.

Ionisation by a static electric field

So far we have used perturbation theory to study the energy shifts and the

spectral lines of hydrogenic atoms in the presence of a static electric field. We
shall now consider another effect due to the presence of an external electric field,

namely the removal of the electron from the atom.

To see how this comes about, we first note that the total potential energy V of

the electron is obtained by. adding the potential energy e% z arising from the

external field (see [5.83]) to the Coulomb potential -Ze2
/(4Tre 0)roi the nucleus.

227



One-electron atoms
5.3

Thus

V = -~^— + e%z [5.115]

(47T£0)r

A schematic drawing of V is shown in Fig. 5.15 as a function of z, for x and y

fixed. It is apparent that the nucleus is not the only place at which \ has a

minimum, since V can become even more negative if z is negative enough, that

is at large enough distances of the atom in the direction of the anode. Thus the

potential V has two minima, one at the nucleus and the other at the anode,

separated by a potential barrier. The electron, which is initially in a bound state

of the atom, has therefore a finite probability of ‘escaping’ from the atom by

means of the tunnel effect, and being accelerated toward the anode, so that

ionisation will occur.

This possibility of ionisation by the electric field was first pointed out by

J. Oppenheimer in 1928. Experimentally it can be observed when the external

electric field is very strong and (or) for levels with high principal quantum

number such that the radius of the electron orbit is large. It is then seen that the

spectral lines are weakened because of the competition between the radiative

transitions and the ionisation process. Moreover, in the presence of an external
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electric field the lifetime of the discrete levels is decreased because of the ‘tunnel

effect’, so that the width of the spectral lines is increased. This is known as Stark

broadening. In particular, the ground state itself is no longer a stationary state,

but becomes a metastable state when an external electric field is applied, and the

perturbation series is found to diverge. However, if the electric field is not too

strong, the ground state is stable on a very large time scale, and the predictions

of the first few terms of the perturbation series agree very well with experiment.

5.4 THE LAMB SHIFT

We have seen in Section 5.1 that, according to the Dirac theory, energy levels of

one-electron atoms with the same value of the quantum number j but different

values of / should coincide. We also pointed out at the end of that section that in

trying to resolve the fine structure of hydrogenic atoms by optical measure-

ments, several investigators had reported small discrepancies between the

observed spectra and the Dirac theory. In particular, W. V. Houston in 1937

and R. C. Williams in 1938 carried out experiments which were interpreted by
,

S. Pasternack (1938) as showing that the 2si /2 and 2p 1/2 levels did not coincide,

but that there existed a slight upward shift of the 2s 1/2 level of about 0.03 cm
J

However, the experimental attempts to obtain accurate information about t I

fine structure of atomic hydrogen (and in particular about the lines of tHe

Balmer series) were frustrated by the broadening of the spectral lines due mainly

to the Doppler effect. In fact other spectroscopists disagreed with the results of

Houston and Williams, and found no discrepancy with the Dirac theory.

The question was settled in 1947 by W. E. Lamb and R. C. Retherford who

performed a brilliant experiment which we shall now briefly describe. Instead of

attempting to resolve the fine structure of hydrogen by investigating its optical

spectrum, Lamb and Retherford used microwave techniques [12] to stimulate a

direct radio-frequency transition between the 2sj/2 and 2p 1/2 levels. As we noted

in Section 4.5 there is no selection rule on the principal quantum number n for

electric dipole transitions. In particular, these transitions can occur between

levels having the same principal quantum number. This fact was pointed out as

early as 1928 by Grotrian, who suggested that it should be possible with radio

waves to induce such transitions among the excited states of the hydrogen atom.

For example, in the case of the transition 2s 1/2-2p3/2 , the energy separation

SE = 4.52 x 1(T
5 eV = 0.365 cm -1

which we obtained in [5.32] corresponds

to a wavelength of 2.74 cm or a frequency of 10949 MHz. Because the

frequencies of radio waves are much smaller than those corresponding to optical

lines (such as the H,„ line), the Doppler broadening, which is proportional to the

frequency (see [4.145]) is considerably reduced in radio-frequency experiments,

and could in fact be neglected in the experiment of Lamb and Retherford. Of

course, since the frequencies of radio waves are small, the transition rates for

spontaneous emission, which are proportional to v
3
(see [4.71]) are very small.

[12] A detailed account of microwave spectroscopy may be found in Townes and Schawlow (1955).
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However, stimulated (induced) transitions can occur if the atoms are sent

through a region where there is an electric field oscillating at the appropriate

frequency corresponding to the transition to be studied. In the experiment of

Lamb and Retherford such stimulated transitions are observed between the

levels 2 s 1/2
-2P i / 2

and 2s1/2-2p3 /2 . Since the transition rates for stimulated

absorption and emission are equal (see [4.43]), it is necessary that the two states

between which the transitions are studied should be unequally populated.

The experimental method of Lamb and Retherford is based on the fact that

the 2s 1/2 level is metastable. Indeed, as we have seen in Chapter 4, the electric

dipole transition from the state 2s 1/2 to the ground state ls 1/2 is forbidden by the

selection rule A/ = ± 1 . The most probable decay mechanism of the 2s 1/2 state is

two-photon emission, with a lifetime of 1/7 s. Thus, in the absence of

perturbations, the lifetime of the 2sI/2 state is very long compared to that ol the

2p states, which is about 1.6 x 10
9

s. In the apparatus of Lamb and

Retherford, shown in Fig. 5. 16, a beam of atomic hydrogen containing atoms in

the metastable 2s 1/2 state is produced by first dissociating molecular hydrogen in

a tungsten oven (at a temperature of 2500 K where the dissociation is about 64

per cent complete), selecting a jet of atoms by means of slits, and bombarding

this jet with a beam of electrons having a kinetic energy somewhat larger than

10 2 eV, which is the threshold energy for excitation of the n = 2 levels o

atomic hydrogen. In this way a small fraction of hydrogen atoms (about one in

10
8
) is excited to the 2s1/z , 2p 1/2 and 2p3/2 states. The average velocity of the

atomic beam is about 8 x 10
5 cm s”

1
. Because of their long lifetime, the atoms

in the metastable 2s 1/2 state can easily reach a detector placed at a distance of

about 10 cm from the region where they are produced. On the other hand the

atoms which are excited in the 2p I/2 or 2p3/2 states quickly decay to the ground

state 1 s

i

/2 in 1.6 X 10~ 9
s, moving only about 1.3 x 10 cm in that time, so

that they cannot reach the detector. This detector is a metallic surface (a

tungsten ribbon), from which the atoms in the metastable state 2s 1/2 can eject

electrons by giving up their excitation energy. Atoms in the ground state are not

detected, the measured electronic current being proportional to the number ol

metastable atoms reaching the detector. Now, if the beam containing the

metastable 2s 1/2 atoms passes through an ‘interaction region’ in which a

radio-frequency field of the proper frequency is applied, the metastable atoms

will undergo induced transitions to the 2p 3 /2 and 2p3/2
states, and decay to the

Interaction region

ouicmauv —
_ .

beam of hydrogen containing a small fraction of atoms in the ls lf ^

a region of a radio-frequency electric field and a variable magnetic field and is detected

apparatus which records only atoms in the n = 2 level.

,1/2 level. The beam is passed throiigh

"T
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ground state ls1/2 in which they are not detected. As a result, there is a

reduction of the number of metastable (2s 1/2) atoms registered by the detector

at the (resonant) radio-frequencies corresponding to the frequencies of the

2s 1/2-2p 1/2 and 2s 1/2-2p3/2 transitions. In the ‘interaction region’ the atomic

beam also passes in a variable magnetic field. In this way Lamb and Retherford

could separate not only the Zeeman components of the 2s!/2 , 2p 3 /2
and 2p3 /2

levels, but also reduce the probability of fortuitious disintegration of the 2s 1/2

state due to Stark effect mixing of the 2s1/2 and the 2p levels caused by

perturbing electric fields. Moreover, the use of a variable external magnetic field

avoids the difficulty of producing a radio-frequency field with a variable

frequency but a constant radio-frequency power. Instead, Lamb and Retherford

could operate at a fixed frequency of the radio-frequency field and obtain the

passage through the resonance by varying the magnetic field. The resonance

frequency for zero magnetic field was found by extrapolation. In this way Lamb

and Retherford found in 1947 that the 2s1/2 level lies above the 2p 1/2 level by an

amount of about 1000 MHz. Further experiments carried out by Lamb and his

collaborators gave the very precise value (1057.77 ± 0.10) MHz for this energy

difference, which is now called a ‘Lamb shift’. We note that this value, which

corresponds to 4.37462 x 10“ 6 eV or 0.0352834 cm \ is about one-tenth of

the fine structure splitting of the n = 2 term.

The need to explain the Lamb shift stimulated numerous theoretical develop-

ments which led Bethe, Tomonaga, Schwinger, Feynman and Dyson

fundamental revisions of physical concepts (such as the renormalisation of mass,

and to the formulation of the theory of quantum electrodynamics (QED). In this

theory, ‘radiative corrections’ to the Dirac theory are obtained by taking into

account the interaction of the electron with the quantised electromagnetic field.

These calculations are outside the scope of this book, and we only mention the

following qualitative explanation of the Lamb shift given in 1948 by Welton. A

quantised radiation field in its lowest energy state is not one with zero

electromagnetic fields, but there exist zero-point oscillations similar to those we

discussed for the case of the harmonic oscillator in Section 2.4. This means that

even in the vacuum there are fluctuations in this zero-point radiation field which

can act on the electron, causing it to execute rapid oscillatory motions so that its

charge is ‘smeared out’ and the point electron effectively becomes a sphere of a

certain radius. If the electron is bound by a non-uniform electric field, as in

atomic systems, it will therefore experience a potential which is slightly different

from that corresponding to its mean position. In particular, the electron in a

one-electron atom is not so strongly attracted to the nucleus at short distances.

As a result, s-states (which are most sensitive to short distance modifications

because |<//(0)|
2
f 0 for these states) are raised in energy with respect to other

states, for which the corresponding modifications are much smaller.

The energy shifts for the 2s 1/2 , 2p 1/2 and 2p3/2 levels with respect to the

Dirac theory are illustrated ill' Fig. 5.17 for the case of atomic hydrogen. The

theoretical value of 1057.91 MHz for the Lamb shift (the energy difference

between the 2s 1/2 and 2p 1/2 levels) is in excellent agreement with the
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2Pj,2

8 MHz „

2ff_Z 2P’ 2
(822 59.272 cm-')

2s,,z (822 58.942 cm-1
)

1040MHz

^ 17MHz
2s, „2p,. ^ -- J

2pi2 (822 58.907 cm' 1

)

Dirac levels Radiative corrections

5.17 A diagram (not to scale) of the Lamb shift of the n = 2 levels of atomic hydrogen. The energies

of the levels relative to the ground state are given to the right of the diagram in units of cm .

experimental value (1057.77 ± 0.10) MHz obtained by Lamb el al. and with

a more recent measurement by Robiscoe and Shyn giving the result

(1057.90 ± 0.06) MHz. The Lamb shift has also been measured and calculated

for other levels of atomic hydrogen and also for other hydrogenic systems such

as deuterium, He+
,
Li

2+
,
and so on.

5.5 HYPERFINE STRUCTURE AND ISOTOPE SHIFTS

Atomic nuclei have radii of the order of 10
4 A(10 14 m) which are very small

compared with typical distances of an electron from the nucleus (~1 A). The

nuclei are also much heavier (about 10
4
times) than electrons. It is therefore a

very good approximation to consider the nuclei to be positive point charges of

infinite mass. However, the high-precision experiments which can be carried

out in atomic physics reveal the existence of tiny effects on the electronic energy

levels, which cannot be explained if the nuclei are considered to be point charges

of infinite mass. These effects, first observed by A. Michelson in 1891 and C.

Fabry and A. Perot in 1897 are called hyperfine effects, because they produce

shifts of the electronic energy levels which are usually much smaller than those

corresponding to the fine structure studied in Section 5.1.

It is convenient to classify the hyperfine effects into those which give rise to

splittings of the electronic energy levels, and those which slightly shift the energy

levels, but without giving rise to splittings. The former are called hyperfine

structure effects while the latter are known as isotope shifts (or isotope effects)

since they can usually be detected only by examining their variation between

two or more isotopes. We have already encountered examples of isotopic shifts

in Chapters 1 and 3, when we studied the modification of the energy levels of

hydrogenic atoms due to the fact that the nuclear mass is finite (reduced mass

effect) In particular, we saw that the introduction of the reduced mass gives a

very good account of the frequency difference between the spectral lines of

‘ordinarv’ atomic hydrogen (proton + electron) and its heavy isotope, deuter-

ium (deuteron + electron). Another isotope shift is the volume effect, which

arises because the nuclear charge is distributed within a finite volume, sq that
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the potential felt by the electron is modified at short distances. We shall briefly

consider this effect at the end of this section.

Let us now turn our attention to the hyperfine structure effects, which are

responsible for splittings (extending over the range from 10
3
to 1 cm ') of the

energy levels of the atoms. These effects result from the fact that a nucleus may

possess electromagnetic multipole moments (of higher order than the electric

monopole) which can interact with the electromagnetic field produced at the

nucleus by the electrons. By using general symmetry arguments of parity and

time-reversal invariance it may be shown [13] that the number of possible

multipole (2
k

pole) nuclear moments is severely restricted. Indeed, the only

non-vanishing nuclear multipole moments are the magnetic moments for odd k

and the electric moments for even k, i.e. the magnetic dipole (k — 1), electric

quadrupole (

k

= 2), magnetic octupole (k = 3), and so on. The most important

of these moments are the magnetic dipole moment (associated with the nuclear

spin) and the electric quadrupole moment (caused by the departure from a

spherical charge distribution in the nucleus). W’e shall first examine the

hyperfine structure due to the magnetic dipole interaction and then discuss

briefly the electric quadrupole interaction.

Magnetic dipole hyperfine structure

In 1924 W. Pauli suggested that a nucleus has a total angular mo, Ntum I

(called ‘nuclear spin’) and that hyperfine structure effects might be due to mag-

netic interactions between the nucleus and the moving electrons of the atom,

dependent upon the orientation of this nuclear spin. The eigenvalues of the

operator I
2

will be written as Iff + 1 )h
2
,
where I is the nuclear spin quantum

number (also often called the spin of the nucleus) or in other words the maximum

possible component of I (measured in units of h) in any given direction. Now

the nucleus is a compound structure of nucleons (protons and neutrons) which

have an intrinsic spin 1/2 and may participate in orbital motion within the

nucleus. Thus the nuclear spin is compounded from the spins of the nucleons,

and can also contain an orbital component. The corresponding spin quantum

number / may have integral or half-integral values. In the former case the

nucleus is a boson (obeying Bose—Einstein statistics) while in the latter case it is a

fermion (obeying Fermi-Dirac statistics). We shall also denote by M,fi the

eigenvalues of the operator Iz , so that the possible values of M, are M, = -/,

~I + 1, ... j I.

As we pointed out above, a nucleus may possess 2^-pole moments, with k odd

for magnetic moments and k even for electric moments. Furthermore, it may be

shown [13] that a nucleus of spin quantum number / cannot have a multipole

moment of order 2
n

,
where n is greater than 21. We shall begin by considering

the nucleus as a point dipole with a magnetic dipole moment proportional to

[13] See for example Ramicy (1953).
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the nuclear spin I. That is,

•^n =
gif1nI/^ [5.116]

where gj is a dimensionless number (whose order of magntiude is unity) called

the nuclear g factor or nuclear Lande factor. We note that gj is positive if hes

along I. The quantity /an which appears in [5.116] is called the nuclear magneton-,

it is defined by

Mn —
eh

2Mp

m
[5.117]

where m is the mass of the electron,Mp the mass of the proton and /j.b the Bohr

magneton. Thus the nuclear magneton /i,N is smaller than the Bohr magneton

yu,B by the factor m/Mp = 1/1836.15. The numerical value of the nuclear

magneton is

^tN = 5.05082 x 1CT
27 joule/Tesla [5.118]

It is worth noting that [5.116] is sometimes written in units of Bohr magnetons

as

= gifiBl/h [5.119]

in which case

gi
=

gi
=

Hb

m
Afn

gl
= g/

1836.15
[5.120]

is a very small number. Since Ih is the maximum component of I in a given

direction, we may also write [5.116] as

jlix [5.1*21]

where dlN is the value of the nuclear magnetic moment. In units of nuclear

magnetons, we have

dfN = gil [5.122]

The values of the spin quantum number I, the nuclear Lande factor gj and the

nuclear magnetic moment jM.n are given in Table 5.1 for the nucleons and a few

nuclei.

Let us consider a hydrogenic atom with a nucleus of charge Ze such that

Za< 1, and a magnetic dipole moment ^tN . We shall write the Hamiltonian of

this system as

H = H0 + H'md [5- 123]

where the zero-order Hamiltonian Ho now includes the Coulomb interaction

-Ze 2
/(47T£0)r and the relativistic (fine structure) corrections discussed in
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Table 5.1 Value* of the spin, Landi factor and magnetic moment of the nucleons and some

nuclei. The notation is such that IX represents a nucleus with a total of a nucleons, i> of which are

protons

Nucleus Spin

I

Lande factor

Si

Magnetic moment Mu
(in nuclear magnetons)

proton p 1/2 5.5883 2.79278

neutron n 1/2 -3.8263 -1.91315

deuteron (D 1 0.85742 0.85742

]He 1/2 -4.255 -2.1276

)He 0 — 0

‘ic 0 — 0

10 0 — 0

39tr
19 iV 3/2 0.2609 0.3914

677

n

5/2 0.35028 0.8757

Men&c

r

5/2 0.54108 1.3527

’I’Xe 1/2 -1.5536 -0.7768

lies 7/2 0.7369 2.579

•SHg 1/2 1.0054 0.5027

2
8oHg 3/2 -0.37113 -0.5567

Section 5.1 (which are of order (Za)
2

, as seen from [5.29]) while Hmd is a

perturbative term due to the presence of the magnetic dipole moment JlN . This

term will clearly lead to even smaller corrections than those corresponding to the

fine structure, since the magnetic moment of the nucleus is much smaller than

that of the electron. We may therefore assume that we can deal with an isolated

electronic level labelled by the total electronic angular momentum quantum

number j. The zero-order wave functions (eigenfunctions ofH0) are separable in

the electronic and nuclear variables and are eigenfunctions of J
2

,JZ ,
I
2 and

(where J = L + S is the total electronic angular momentum operator). Using

the Dirac notation, we shall write them as \yjm,IMi), where the symbol y

represents additional quantum numbers. These zero-order wave functions arc

(2j + 1)(27 + l)-fold degenerate in m
}
and Af7 . We also remark that in the Pauli

approximation (see Appendix 7) — which we shall adopt here — the zero-order

wave functions are also eigenfunctions of 1. and S , and will thus be written

more explicitly as \kjrrijIMj).

We now examine the perturbation //md due to the magnetic dipole moment

j(iN of the nucleus. The magnetic field due to this dipole moment will interact

with both the orbital angular momentum L and the spin S of the atomic

electron. We shall denote the former interaction by H[ and the second by H'z , so

that

#md = H[+H '

2 [5.124]
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The term H[ is readily evaluated as follows. The vector potential A(r) due to a

point dipole located at the origin is

A(r) = Mo

477
Jlx x V

- * *7 [5.125]

Neglecting for a moment the spin of the electron, the interaction term due to the

presence of the vector potential A(r) is (see [4.22])

//[ = -— A V [5.126]
m

Inserting [5.125] into [5.126] we obtain after a straightforward calculation

(Problem 5.7)

rji _ Mo 2 J_ T . U
4-77 ft r

=r|w«7Ll [5.127]
47t n r

where we have used [5.116] and we recall that L = r x p. We remark that the

term H
[
may be interpreted as the interaction of the nuclear dipole moment jM.n

with the magnetic field — (|Uo/47r)eL/wtr
3 created at the nucleus by the rotation

of the electronic charge. We also note thatH i has non-zero matrix elements only

between states for which 1^0.
Next, we find the contribution H2 arising from the electron spin S. The

magnetic field associated with the vector potential [5.125] is

a = V x A

Mo

477

- v(jfcN V)
j

[5T28]

The spin magnetic moment of the electron is M s — gs
^S/h so that the

corresponding interaction energy is (with gs
= 2)

H'2 = -A • ® = 2MbS • 35/ft [5-129]

or

MoH'2=Y-477 Ms
itNV

2 - - (JH, • VXHN • V) -

Mo 2

~4^Y28i^n s • I v 2 -| - (S • V)(I • V)_- [5.130]

where we have used [5.116].

It is convenient to examine the termH2 separately for the two cases r j= 0 and

r = 0. Since the hydrogenic wave functions behave like r at the origin, the
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expression of //) at r = 0 will only be relevant for states with / = 0 (s-states).

We first note that since

—4 tt S(r) [5.131]

the first term in square brackets in [5.130] vanishes for r f 0. It is also a simple

matter to show (Problem 5.8) that for r f 0

(S V)(I • V) - = - \ S I

(S • r)(I • r)

rf 0 [5.132]

Hence, using [5.130] and [5.132], we have

Mo 2tt t r~y> “
Hl ~

4-77 ¥ 7 s i
(S • r)(I • r)

Mo J_
4 tt r

}
41 . M 3

(JLS
r)(JlN • r)

r f 0 [5.133]

which represents the dipole-dipole interaction between the magnetic moments
of the electron and the nucleus. Adding the results [5.127] and [5.133], the

interaction between the nuclear magnetic dipole moment and an electron for

which / f 0 is seen to be

Mo 2 1Hmd - ^ £/MbMn
r
3 L I - S I + 3

(S • r)(I • r) >
r f 0

[5.134]

Let us now return to the expression [5.130] of//) and consider the case r = 0,

which is important for s-states (/ = 0). We have already seen that the first term

in square brackets in [5.130] is porportional to <5(r). The second term in square

brackets contains a similar term proportional to 5(r), as we now show. Indeed,

for matrix elements involving spherically symmetric states (with / = 0) we
remark that out of the expression (with X] = x, x2 = y, x i — z)

(S v)(i • V) - = 2 2 SJ,
dx.dx;

[5.135J

all terms will vanish except those with i - j. Each of the matrix elements of

d
2 A\ / n n

dxj \ r /
’ dx\ \ r /

’ dx
2

\ r

must have the same value, so that for l
= 0

(S • V)(I • V)
| = J

(S • I)V
2W

= — -j- S • I 5(r) [5.136]

237



One-electron atoms
5.5

From these equations and the fact that the term H 1 does not contribute for

states with Z = 0, we deduce that the interaction between the nuclear magnetic

dipole moment and an s electron is given by

#md = ^ -p SiFbFn
-J-

5 (r)S ' 1

= .J±!L^Ms-Mk 8 it), 1 = 0 [5.137]

477 3

This expression, which is proportional to S(r), is called the Fermi contact

intcTUCtioYi

.

We now proceed to the calculation of the first-order energy shifts due to the

perturbations [5.134] and [5.137]. We begin by considering the case l f 0, and

write [5.134] more simply as

[5.138]

where

G = L - S + 3
(S • r)r

[5.139]

We have seen above that the zero-order wave functions \lsjm,IM, > are

(2j + i)(21 + l)-fold degenerate in m
r
and M; . By analogy with the spin-orbit

coupling discussed in Section 5.1, the diagonalisation of the perturbation is

greatly simplified by introducing the total angular momentum of the atom

(nucleus + electron)

We shall denote by F{F + 1 )h
2
the eigenvalues of the operator F 2 and by MPh

those of Fz ,
with Mf = -F, —F + 1, . . . , +F. From the rules concerning

the addition of angular momenta, the possible values of the quantum number F

are given by

F = \I - j\, \I ~ j\ + 1 1,7 + j [5.141]

Since F and MP remain good quantum numbers under the application ot the

perturbation H'Mu

,

it is convenient to form new zero-order functions \lsjIFMP)

which are linear combinations of the functions
|

IsjmjIMj). The energy shift due

to the perturbation [5.138] is then

A£ = 4 giWn{bjIFMP
477 hr

-G I

r
IsjIFMFh l + 0 [5.142]

Using the identity [5.76] we can replace the matrix element of G I taken

between states with equal j by that of

G I =
(G • J)(I • J)

j(J + l)h
2

[5.143]
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Moreover, since

F2 = I
2 + 21 J + J

2
[5.144]

so that

I J = i(F
2 - I

2 - J
2
) [5.145]

we have

A£ = j [F(F + 1) - /(/ + 1) - j(j + D] [5.146a]

with

C- — 2&MBMN
y(>+ 1)|2 ( f

3G
j)>

l f 0 [5.146b]

and we have used the simplified notation () for the expectation value.

The quantity (r~
3 G • J) is readily obtained as follows. We first note that

since L • r = 0, we may write

,
(S ' r)r

G-J = (L-S + 3^y
(S • r)

2

• (L + S)

= L2 - S2 + 3

It is easily shown (Problem 5.8) that

= 0

so that G • J = L2 and

Thus we have

-rG'J = /(/ + 1 )h
2

Mo ,
/(/ + 1) /

1C-— 2^mbmn ]^TT)\7

Mo , ld+ 1) Z 3

47

t

g/^N
kj + 1 ) *yi(i + 1/2)a + 1 )’

l ^0

[5.147]

)

[5.148]

[5.149]

[5.150]

where we have used the expectation value of r
3
given by [3.73], and we recall

that ap = a0(m/pi), \x being the reduced mass of the electron with respect to the

nucleus.

Turning now to the case of s-states (/ = 0), the first-order energy shift due to

the perturbation [5.137] is

AE =
4^ T1 g/MBMN T <5(r)S '

I} ’ 1 = 0 [5-151]
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As L = 0, we have F = I + S, from which

S I = i(F
2 - I

2 - S
2
)

[5.152]

and therefore

AE = y [F(F + 1) - /(/ + 1) - s(s + 1)]
[5.153a]

with

Now

Mo 87T

C0 = -p 2^/MbMn -j- <S(r)>,

4tt 3

<5(r)) = |</'„ooO)|
2

8(f) dr

= l<A„oo(0)|
2

Z3

Train
1

where we have used the result [3.60]. Thus

/ = 0

Mo 16 z

3

C0
- “ r g/MbMn 3 3

4rr 3 a^n

[5.153b]

[5.154]

[5.155]

Comparing [5.146] and [5.153], and recalling that; - s for s-states, we see

that for both cases l f 0 and / = 0 we have

A£ = y
[F(F + 1) - /(/ + 1) - Kj + !)]

[5.156a]

with

Mo 1 _£l
C ~

A-jr

4^/MbMn
;(; + 1)(2/ + 1) a

3 n
3

[5.156b]

Using atomic units and introducing the fine structure constant a, we may also

write this result as

1 m Z3a2

=
2Wp

81
M'

m i

1 f{F + l) - /(/ + i) - + i)

;(; + 1)(2/ + 1)

a.u. [5.157]

For a given nucleus having a spin quantum number /, a fine structure atomic

energy level corresponding to fixed values of / and; is therefore split further into

hyperfine components labelled by F. Since the energy correction does not

depend on MF ,
each of these hyperfine energy levels is (2F + l)-fold degener-

ate The possible values of F being |/ |J - ;|
+ 1, •

;
/ + 7 (see [5.141]),

the number of hyperfine structure components corresponding to a fine structure
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5.5 Hyptrfint structure and isotopt shift*

energy level is the smaller of the two numbers (2

j

+1) and (21 + 1). These

components are said to form a hyperfine structure multiplet. As an example, we
shown in Fig. 5.18 a schematic drawing of the hyperline structure splitting

of the n = 1 and n = 2 levels of ‘ordinary’ hydrogen (H) and deuterium (D).

For ‘ordinary’ hydrogen the spin of the nucleus is just the spin of the proton,

I = 1/2, and since; = 1/2, 3/2, . . . we always have hyperfine doublets. On the

other hand, for deuterium the spin of the nucleus is I = 1, so that we have

doublets for j = 1/2 and triplets for the other values of ;.

We remark from [5.156J that since the quantity C is independent of F the

energy difference between two neighbouring hyperfine levels - called hyperfine

separation - is just

AE(F) - AE(F -
1) = CF [5.158]

and is thus proportional to F. This is an example of an interval rule. From

[5.157] we also see that the energy separation SE between the two outermost

components of the hyperfine multiplet (corresponding to the values F\ = / + j

and F

i

= \I - j\ of the quantum number F) is given in atomic units by

m
j

yu.

\

3
2Z3a 2

Vm)
81

n\j + 1X2/ + 1)
/(; + 1 /2)

for j

[5.159]

The hyperfine structure of spectral lines resulting from the magi, '" dipole

interaction may be obtained (in a way similar to the fine structure discussed in

Section 5.1) by combining the above results with the selection rules for

electromagnetic transitions between energy levels. For electric dipole transitions

the selection rules obtained in Section 5.1 (A/ = ±1 and A; = 0, ±1) remain

valid, and in addition it may be shown that the quantum number F obeys the

selection rule

AF = 0, ±1 [5.160]

the transition F = 0 —» F = 0 being excluded. Examples of allowed hyper-

fine transitions are shown in Fig. 5.19. We note that transitions between

levels having the same value of j but different values of F can also take place.

These transitions are in the microwave region and are generally weak, so that

they are best observed by using stimulated emission techniques.

The hyperfine transitions, observed by optical or microwave spectroscopy,

can be used to determine the spin / and magnetic dipole moment .4fN = gi I of

the nucleus. Indeed, the maximum hyperfine multiplicity of levels with large

enough
;
gives (21 + 1) and the hyperfine separation allows the determination of

the nuclear Lande factor gr . Using the generalisation of the above equations for

complex atoms (to be discussed in Chapter 8), the dipole magnetic moments of

many nuclei have been obtained.

The hyperfine structure of the lsi/2 ground state of ‘ordinary’ hydrogen (H) is

of particular interest, because in this case very elaborate calculations can be
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5.5 Hyptifin* structvrt and isotop* shifts

5.19 Allowed dipole transitions between n'p and ns levels of hydrogen. There is no restriction on n'

and n, and the case n' = n is allowed.

carried out and compared with extremely high precision measurements, per-

formed by using atomic beam magnetic resonance methods [14]. Since the

proton spin is / = 1/2 and the level ls1/2 has a total electronic angular

momentum quantum number j
= 1/2, this level splits into two hyperfine

components corresponding to the values F = 0 and F = 1 , the state T 'h F = 0

being the ground state (see Fig. 5.18). Using [5.159] we see that the Aergy

difference between the two hyperfine levels is given in atomic units by

4 m
8£ =

3 «;
[5.161]

where gp = 5.5883 is the Lande factor of the proton. From this result we find

that the frequency v = 5E/h of the transition between the two hyperfine levels

(which is a magnetic dipole transition) is v — 1420 MHz, the corresponding

wavelength being A — 21cm. The experimental value of v, obtained by Ramsey

el al. in 1963 with the ‘atomic hydrogen maser’ [15] is one of the most

accurately measured quantities in physics; it is given by

v = (1420405751.800 ± 0.028) Hz [5.162]

It is gratifying to note that the simple theory presented above agrees with this

result within about 0.1 per cent. Much better agreement between theory and

experiment can be obtained by including various corrections in the theoretical

calculations. The most important of these is the introduction of the anomalous

magnetic moment of the electron, according to which the spin gyromagnetic ratio g,

of the electron is slightly different from the value gs
= 2 predicted by the Dirac

[14] A detailed description of these methods may be found in Ramsey (1955).

[15] Masers are discussed in Chapter 14.
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theory [6]. However, there is no theory at the present time that can account for

all the significant figures given in [5.162]!

We also remark that the transition between the two hyperfine levels t I

and F = 0 of the ground state of hydrogen plays a very important role in

radio-astronomy. Indeed, from the analysis of the intensity of the 21 cm

radio-frequency radiation received, the astronomers have been able to learn a

great deal about the distribution of neutral hydrogen atoms in interstellar space.

We shall return in more detail to this question in Chapter 14.

Electric quadrupole hyperfine structure

A second important characteristic of the structure of a nucleus is the electric

quadrupole moment. It is a symmetric, second-order tensor whose components

q are defined in the following way. Let Rp be the coordinate of a proton with

respect to the centre of mass of the nucleus, and let Xpl = Xp , Xp2
- YP ,

Xpi = Zp be its Cartesian components. Then

0,-2 iXptXpj - 8*R| <U= 1.2.3) [5.163]

P

where the sum is over all the protons in the nucleus. It is customary to define the

magnitude Q of the electric quadrupole moment as the average value of the

component Qzz = Q33 ‘n the state 11, Mj - I). That is

Q = </, M, = I\Qa \I, M t = I)

= [LM, = / 2 3Zp - Rl I,M, = I [5.164]

The quantity Q has the dimensions of an area and is often measured in barns

riO
24 cm2

). For example, the deuteron has a electric quadrupole moment of

magnitude Q = 0.0028 barns. It is clear from [5.164] that a nucleus whose

charge distribution is spherically symmetric has no electric quadrupole mo-

ment, since then the average value of 3Z 2
is equal to that of Rp

X 2 4 . y2 + Z 2
. In fact the value of Q gives a measure of the deviation from a

spherical'charge distribution in the nucleus. If the nuclear charge distribution is

elongated along the direction of I (prolate), then Q > 0; on the other hand

q < 0 if the charge distribution is flattened (oblate).

The interaction energy HkQ between the electric quadfupole moment of the

nucleus and the electrostatic potential Ve created by an electron at the nucleus

was first obtained by H. Casimir. Provided / and j are both good quantum

numbers, it is given in atomic units by [16]

HkQ
f I • J (21 • J + 1)~ I

2
J
2

B
2/(2/ - 1 )j(2j - 1 )

[5.165]

[16] See for example Casimir (1963) or Ramsey (1953).

244



5.5 Hyperfine siructur* and isotopi tkifu

where the quadrupole coupling constant B is given by

ld2Vc \

B = Q
dz

2 [5 . 166]

Here

d
2V(

dz
2

= \J>

d
2Ve

= -7, m
j

dz2

lz
:

), mj = 7

h m
j
= J [5 . 167]

is the average gradient of the electric field produced by the electron at the

nucleus.

The first-order energy shift due to the electric quadrupole interaction [5.165]

is

AE = (jIFMF\Heq\j'IFMf)

B \K(K + 1) - 2/(7 + 1)7(7 + 1)

7(2/ - 1)7(27 - 1)
[
5 . 168]

where
K = F(F + 1 )

— 7(7 + 1) - 7(7 + 1) [ 5 - 169]

Since (d
2Ve/dz

2
) vanishes when the electron charge distribution 's spherically

symmetric, there' is no quadrupole energy shift for s-states. We rc. ') that the

nuclei having no spin (7 = 0) or a spin 7=1/2 have no electric quadrupole

moment, so that the energy shift [5.168J also vanishes in this case.

Adding the electric quadrupole correction [5.168] to the magnetic dipole

energy shift [5.156] we find that the total hyperfine structure energy correction

is given by

_ C B 1K(K+ 1) - 27(7 + 1)7(7 + 1)

i£_ 2^ +
4 7(27 - 1)7(27 - 1)

[5.170]

Because its dependence on the quantum number F is different from that of the

magnetic dipole correction [5.156], we see that the electric quadrupole inter-

action causes a departure from the interval rule [5.158].

It is worth noting that the hyperfine energy levels obtained after the

correction [5.170] has been applied are still independent of the quantum

number MF , and hence are (IF + l)-fold degenerate. This degeneracy can be

removed by applying an external magnetic field. We shall return to this Zeeman

effect in hyperfine structure in Chapter 8.

Isotope shifts

We now consider briefly the isotope shifts, which do not give rise to splittings of

the energy levels. As we pointed out above, these isotope shifts are caused by
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two effects: the mass effect (due to the fact that the nuclear mass is finite) and the

volume effect (arising from the distribution of the nuclear charge within a finite

V

°FoTone-electron atoms the mass effect is readily taken into account by the

introduction of the reduced mass M = mM/(m + M), as we saw in Chapters 1

and 3. For the case of atoms with more than one electron the finiteness of the

nuclear mass gives rise to an additional energy shift called the mass polarisation

correction, which will be examined in Chapter 6.

Pauli and Peierls first pointed out in 1931 that the difference in nuclear

volume between isotopes can produce an isotope shift. Indeed, since the protons

in the nucleus are distributed in a finite nuclear volume, the electrostatic

potential inside the nucleus deviates from the 1/r law, and depends on t e

proton distribution within the nucleus. In order to obtain an estimate of this

volume effect, let us consider a simple model of the nucleus, such that t e

nuclear charge is distributed in a uniform way within a sphere of radius

R = r0A
1/3 [5- 171 3

where A is the mass number of the nucleus, and ro is a constant whose value is

given approximately by r0 - 1.2 x 1(T
15 m. In this model, the electrostatic

potential V(r) due to the nucleus is easily shown to be (Problem 3.9)

V(f) =

' Ze2 fr
2

(4tteo)2R \R 2

Ze 2

(47re0)r

[5.172]

To simplify the problem further, we shall assume that the unperturbed

Hamiltonian H0 is the hydrogenic Hamiltonian [5.1] and that the perturbation

H' is just the difference between the interaction [5.172] and the Coulomb

interaction -Ze2
/(Aire0)r. Thus all other effects (such as the relativistic

corrections) are neglected and we have

H' =

Ze 2

+
2R

[5.173]

is

(47T£o)2.R \ R
2

> /

.0

The first-order energy shift due to this perturbaticHi

AE =

where we have used [3 .48] and the fact that the spherical harmonics are

normalised on the unit sphere. Inside the small region r ^ R we may write

R ,(r) - R ,(0). Moreover, since R nl(0) vanishes except for s-states (/ - 0), we

[5.174]
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have, after a straightforward calculation (Problem 5.9)

Ze2 R2

AE =
4ve0 10

Ze 2 2v

l^no(0)|
2

i?
2
|^oo(0)|

2
, l = 0

4tt£o 5

while AE — 0 for states with l f 0. Using [3.60] we have explicitly

-2 2 Z4

AE =* -R1

4tt£q 5 a^n3 ’ Z = 0

[5.175]

[5.176]

The quantity which is measured experimentally is the difference 8E of energy

shifts between two isotopes, whose charge distributions have radii R and

R + 8R, respectively. We thus find to first order in 8R

SE
Ze2

4tte0

4tt

T /?
2
|<A„oo(0)|

2
8R

~R

Ze 2
4 , Z4 8R

J^2
47T£o 5 a

3
n
3 R

[5.177]

We note that the isotope with the larger radius has the higher '-w value, and

this is confirmed by experiment. We also see that 8E increases when Z increases

and n decreases, so that the most important volume effects occur for low-lying

s-states (and in particular the ground state) of hydrogenic atoms with larger Z.

So far we have only considered ‘ordinary’ hydrogenic atoms (ions) containing

a nucleus and an electron. As we pointed out in Chapter 3, there exist also

‘exotic atoms’ such as muonic atoms, in which a muon /x

~

forms a bound system

with a nucleus. We also noticed in Chapter 3 that since the mass of the muon
/x is about 200 times larger than the electron mass, the Bohr radius associated

with muonic atoms is much smaller than for ‘ordinary’ (electronic) atoms (see

Table 3.2). We therefore expect that hyperfine effects will be much larger for

muonic atoms than for the corresponding ordinary atoms. In particular, using the

fact that the quantity aM is roughly 200 times smaller for a muonic atom than for

an ordinary atom, we deduce from the foregoing discussion that the volume

effect will be considerably magnified for muonic atoms, as we pointed out in

Section 3.5.

Problems

5.1 Show that the ratio of the probabilities of the transitions in atomic

hydrogen «P3 /2
—» n's l/2 and np 1/2 -* n'si/2 is 2:1.

5.2 (a) Show that the Hamiltonian of a free electron in a uniform time-

independent magnetic field 9ft = is given by H = Hxv + H,,
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Problems

with

= s <p; + ^ + s “l{%1+y)

and
+ coi_ (Lz + 2Sz)

where coL = = 2nv x ,
is the Larmor angular frequency.

(b) Using the fact that H can be written as a square, H = (p + eA)
2/2m,

and that the Hamiltonian Hxy of the harmonic motion m theXY plane

is invariant under the reflection x -* -x, y -*• -y, show that the

energy eigenvalues are given by

E = + hwL (2r + 2ms + 1)

2m

where -« < k < + °°, r = 0, 1, 2, . . . and ms
= ±1/2. For given k

and ms
the discrete energy levels labelled by the quantum number r are

called Landau levels.
,

(c) In neutron stars magnetic fields of the order of 10 T may occur. Find

the energy separation between the adjacent Landau levels. What is the

size of the region to which the motion in the XY plane is confined.

5.3 Show that in the limit of strong magnetic fields in transverse observation

the intensity of the v Zeeman component is twice that of the a.

5.4 Show that in the linear Stark effect the n = 3 level of a hydrogen atom is

split into five equally spaced components, and obtain the level separation

in electron-volts.

5.5 Suppose that at time t
= 0 a hydrogen atom is in an arbitrary superposi-

tion of the 2s and 2p0 states. A constant electric field of strength 1° V/m

is then applied along the Z axis. Show that during the lifetime of the 2p0

state (due to radiative decay to the Is state), the average population of the

2s level is nearly the same as that of the 2p0 level.

5.6 Show that the second-order correction to the energy in perturbation theory

can be written as

E(P =
{H'

2
)nn (

H '

nn )

2 Ek\H'J

k%En{En Ek )

5.7

5.8

5.9

By neglecting the sum of the right-hand side obtain the approximation

[5.109] for the quadratic Stark effect.

Verify that the expression [5.127] follows from [5.125] and [5. J.

Prove the relations [5.132] and [5.148].
,

Consider an electron in the electrostatic field of a nucleus of charge Ze, an

of mass number A. If the nuclear charge is distributed uniformly within a

sphere of radius R = r0A 1/3 where r0 = 1.2 x 10 m, show that the

potential is given by [5.172], and verify that the first-order energy shift

due to the perturbation [5.173] is given by [5.175];
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Two-electron atoms

In this chapter we begin our study of many-electron atoms by considering the

simplest ones, namely atoms (or ions) consisting of a nucleus of charge Ze and

two electrons. These include the negative hydrogen ion H ~ (Z = 1), the helium

atom (Z = 2), the singly ionised lithium atom Li
+
(Z = 3), and so on. These

systems deserve particular attention for two reasons. It is for these systems that

we shall first study in detail the implications of the Pauli exclusion principle,

which plays a central role in atomic and molecular physics. Secondly, it is for

two-electron atoms that various approximations used in atomic structure

calculations can be explained most easily and tested accurately.

We shall limit our discussion to the non-relativistic theory of two-electron

atoms. After analysing in succession the space and spin symmetries and the role

of the Pauli exclusion principle, we will discuss the level scheme 'f two-electron

atoms and introduce the independent particle model, which i of great

importance in studying many-electron systems. We then study in some detail

the ground state and the lowest excited states of two-electron atoms, using

perturbation theory and the variational method, and conclude this chapter with

a brief survey of autoionising states.

6.1 THE SCHRODINGER EQUATION FOR TWO-ELECTRON ATOMS.
PARA AND ORTHO STATES

Let us consider an atom (or ion) consisting of a nucleus of charge Ze and massM
and two electrons of mass m. As in the case of one-electron atoms, we shall begin

our treatment by neglecting all but the Coulomb interactions between the

particles, and by writing down the Schrodinger equation for the spatial part of

the wave function describing the relative motion. The separation of the centre of

mass motion is somewhat more complicated than for the case of one-electron

atoms, since we are now dealing with a three-body problem. This separation is

performed in Appendix 8 for the general case of an atom (ion) having N
electrons. Denoting by ri and t2 the relative coordinates of the two electrons

with respect to the nucleus (see Fig. 6. 1) we see from the equations [A8. 12] and

[A8.16] of Appendix 8 that the Schrodinger equation for the spatial part
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6.1 Coordinate system for two-electron atoms.

i/,(ri , r2 ) of the wave function describing the relative motion is for a two-electron

system

Ze2 Ze 2

V V
M

«A(ri , r2 )
= EtKrx, r2) t6 - 1 ]

!Lv2 -V
'2
M

r
’ 2M

'2 ^ r
'

r2

(477eo)ri (477e0)r2

+
(4tT£0)ri2

where m = mM/(m + M) is the reduced mass of an electron with respect to

the nucleus and rn =
l

r i
” f2 |.

. „ . , , ,
. ,,, _ . „

We shall first consider the case of an ‘infinitely heavy nucleus (M ) so

that (i) m = m and (ii) the ‘mass polarisation’ term (-h2/M)V
Tl

' V r,
can be

omitted. We shall work in atomic units (a.u.), in which the Hamiltonian is

H =
1 1 ,

Z Z 1

V2 — v2 —— + —
2

r
' 2

2 n r2 rl2

and the Schrodinger equation for 0(r, , r2 )
becomes

[6 . 2]

_I v2

1 r
l

1 ,
z Z 1

— V 2 4

2
2 r !

r2 r12

0(ri, r2) = £00* , r2) [6.3]

\

We note that this equation is unchanged when the coordinates of the two

electrons are interchanged. Thus, if we denote by P 12 a permutation operator

that interchanges the spatial coordinates of the two electrons, the wave functions

0(r2 ,
r i)

= p i24>(ti’ ti) 1-6-4]

and 0(rl5 r2) satisfy the same Schrodinger equation. Moreover, both functions

0Cn, r2 ) and 0(

r

2 ,
r,) must be continuous, uniform and bounded. If 0(n, r2 )

corresponds to a non-degenerate eigenvalue, 0(ri , r2) and 0(r2 , r0 can only

differ by a multiplicative factor A,

0(r2 ,
r0 = P i 20Oi, r2) = A0O*, r2)(

[6.5]
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6.2 Spin toavt functions and Pauli inclusion primciph

Applying the permutation operator Pn twice, we must obtain tKri, r2 ) again.

Thus

P2
u>P(ri, r2) = AP, 2(K'u r2 )

= A
2
i/r(ri , r2 )

= <P(Xi , r2 ) [6.6]

so that A
2 = 1 , A = ± 1 and

1AO2 , ri) = ± i//(r
1 , r2) [6.7]

Wave functions which satisfy [6.7] with the plus sign (that is, whose spatial

part remains unchanged upon permutating the spatial coordinates of the two

electrons) are said to be space-symmetric and will be denoted by t/»+(ri, r2). On
the other hand, wave functions satisfying [6.7] with the minus sign (that is,

whose spatial part changes sign on interchanging the spatial coordinates of the

two electrons) are said to be space-antisymmetric and will be written as

(//_ (rl5 r2); It is straightforward to show (Problem 6.1) that for degenerate

eigenvalues the eigenfunctions of [6.3] can always be chosen so that [6.7] holds.

Thus the eigenfunctions of a two-electron atom can be classified as being either

space-symmetric or space-antisymmetric. The states described by space*

symmetric wave functions are called para states; those corresponding to

space-antisymmetric wave functions are known as ortho states.

6.2 SPIN WAVE FUNCTIONS AND THE ROLE OF
,

THE PAULI EXCLUSION PRINCIPLE

Until now we have not taken into account the spin of the two electrons. In the

case of one-electron atoms we have seen in Chapter 5 that the electron spin only

affects the fine and hyperfine structure of the spectrum. On the contrary, for

two-electron atoms, we shall see that spin effects directly influence the spectrum

because of the requirements of the Pauli exclusion principle.

Since we are now dealing with the Hamiltonian [6.2] which is spin-

independent, the atom can be completely described by specifying its spatial

eigenfunction, together with the components of the electron spins in a given

direction, which we choose as our Z axis. Thus the full eigenfunctions fl7 of the

system must be products of the spatial eigenfunctions iKu , r2) satisfying the

Schrodinger equation [6.3] times spin wave functions *(1, 2) for the two-

electron system. That is

'P(?i> 92) = rzML 2) [6. 8

1

where q, denotes collectively the space and spin coordinates of electron i.

Spin wave functions

The spin wave functions ^-(1, 2) are easily constructed from our knowledge of

the spin wave functions ^i/2 ,m (l) and x\/ 2 ,m(?) of the individual electrons. Let
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us denote by Si and S2 the spin operators of the two electrons, and by (Si), and

(52)2 the components of these operators along the Z direction. We also write the

basic spin functions (see [2.209]) of the two electrons as a(l), (3(1) and a(2),

/3(2), respectively. We emphasise that Si only acts on a(l) and 0(1), while S2

operates only on a(2) and (3(2), so that the two operators Si and S2 commute.

The total spin is represented by the operator

S = Si + s 2 [6.9]

whose z component is

= (Si), + (S2X [6.10]

Because S2 = S2 = 3/4 (in a.u.) we have

S
2 = S2 + S 2 + 2S, • S2

= 2 + 2Si ' S2
[6.11]

Since there are no spin-dependent interactions each electron spin can be

directed either up ( f ) or down ( | ) independently of the other, and we have four

independent spin states each of which can be represented as the product of two

individual spin functions. That is

*,(1,2) = a(l)o(2)t T

*2(1,2) = a(l)0(2)T 1

*3( 1 , 2) = (3(l)a(2){ |

*4(1,2) = 0(1)/3(2)H C6 - 12 ]

where the arrows illustrate the situation regarding the z components of the

electron spins. Now

S«*i(l, 2) = [(50, + (S2),]or(l)a(2)

= [(Si),a(l)]a(2) + a(l)[(52)Ba(2)]

= 2 a(l)a(2) + 2 a(l)a(2)

= Arid, 2) X [6.13]

\

Thus, if we write the eigenvalue equation for the operator Sz (in a.u.) as

SzX = MsX \ \ [6 - 14]

we see that Xi is an eigenstate of Sz corresponding to the eigenvalue Ms = + 1

.

Similarly, the spin states \2 > 30 and X4 are easily shown to be eigenstates of Sz

corresponding respectively to the values M$ = 0, 0 and —1 of the quantum

number Ms [1], Using [6.11] and the basic relations [2.206], the action of the

operator S 2 on the four spin functions [6.12] can also be studied (Problem 6.2).
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Table 6.1 Values of S,x and S(v (in a.u.) for the four two-electron spin functiona [6.12]

Spin function \ S2X s 1
*

*,i

= “(l)o(2) 1

1

*1 2*1

*2 = a(l)j8(2)ti 0 *i + *»

*3 = /3(l)a(2)4T 0 Xi + *»

*4 = /3(l)/3(2) 1 1
~*4 2*4

The results are given in Table 6.1. If we write the eigenvalue equation for S 2

(in a.u.) as

S
2

* = 5(5 + 1)* [6-15]

we see that both and x* are eigenstates of S 2 corresponding to the eigenvalue

5(5 + l) = 2, that is to the value 5 = 1 of the quantum number 5 associated

with the magnitude of the total spin. On the other hand, *2 an(i Xi arc tuM

eigenstates of S 2
.

Looking back at the four spin functions [6.12], we also see that both *] and *3

are symmetric in the exchange of the labels of the two electrons, while neither Xi

nor Xi is symmetric or antisymmetric. As we shall see below, it is essential to

deal with two-electron spin functions which are either symmetric or antisym*

metric in the interchange of the electron labels. Fortunately, it is easy to form

linear combinations of xi and Xi which are respectively symmetric and

antisymmetric in the exchange of the electron labels 1 and 2. That is

*+(l, 2) = —= [*2(L 2) + *3(1, 2)]

V ^
\ [6 . 16 ]

and

*-(l, 2) = 4= M, 2) - Xiih 2)] [6.17|

V 2

where the subscripts + and - denote the symmetric and antisymmetric

functions, respectively, and the factor 2
12

has been introduced so that both x i

and x- are normalised to unity. Using the results of Table 6.1, we see that the

symmetric spin function x+ is an eigenstate of both operators S and Sz , with

quantum numbers given by 5 = 1 and Ms = 0, respectively. The antisymmet-

ric spin function x- is also an eigenstate of both S" and Sz , with corresponding

quantum numbers 5 = 0 and M$ = 0. In what follows, and by analogy with the

one-electron case, we shall write the eigenstates common to both operators S

and Sz as Xs,ms > so that in this new notation we have *o,o = X-> Xi,\ "An
*i,o = * + and *i,-i = A4-

The foregoing discussion shows that, starting with the four independent and

normalised spin functions [6.12], we can construct four normalised and

mutually orthogonal spin functions which are eigenstates of both operators S

and Sz and possess a definite symmetry in the exchange of the two electrons.
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These are the antisymmetric spin function

*o,oO, 2) = 4= [or(l)P(2) - /3(l)a(2)] [6-18]

V ^

three symmetric spin functions

*i,i(l, 2) = a(l)a(2)

*,,0(1 , 2) = [a(D/3(2) + PC 1)«(2)] [6 - 193

v 2

*i,-i(l, 2) = P(l)j8(2)

The antisymmetric spin function [6.18] corresponding to the quantum numbers

5 = o and Af s
- = 0 is called a (spin) singlet, while the three symmetric spin

states [6.19] corresponding to the total spin 5 = 1 and to the quantum numbers

Ms — 1? 0, — 1 ,
respectively, are said to form a (spin) triplet (see Table 6. ).

Table 6 2 Values of the quantum numbers S and Ms for the antisymmetric spin function [6.18],

L the three symmetric spin functions [6.19], Each of these spin unctions is a simultaneous

eigenstate of the operators S 2 and S, ,
with eigenvalues given respectively (in a .u.) by S(S D d

Af s . The antisymmetric spin function [6.18], corresponding to S - 0 Ms - 0 is a
_

sP« sin
8 ^

while the three symmetric spin states [6. 19] corresponding to S = 1 and Af5 - 1, 0, 1 are seen

form a spin triplet

Spin function 5 Af5

-L[a(l)j8(2) - /3(l)a(2)] 0 0

a(l)a(2) 1
1

± [a(l)/3(2) + /3(l)a(2)]

J2

1
0

./3(l)/3(2)
1

-1

The role of the Pauli exclusion principle

Let us now return to the equation [6.8]. At first sight, it would appear that by

combining the four spin states [6.18] and [6.lj>] with the spatial eigenfunctions

<Kr, , r2 ), we could obtain four times as many eigenstates T(g, , q 2 )
for an atom

(or ion) with two spin 1/2 electrons than if the electrons were spinless. However,

this is not the case because, as we have seen in Chapter 2, the Pauli exclusion

principle requires that the total wave function TOf,, q2 , Qn) °J a system of A/

electrons must be antisymmetric. In other words ¥(fli, qi, In) must change

sign if all the coordinates (spatial as well as spin) of two electrons are

interchanged. Hence, in our two-electron case, we see from [6.8] that m order to

obtain total antisymmetric wave functions ¥(tfi, qf) we must either multiply
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symmetric spatial (para) wave functions i//+(ri, r2 ) by the antisymmetric

(singlet) spin state [6.18],

¥(fi, q2) = *i) [<*( 1 )0(2 ) -
/3( 1 )«(2)] [6 .20]

or multiply antisymmetric spatial (ortho) wave functions , r2) by one of the

three symmetric spin functions [6.19] belonging to the spin triplet,

'J'Xtfi, 02) = <A-(ri5 '2) X

<*(1)<*(2)

-L [«(l)/3 (2) + j
8(l)a(2 )]

J2

{ 0 (00 (2 )

[6 .21 ]

Thus para states must always be spin singlets, while ortho states must be spin

triplets, so that the Pauli exclusion principle introduces a coupling between the

space and spin variables of the electrons.

6.3 LEVEL SCHEME OF TWO-ELECTRON ATOMS

We shall prove in Chapter 8 that radiative transitions between singlet and triplet

spin states (known as intercombination lines) are forbidden in the electric dipole

approximation, provided that spin-orbit interactions can be neglected. This is

the case for atoms or ions with low enough Z, so that the energy spectrum of

two-electron atoms (or ions) with Z s 40 consists of two nearly *ndependenl

systems of levels, one made of para (singlet) states and the other o. ^rtrto (triplet)

states. As an example, we show in Fig. 6.2 the first few (lowest) energy levels of

helium, divided into singlets (A = 0) and triplets (5 = 1). Because intercom-

bination lines are absent in practice in the helium spectrum, spectroscopists

spoke for a long time of two different species of helium, parahelium and

orthohelium ; this terminology is still used now.

Let L = Li + L2 be the sum of the two orbital angular momentum operators

of the electrons. Using atomic units (h = 1), we shall denote by LfL + 1) the

eigenvalues of L 2 and by ML those of Lz , so that Mj — ~L,

-L + 1, . . . + L. As seen from Fig. 6.2, the atomic energy levels, also called

terms in spectroscopic language, are designated by symbols which generalise the

ones we used for hydrogenic atoms. Thus each term is denoted as

2S+ 1L

where a code letter is associated to the value of the total electronic orbital

angular momentum quantum number L according to the correspondence

L= 012345
I $ $ III
S P D F G H
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and so on. In addition, a superscript to the left gives the value of the quantity

25 + 1, or multiplicity, which is equal to 1 for singlet (5 - 0) states and 3 for

triplet (5=1) states.

We remark that Fig. 6.2 does not exhibit the fine structure splitting oi the

levels due to the relativistic interaction between the spin and orbital angular

momentum (spin-orbit effect) and to the magnetic interaction between the

spins of the two electrons (spin-spin effect). Calling J - L + S the total elec-

tronic angular momentum and denoting byJiJ + 1) and Mj the eigenvalues of

the operators J
2 and Jz ,

respectively, it may be shown that the spin-orbit

and spin-spin interactions partially remove the degeneracy of the triplet states

by splitting them (except the
3
S states) into three closely spaced levels corre-

sponding to the three possible values J = L + \,L or L - 1 of the total angu ar

momentum quantum number J. We shall discuss this problem m Chapter 8.

It should be noted that Fig. 6.2 only represents the discrete part of the helium

spectrum. A schematic diagram of the ‘full’ spectrum for the three-body system

consisting of the He++ nucleus and two electrons is shown in Fig. 6.3. Choos-

ing the origin of the energy scale in such a way that all three particles are
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—.....—
rr ifpil

Level scheme of mo-electron atom*
!
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He+
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- He" (it - 2) + e'
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-40

-50h

-60

-He* (it = 1) + e

He (2'S)
-He (2’S)

-70h

[_
He(l'S)

~~ *0 Discrete helium levels

6.3 The ‘complete’ energy level spectrum of helium. The energy scale is relative to the threihold for

the ionisation of both electrons and the zero of energy is 54 eV (the ground sts W of Hc +
),

above the zero energy of the scale of Fig. 6.2.

unbound above E = 0, we see that the discrete levels of helium (displayed in

more detail in Fig. 6.2) lie between the ground state value £0(He) — -79.0 eV

and the value £0(He
+
)
= -54.4 eV of the ground state energy of the He 1

ion.

Thus the ionisation potential numbers given in Fig. 6.2 correspond to the

energy differences between the level £’
0(He

+
) and a given energy level of the

helium atom. For example, the ionisation potential corresponding to the helium

ground state is

/P = £o(He
+
)
- £o(He)

- 24.6 eV [6.22]

The spectrum of two-electron ions with Z > 2 is similar to that of helium

which we have just discussed. On the other hand, the negative hydrogen ion

H , for which Z = 1, constitutes an interesting special case. Indeed, as shown

on Fig. 6.4, this ion has only one bound state. The corresponding ionisation

potential is about 0.75 eV, so that the H" ion is barely stable against

dissociation into a neutral hydrogen atom and a free electron. We shall return
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E(eV)
H (Is) + c

-0.75
H^(l'S)

6.4 The ground state of the hydrogen negative ion.

below to the H“ system, which is of great importance in astrophysics, and also

provides a stringent test of the approximation methods used in the analysis of

two-electron systems.

6.4 THE INDEPENDENT PARTICLE MODEL

Before discussing in detail the ground state and various excited states of two-

electron atoms, we shall develop in this section a simple approach which yields a

qualitative understanding of the main features of their spectrum, and which will

also pave the way for our study of many- electron atoms in Chapter 7.

We begin by rewriting the basic Hamiltonian [6.2] as

H = H0 + H' [6.23]

where we choose our zero-order, ‘unperturbed’ Hamiltonian to be

1 , Z 1 _
2

z
H°‘-2 v''-7rX--T2

[6.24]

while the ‘perturbation’

1

H' = — [6.25]

r 12

is the electron-electron interaction. We remark from [6.24] that H0

sum of two hydrogenic Hamiltonians, namely

is just the

H0 = hi + h2
[6.26]

where

1
r*2

Z
1 7

*i
= -T "7^ 1 _ 2 [6.27]

In what follows we shall denote by En the energy eigenvalues and by

the corresponding normalised eigenfunctions of the hydrogemc Hamiltonian

[6.27]. Thus

k't'nj,
[6.28]

En
=

1 z2
.. / \

-7-2 (m a.u.)
L rti \

[6.29]
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Let us for the moment neglect the electron-electron repulsion term [6. 25].

The Schrodinger equation [6.3] for the spatial part of the two-electron wm
function then reduces to the ‘zero-order’ equation

//o<A
(0)(ri,r2) = £(0V(0)

(r
1
,r2 ) [6.30]

Using [6.26]-[6.29], we see that this equation is separable and that eigen-

functions of [6.30] can be written in the form of products of hydrogenic wave

functions. In particular, for discrete states, we have

<A
(0)

(ri s r2) = </v,m,(ri)<A„2
/,m/r2) l6 - 31 ]

the corresponding discrete energies being given (in a.u.) by

£/j_ J_\
2 Ui

+
»!/

[6.32]

We note that the wave function

lp
(°Xr2,X) =

<Pn2l2m!
(tl^

l
l

I
m

i
(T2) [6-33]

which differs from [6.31] only in an exchange of the electron labels, correspond!

to the same energy E(

„°X2
. This particular case of degeneracy with respect to

exchange of electron labels is called exchange degeneracy. According to the

discussion of Section 6.2 the exact spatial wave functions of two-electron atoms

must be either symmetric or antisymmetric with respect to the interchange of

the coordinates rj and r2 of the two electrons. The proper (zero-order) spatial

wave functions of our simple independent-particle model must therefore be the

symmetric ( + ) and antisymmetric (-) linear combinations

, r2) —
[

(An
1
/

|
m

l
(r l) ,/'n2/2m2

(r2) —
<l/n2l2m2

(t \) llJn
l
l

l
m,(.r2ji l^‘ 3^J

where the factor 2
1/2 guarantees that the functions </<

(
±

) are normalised. The

functions di'X
1 are therefore approximations to the para wave functions, while the

functions tff-^ are approximations to the ortho wave functions. We see that

the total orbital quantum number L can take the values L = \l\ — l2 \, • •

li + l2 , the possible values of the quantum number ML being ML = -L,

-L+l,...,+L. We also remark that in our crude model the two states <//.
0i

correspond to the same energy E n̂i . We shall see below that the electron-

electron repulsion term l/ri2 removes this degeneracy.

An exception to [6.34] occurs for the case of the ground state, where both

electrons are in the Is state (that is, n x
— n2 = 1, l\ = l2 — 0, = m 2 = 0).

The wave function i//
(0)

for the ortho state is then seen to vanish, in agreement

with the original formulation of the Pauli principle, according to which two

electrons cannot be exactly in the same state. Indeed, the spatial quantum

numbers for both electrons having the same values n = 1 , / = 0 and m — 0, the

spin quantum numbers of the two electrons must be different, so that the two
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electrons must have antiparallel spin, and only the singlet (para) state is allowed.

It is interesting to note that historically the argument was made the other way

around, the experimental absence of the ground state triplet level of helium

having provided key evidence that led Pauli to the discovery of the exclusion

principle.

The normalised zero-order spatial wave function for the ground state ol

two-electron atoms is therefore given by the simple symmetric (para) wave

function

l/'oVl >
r2) = lAlsfaWlsfo)

_ iL e
-z(n+rO [6.35]

TT

where the subscript indicates that we are dealing with the ground state, and we

have used the fact that the ground state wave function of the hydrogenic

Hamiltonian [6.27] is

•Aioofo) — •AisO’i)
[

I
e

1 77

Z3V/2
Zr, [6.36]

The ground state energy corresponding to [6.35] is (see [6 . 32])

p(0) _ p(0) _ _ 7 2

L() *^n\ = l,n
2 — 1

^ a.u. [6.37]

Thus for helium (Z = 2) we find from [6.37] that K'\~ _
4 a.u.

(= — 108.8 eV), which corresponds to an ionisation potential / P — 2 a.u.

(= 54.4 eV). The experimental values are £o
xp = — 2.90 a.u. (= —79.0 eV)

and /
e

p
p = 0.90 a.u. (=24.6 ev). As we should expect, our crude model gives an

energy which is too low because we have neglected the repulsion term [6.25]

between the two electrons, whose effect is clearly to raise the energy levels. It is

also apparent that our simple independent particle approach should yield better

results when Z is increased, since in that case the relative importance of the

neglected term l/r12 becomes smaller. For example, in the case of the C f
ion,

corresponding to Z = 6 ,
the approximation [6.37] yields E0

= -36 a.u.

(= -980 eV) while the experimental value is £o
xp = -32.4 a.u. (— -882 eV).

On the other hand, for the negative hydrogen ion H (Z = 1), the value

= -i a .u. (=* -27.2 eV) is in gross disagreement with the observed value

£§*p = -0.528 a.u. (== -14.4 eV).

Let us now examine the predictions of our simple model concerning excite

states. The energy spectrum corresponding to [6.32] is illustrated in Fig. 6.5(a)

for the case of helium (Z = 2). Also shown for comparison in Fig. 6.5(b^is

the experimental spectrum. We first remark that the energy levels En^„2

corresponding to states for which both electrons are excited (that is, ri\ - 2

and n 2 === 2) are higher than the ground state energy of the He ion

(£o(He
+

)
= -2 a.u. =— 54.4 eV) plus a free electron. These doubly excited

states therefore lie in the continuum of our simplified spectrum (see
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6.5 (a) The energy spectrum given by expression [6.32] with Z - 2. The levels are labelled by

(n i, n 2 ).

(b) The energy spectrum of helium.

Fig. 6.5(a)). Since the repulsion term l/r 12 can only raise the unperturbed

energy levels E'n '\n; , the same property is also true for the actual He spectrum,

and in fact it holds for all other He-like ions. We shall return at the end of this

chapter to these discrete states embedded in the continuum. For the moment,

however, we focus our attention on the genuinely discrete states of two-electron

atoms, for which one of the two electrons remains in the ground state. The

properly symmetrised zero-order spatial wave functions for these states are

given (see [6.34]) by

•AiVi, r2)
=

-yj
[</'ioo(ri)«/'„/m(r2) i/VmCrO'/'iooto)], n & 2 [6.38]
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and are therefore characterised by three quantum numbers (n, /, m) as in the

case of one-electron atoms. The total orbital angular momentum quantum

number L is given by L = l and the values of M, (=m) are ML - l,

-l + 1, ... /. The energy levels corresponding to the wave functions [6.38J

namely (see [6.32])

E™ = --r 1 + —
1,n 2 «

[6.39]

are degenerate in / and m. As pointed out above, they also exhibit the exchange

degeneracy, according to which the para (+) and ortho (-) levels are degenerate

in the ‘zero-order’ approximation [6.38], The electron-electron repulsion term

1 h\ 2 ,
which is ignored in the very simple approach leading to [6 39], will clearly

raise these energy levels, as may be seen from Fig. 6.5. As we shall show at t e

end of this section, the term l/r12 is responsible for removing the exchange

degeneracy between the para and ortho states.
_

For the special case of the negative hydrogen ion FT, corresponding to

Z = 1, the repulsive term l/r12 has an even more drastic effect on the spectrum,

as Fig. 6.6 illustrates. Indeed, all the excited states [6.39] which are present in

the ‘unperturbed’ spectrum shown in Fig. 6.6(a) are lifted into the continuum

when the electron-electron repulsion l/r, 2 is taken into account (see

Fig. 6.6(b)). This spectacular effect of the ‘perturbation’ l/r 12 is obviously due

(a) <>> \

6.6 (a) The energy spectrum given by expression [6.32] with Z = 1. The levels are labelled by

(«l> n2)-

(b) The energy spectrum of H .
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to the small value (Z = 1) of the nuclear charge. In what follows, when

discussing the excited states of two-electron atoms, we shall assume implicitly

that we are dealing with the case Z 3= 2.

So far we have used a very crude independent-particle approximation, in

which the electron-electron repulsion term l/r12 is completely omitted. While

remaining within the convenient framework of the independent-particle model,

we may improve our treatment by splitting the basic Hamiltonian [6.2] as

H = H0 + H' [6.40]

where

Ho = -i V 2 + V(r,) - i V 2 + V(r2 ) [6.41]

is the sum of the two individual Hamiltonians

hi =-i V 2 + V(r
t ) [6.42]

and

H' = — — - Vfn) - - - V(r2) [6.43]
r 12 n r2

In the above formulae V(r)\Js a central potential which should be chosen in

such a way that the effect of the perturbation H' is small. In Chapter 7 we shall

study in detail this central field approximation for many-electron atoms, but for

the moment we limit ourselves to simple qualitative considerations. Roughly

speaking, the net effect of each electron on the motion of the other one is to

screen somewhat the charge of the nucleus, so that a simple guess for Vfr) is

V(r) =
Z - S

r
[6.44]

where S is a ‘screening constant’ and the quantity Ze = Z - S may be

considered as an ‘effective charge’. Since the potential [6.44] is a Coulomb

interaction, the corresponding individual electron energies are given (in a.u.) by

(see [6.29])

En
i

1 (Z - S)
2

_ 1 Z[

2 nj 2 rtf

[6.45]

and are independent of the quantum numbers /, and m, . Neglecting the

perturbation H '

, the total energy of the atom is just the sum of the individual

electron energies [6.45], In particular, the ground state energy E0 is then given

approximately (in a.u.) by

E0 - -(Z - S)
2 = -Z2

[6.46J

the corresponding spatial part of the ground state wave function being (s^e

[6.35])

Z3
e

> r2)
= — e

7T

Zt(r\ + Yi)
[6.47]
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In the next section we shall use the variational method to determine the

‘optimum’ value of the effective charge Ze . Here we simply remark that the

value Ze = 1.70 would make the approximate expression [6.46] agree with

the experimental value E0 = -2.903 a.u. of the ground state energy of helium.

Since Z = 2 in this case, the corresponding screening constant is S = 0.30.

Thus, for the ground state of helium, we see that* in this simple, ‘average

shielding’ approximation, the screening effect of each electron on the other one

is equivalent to about one-third of the electronic charge.

A better choice for the central potential C(r) than the Coulomb form [6.44] is

provided by an expression of the same type, but in which the screening

constant’ S varies with the distance r. Indeed, at small distances (r —» 0), the

potential acting on an electron is essentially the Coulomb attraction -Z/r of the

nucleus, while for large r (r -* oo), this potential is just the Coulomb field

—(Z — 1 )/r due to a net charge (Z — 1), namely the nuclear charge Z screened

by the charge (
-

1) of the other electron. Thus we expect the quantity 5 in [6.44]

to be in fact an increasing function of r, which takes on the values S — 0 at r — 0

and S = 1 at r = *. Since a potential of the form [6.44] where S is a function of

r is no longer a Coulomb potential, the l degeneracy which is characteristic of the

Coulomb field is removed. Thus the individual electron energies Enl
(where we

have dropped the subscript i ) are still degenerate with respect to the quantum

number m, but now depend on both quantum numbers n and l. The principal

quantum number n is defined as in the case of hydrogenic atoms, the number of

nodes of the radial function being nr = n - l
-

1, with n = 1, 2, . . . and

l = o, 1, ... n — 1. Calling unlJr) an individual electron orbital, solution of the

single-particle equation

[-jV? + V(r)]unlm (r)
= Enlunlm (r) [6.48]

we see that unlm{r) is just the product of a radial function and a spherical

harmonic Ytm(8, <t>). It is important not to confuse the orbitals unlm{r), whose

radial part depends on V(r) and is likely to be a complicated function, with a

hydrogenic function <Pnim(r)> whose radial part corresponds to the particular

choice V(r) = -Z/r, and Which has been obtained in Chapter 3.

Let us now return to the Hamiltonian [6.41]. In terms of the individual

electron orbitals unlm(r), our new zero-order spatial wave functions, which are

the properly symmetrised eigenstates of [6.41] are given by

*Ao
0)

(r i ’
rz)

= M ioo(ri)“ioo(r2)
[6-49]

for the ground state and by

'/'i-’Cri , r2 )
= -j= [«ioo (ri)«n/m(r2 ) ± un im(ri)uioo(r2 ')], n 55 2 [6.50]

for the genuinely discrete excited states. If we still neglect the

the total energy of the atom is just

ElZi = £is + En,

perturbation H '

[6.51
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and the total orbital angular momentum quantum number is L = l. The pan

(+) and ortho (-) states [6.50] are still degenerate, but the degeneracy in l It

removed. For a fixed value of n the (algebraic) value of E„, is an increasing

function of Z. Indeed, electrons with a smaller value of Z are more likely to

penetrate at certain times the ‘centrifugal barrier’ (which is proportional to

/(/ + l)/r
2
) and hence to feel the fully unscreened attractive Coulomb potential

-Z/r of the nucleus. We therefore expect that the energy of the atom will be an

increasing function of L (=/). That this is the case may be seen from Fig. 6.2.

We note that in the central field approximation leading to [6.51] the energy of

the atom is specified by the electron configuration , that is by the values of the

quantum numbers n and l of the electrons. For the genuinely discrete states of

two-electron atoms considered here, one electron remains in the ground state

(that is, with n = 1 and Z = 0) while the other, ‘optically active’ electron has the

quantum numbers n and Z. Following the convention used in spectroscopy the

values of n and l are usually indicated by writing n as a number, and l as a letter,

according to the code described in Chapter 3 (i.e. s for l = 0, p for Z = 1, d for

1 = 2, etc.). If there are k electrons having the same values of n and Z, this is

denoted as (nl)
k

. For example, in this notation the ground state [6.49] is

characterised by the configuration (Is)
2
[also written Is

2
], the first excited states

[6.50] by the configurations (ls)(2s) [or ls2s], (ls)(2p) [or ls2p], and so on. It is

of course understood that when we write for example (ls)(3s) this does not mean

that electron 1 (say) is in the state Is and electron 2 in the state 3s, since we

know that properly symmetrised spatial wave functions must be used in order to

obtain two-electron wave functions v|hich are fully antisymmetric in the space

and spin coordinates of the two electrons.

From our discussion of the wave functions of one-electron atoms it is also

clear that for states of the excited electron corresponding to large va’ ^s of n and

Z the orbitals un/m(r) are concentrated at much larger values of r than , ) ground

state orbital «iooW- We may then speak of an ‘inner’ (Is) electron with spatial

quantum numbers (1, 0, 0) which is moving in the unscreened Coulomb field

-Z/r of the nucleus, and an ‘outer’ electron, which moves in the fully screened

potential -(Z - l)/r. For such states of large n and Z the ‘zero-order’ energy

levels are then given approximately (in a.u.) by

[6-52]
2 In

Apart from the addition constant -Z2
/2, we see that these energy levels are

identical to those of a hydrogenic atom of nuclear charge Z - 1 . This can be

illustrated by drawing the energy levels of atomic hydrogen (shifted by the

amount -1/2 a.u.) next to those of helium.

We shall not pursue further here the study of the central field approximation.

From the above discussion it is clear that according to this approximation each

electron moves independently of the other one in a net central potential V(r)

which represents the attraction of the nucleus plus some average central
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repulsive potential due to the other electron. This basic idea, first expressed by

Hartree in 1928, will be fully developed in the next chapter. It is also apparent

from the foregoing discussion that the averaged repulsive effect of the other

electron depends on its dynamical state, so that a single potential V(r) cannot,

even approximately, account for the entire energy spectrum of the atom.

To conclude this section we shall now give a simple, qualitative argument

showing how the exchange degeneracy is removed when the electron-electron

repulsion term \/t \2 is taken into account. Returning to the symmetrised

zero—order spatial wave functions [6.38], we first observe that the space-

antisymmetric (ortho) wave functions t//°
J given by [6.38] vanish for rj - r2 ,

so

that in ortho (spin triplet) states the two electrons tend to ‘keep away’ from each

other and hence, on the average, have a relatively small repulsion energy. On

the other hand, the space-symmetric (para) wave functions t//+
) do not vanish for

ri = r2; so that in para (spin singlet) states the two electrons may be very close at

certain times and experience on the average a stronger repulsion than in the cor-

responding ortho state having the same values of the quantum numbers (n, l, m).

Therefore the electron-electron repulsion term I/V12 is more effective in

raising the energy of the atom in the para (spin singlet) states, from which we

conclude that an ortho (triplet) state must lie lower than the corresponding para

(singlet) state having the same values of (n, /, m). That this is indeed the case

may be seen for example in Fig. 6.2. Thus, as pointed out in Section 6.2, the

Pauli exclusion principle introduces a coupling between the space and spin

variables of the electrons, which act as if they were moving under the influence

of a force whose sign depends on the relative orientation of their spins. Such a

force, which has no classical analogue, is known as an exchange force, and its

effects will be studied in detail in Section 6.6.

It is worth stressing at this point that exchange forces are negligible between

two electrons which always remain far apart. Indeed, in that case the wave

functions of the two electrons have a vanishingly small overlap, and the two

electrons may be considered as distinguishable. An example of this situation is

provided by the electrons of two hydrogen atoms which are located at a large

distance from each other. Similarly, for excited states of two-electron atoms

with high values of both nand /, the ‘outer’ orbital has a very small overlap with

the ‘inner’ (Is) orbital. The exchange force is then very small and the para and

ortho levels are nearly degenerate,as_may be seen from Fig. 6.2. On the other

hand, for small values of n and l (in particular for S-states) the orbitals of the two

electrons overlap significantly, and the energy difference between para (singlet)

and ortho (triplet) states is appreciable as shown in Fig. 6.2.

The results we have obtained in this section thus show that in addition to their

symmetry property (para or ortho), the spatial wave functions for the genuinely

discrete states of two-electron atoms may be characterised by the three

quantum numbers n, l(—L) and m(=ML ). The ground state is a para state and

is non-degenerate. Excluding the negative hydrogen ion H (which has no other

bound state than the ground state), the energy levels of the excited states are

degenerate with respect to ahd depend on n, on / and on 5 (with S — 0 for
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para states, and S = 1 for ortho states). The energy levels or terms may
therefore be labelled by the symbol

where the multiplicity IS + 1 takes on the values 1 or 3, and the code letters S,

P, D, . . . correspond to L = 0, 1 , 2, ... as we have seen in Section 6.3. Thus
in this notation the ground state is denoted by l'S and the following energy

levels (by order of increasing energy) are 2
3
S, 2'S, 2

3
P, 2*P, and so on. In the

following two sections we shall study successively the ground state l‘S and
various excited states by using perturbation theory and the variational method
developed in Chapter 2.

6.5 THE GROUND STATE OF TWO-ELECTRON ATOMS

We have seen in the previous sections that the ground state wave function of
two-electron atoms, 1Po(0i> <72X is a para (spin singlet) state whose general

expression in the non-relativistic approximation is

9i)
=

*Ao(r i ) r2 ) -t= [«(1)0(2) - j3(l)o(2)] [6.53]

where <Ao(ri, r2 ) is a space-symmetric function. We shall now focus our

attention on this function and on the corresponding ground state energy E0 of

the Hamiltonian [6.2]. The motion ojhhe nucleus and other small corrections

will be briefly discussed at the end of this section. It is worth noting that the

quantum mechanical treatment of the ground state of helium has been of great

historical importance since the ‘old quantum theory’ was unab' \to deal

successfully with the problem. \

Perturbation theory

We shall first use the time-independent perturbation theory of Section 2.8. As
in the beginning of the previous section, we split the Hamiltonian [6.2] as

H = H0 + H' , where the unperturbed Hamiltonian H0 , given by [6.24] is the

sum of two hydrogenic Hamiltonians (see [6.26]-[6.27]) and where H' - l/r 12

is the perturbation. The ‘zero-order’ approximation to the wave function

tAoOh 5 r2 ) is then given by the simple wave function i/>
(

0
0)

(r, , r2 ) of equation [6.35]

and the corresponding ‘zero-order’ ground state energy is Er

(

° J = —

Z

2
a.u.

According to [2.308] the first-order correction to the ground state energy is

E (

o
l> = (<)

|//'|<
)

> [6.54]

or, using [6.25] and [6.35], J

E
'o

} =
j

liAis^i)!
2— l<Ais(f2 )|

2
drj dr2 [6.55]

J
r I2
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We note that in SI units this quantity reads

J7
(l) —t Q - |</'lsO"l)|

2

(4ire0)fi2
|iAis(f2)|

2 dr2 [6.56]

and the integral on the right has a simple physical interpretation. Indeed, since

|^ ls(n)|
2

is the probability density of finding the electron 1 at r l5 we see that

pOi) = -«|i/'is(t'i)|
2 [6.57]

may be interpreted as the charge density due to electron L A similar

interpretation may be given to the quantity p(r2)
= —

fi|*/'is(r2)l
• Thus the

integral in [6.56] is just the electrostatic interaction energy of two overlapping

spherically symmetric distributions of electricity, of charge density p(ri) and

p(r2) respectively.

Let us now return to [6.55], which we write explicitly (see [6.35]—[6.36]) as

E«> = j e
-2Z(r 1+ r2) _L ^r]

r12

[6.58]

We shall calculate this integral by using a general procedure which is very useful

in many atomic physics calculations. Using the generating function [2.168], we

first expand l/r12 in Legendre polynomials as

1 1 ^ (r2
U

U2 r l 1=0 \ r l

= - 2 (-) p/(cos
?2 1=0 V2 ,

— = -2 - Pfc08

r

i >rz

r\ < r2

[6.59]

where 6 is the angle between the vectors ri and r2 (see Fig. 6.7), so that

cos 6 = cos 0! cos 62 + sin 6i sin 02 cos(d>i - 4>2) [6.60]

Here (0 L , fa) and (02 , fa) are the polar angles of the vectors ri and r 2 ,

respectively. We can also write [6.59] in the more compact form

1

r12

^PiicosO) [6.61]

where r< is the smaller and r> the larger of and r2 . Using the addition

theorem’ of the spherical harmonics (see [A4.23]) we have

fl2

OO +/

2 2
4 -

7T (r<y

21 + 1 (r>)
,+ 1

Yfm(e 1, fa)Ylm(d2 , fa) [6.62]

Let us substitute this expansion in [6.58] and use the fact that the spherical

harmonics are orthonormal on the unit sphere (see [2.182]). Since the function

exp[— 2Z(ri + r2 )] which appears under the integral sign in [6.58] is spherically

symmetric, and because F0o
= (47r)

_1/2
,
we obtain at once by integrating over

268
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the polar angles (61 , </>x) and ( d2 , <£2 )

76 =0 +1 (4 )
2

7T
Z

,"o «=-, 2/ + 1 Jo

(^Ij 0l)^oo

dr2r§ e-«»«>^0 V'>J
dr,r?

d02^Ooi
/
/m(^2 j 4>2)

\

z
° s 2

(47r)2
r,c

/to- mill 2 / + 1 Jo

d/vf dr2 r2 e
2Z(ri+r2)

(r<)
;

(r>)
/+1 S/,o 5mj o [6.63]

Thus all the terms in this double sum vanish, except the first one, for which

l — m — 0, and

Ef = 16Z6
dr2 r2 e

~2Z^+r^—
r>

= 16Z6
drjrfe

.2 --2Zn dr2r2 e
.2 _-2Zr 2

+ f dr2 r2 e"
2Zr2

y

[6.64]
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The integrals are now straightforward, and yield the answer

E^> = 1Z a.u. [6.65]

which is a positive contribution to the energy, as expected. We also remark that

E\p is linear in Z [2], while the unperturbed energy E (

0
0) = -Z

2

a.u. is

quadratic in Z, so that the ratio {E^/E^l decreases like Z 1 when Z increases.

This is in line with our comments in the previous section concerning the

decrease in relative importance of the electron-electron repulsion term l/r]2

with increasing Z.

Adding the first-order correction [6.65] to our zero-order result E'f’
=

-Z2
a.u., we find for the ground state energy E0 the approximate value

E0 = E^ + E^ = -Z 2 + \Z a.u. [6.66]

Both this ‘first-order’ result and the unperturbed energy £0
0

’ are given in

Table 6.3 for various two-electron atoms (ions), from the negative hydrogen ion

H (Z = 1) to four times ionised carbon C4+ (Z = 6). The ‘exact’ [3] values Eff

are also tabulated. Except for H-
,
the simple first-order perturbation approach

yields quite good results. If we define AE, where

AE = El*
-

(£o
0) + E(

0
l>

) [6.67]

Table 6.3 Values of the ground state energy E0 of the Hamiltonian [6.2], for various two-electron

atoms and ions (in atomic units) l

Ground state energy

Unperturbed

E*(0)

(equation [6.37])

First order

ET + £'o‘
)

(iequation [6.66])

Simple variational

(

Z'
= Z “^)

(equation [6.79]) ‘Exact’

H - -1 -0.375 -0.473 -0.528

He -4 \ -2.750 -2.848 -2.904

Li
+ -9 -7.125 -7.222 -7.280

Be2+ -16 -13.50 -13.60 -13.66

b3+ -25 x^2--21. 88 -21.97 -22.03

c+ -36 -32.25 -32.35 -32.41

[2] The fact that Eg ’

is linear in Z may readily be understood by noting that each charge

distribution in [6.56] contains a total charge -e and extends over a region of space of linear

dimension given approximately by a — a$l

Z

. Their mutual interaction energy is therefore

roughly given by e
2
/(47re0)a = Ze 2/(4ms0)ao, which is indeed proportional to Z.

[3] The ‘exact’ results quoted in Table 6.3 are accurate values of the ground state energy E0 of the
L

Hamiltonian [6.2], obtained by using the Rayleigh-Ritz variational method with elaborate trial

functions. Only a few of the presently available significant figures are given. Since these ‘exact’

values of E0 must still be corrected for the motion of the nucleus, as well as relativistic and

radiative corrections, they should not be confused with the experimental ground state energies

E'0
X*.
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as the difference between the ‘exact’ value £§* and the first-order result [6.66],
^

1:

we see that the ratio |AE/£ox
|

varies from about 5 per cent for He to 0.4 per cent Ilf

for C4+ . It is interesting to note that this first-order perturbation treatment,

carried out by Unsold in 1927, was the first quantum mechanical calculation of

the helium ground state. In view of the large discrepancies shown by the old

quantum theory calculations, the relatively small difference of about 0.15 a.u.

(—4 eV) between his result and the experimental value was very promising.

The calculation of second and higher order corrections, E (

q'>

(n 2® 2), is a

much more difficult problem, to which we shall return further, after having

discussed the Rayleigh-Ritz variational approach.

Variational method

We have seen in Section 2.8 that if H denotes the Hamiltonian of a quantum

system, and cf> a physically admissible trial function, the functional

£[<£] = <4W>
(<£!</>)

[6 .68 ]

provides a variational principle for the discrete eigenvalues of the Hamiltonian.

Moreover, it also yields a minimum principle for the ground state energy. That

is,

E0 « £[</>] [6.69]

For the case of two-electron atorm, the Hamiltonian H (neglecting the motion

of the nucleus and all but the Coulofnb interactions) is given by [6.2]. Following

the Rayleigh-Ritz variational method, we shall use trial functions <t> depending

on variational parameters, and carry out the variation 8E = 0 wit' Respect to

these parameters. }
It is apparent from the discussion of Section 6.4 that a basic defect of the

‘zero-order’ ground state wave function [6.35] (from which the first-order

energy result [6.66] was obtained) is that each electron moves in the fully"-,,

unscreened field of the nucleus. In order to take into account approximately the

screening effect of each electron on the other one, we shall therefore choose a

trial function of the form [6.47]. That is, (in a.u.)

, r2)
=

77

e
-Z«(ri + r,)

[6.70]

or

4>(r\, r2) = t/'fsCriMfsfe) [6.71aJ

where

/ 73 \ 1/2
“ /

4>u (r) = Mj e [6.71b]

and the ‘effective charge’ Z, is considered as a variational parameter.
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The first step of the calculation consists in evaluating the expression E[<t>].

Since our trial function [6.70] is normalised {{4>\4>)
= 1) we have from [6.68]

and [6.2]

E[4>\ = ( 4>

Z Z 1

Ti + T2
+ —

rj r2 r12

[6.72]

where we have set Tx
= -V?/2 and T2

= -V\/2. Using the equations [6.71]

and the virial theorem (see [3.76]-[3.77]) we find that

(4>\Tx\<t>) = <^fs'l
Tj

|

<(4‘> = [6.73]

and (<f)\T2 \4>) = (<£|Ti| 4>). We also have from [3.71] and [6.71]

<t> )
= [>P
- '

«Afs >
= Z. [6.74]

and (4>\l/r2 \(b) = <<^|l/r,|^>. The expression <</>|l/r12 |<f>)
has already been cal-

culated when Z, — Z, in which case it is identical to the first-order energy

correction E (

0
l) (see [6.54]-[6.58]). Using [6.65] we find that

4>

1

t*12

4>
8

[6.75]

Putting together the above results, we have

E[ct>] - E(Ze)
= Z2

e
- 2ZZe + \Ze [6.76]

In the second step of the calculation, we shall now minimise E(Ze )
with

respect to the variational parameter Ze . Hence we write

[6.77]

so that
5

Z -16 [6.78]

E\Ze
= Z - —

1

=

This ‘optimum’ value ofZrcorresponds to a ‘screening constant’ 5 - 0.31. The

lowest energy which can be obtained with a trial function of the form [6.70] is

given by choosing Ze
= Z - 5/16 and substituting this value in [6.76], namely

z2 +
?
z -i =-(z -^)2au ' I6 ' 791

We remark that with the choice Ze = Z the expression [6.76] reduces to the

first-order perturbation theory value [6.66], which is therefore equivalent to a

‘non-optimum’ variation calculation. The variational result [6.79], corre-

sponding to the ‘optimum’ choice Ze = Z - 5/16, is lower, and hence more

accurate, than the first-order perturbation theory result [6.66]. This may be

seen from Table 6.3, where the variational values obtained from [6.79] are given
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for various two-electron atoms (ions). It is clear from this table that the
.

variational results are remarkably good, given the simplicity of the trial function
“jjjjj

we have used. If we denote by AE the difference between the exact [3] value

El* and the variational result [6.79], we see that the relative error
I

A-E/fs

varies from about 2 per cent for He to less than 0.2 per cent for C . This

corresponds to a reduction by more than a factor of two with respect to the

relative error made in the first-order perturbation calculation. For the delicate

case of H~ the variational result is also a marked improvement over the

first-order perturbation value, although the ground state energy of -0.473 a.u.

given by our simple variational treatment still lies above the ground state energy

t
of atomic hydrogen (—0.5 a.u.) and hence is not low enough to predict the

existence of a stable bound state for H _
.

We now describe briefly how very accurate values of the non-relativistic

ground state energy of two-electron atoms can be obtained by using the

Rayleigh—Ritz variational method with elaborate trial functions. We first

remark that for S-states (L = 0) the spatial wave function does not depend on

the Euler angles which specify the orientation of the triangle formed by the

nucleus and the two electrons. Thus spatial wave functions for S-states (and in

particular for the ground state 1
1
S) can only depend on the shape and size of this

triangle, which is specified for example by the radial coordinates rj and r-i of the

two electrons and their relative distance r]2
= |rj — r2

1

- Another possible choice

for the three variables describing this triangle is

s = ri + r2

t = n- rj

u = ru

0 SS S =£ so

— oc S | S x

0 U s; oc

[6.80]

The coordinates [6.80] have been used by Hylleraas to cons. y:t trial

functions of the type

N
</>(*, t, u)

-As 2 cU2mJtlm
u
n [6.8ir

Lm,n — 0

where the coefficients c^2m ,„ are linear variational parameters and k is a

‘non-linear’ variational parameter similar to the ‘effective charge’ Ze used in our

simple trial function [6.70]. We note that since the ground state is a para state

(space-symmetric) the trial function [6.81] must be an even function of t. The

number N which appears in [6.81] determines the maximum number of terms

kept in the trial function. It is clear that for N = 0 the trial function [6.8 lj

reduces to the simple form [6.70], so that k = Ze = Z — 5/16 in that case.

The Hylleraas approach, which accounts explicitly for ‘correlations’ between

the motion of the two electrons through the variable u = r 12 ,
has been very

successful in getting accurate values of the ground state energy E0 of the

Hamiltonian [6.2]. For example, with a trial wave function of the type [6.81J

containing six linear parameters, Hylleraas obtained in the case of helium

the value E0 = -2.90324 a.u., which differs from the ‘exact’ value
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Ee
0
x = -2.90372 a.u. by only 0.00048 a.u. (-0.013 eV). By now, extensive

variational calculations, using trial functions of a somewhat more general form

[4] than [6.81], have been performed for a variety of two-electron atoms and

ions. The corresponding ‘exact’ results are given in the last column of Table 6.3

for the systems H" (Z = 1) through C4+ (Z = 6). It is worth stressing that the

numbers quoted in that column do not contain all the significant figures which

are presently available. For example, the value of E0 for He is one of the most

accurate theoretical numbers which have been calculated by quantum mecha-

nical approximation methods, the result obtained by Frankowski and Pekeris

being

E0 — —2.90372437703 a.u. [6-82]

The very accurate Hylleraas-type ground state wave functions determined by

the Rayleigh-Ritz variational method have also been used to calculate expecta-

tion values of various operators, oscillator strengths, transition probabilities,

and so on. In many cases of practical interest, however, it is convenient to use

less accurate, but more tractable wave functions, which do not involve explicitly

the interelectronic coordinate rx2 , and we shall now briefly describe how such

wave functions may be obtained.

As we pointed out above, the spatial wave functions for S-states of two-

electron atoms depend only on the shape and size of the triangle formed by the

nucleus and the two electrons. Instead of using the three variables (n , r2 , r12) or

the Hylleraas coordinates (s, t, u), one can also choose the radial coordinates r x

and r2 of the two electrons, and the angle 9 between the vectors rj and r2 . It is

then natural to use for the ground state trial wave functions which are

expansions in Legendre polynomials,

<Xr,, r2) = 2 r2)^(cos 9) [6-83]

1=0

where the subscript / refers of course to relative partial waves. This approach is

known as the ‘configuration interaction’ (Cl) method [5J. The (symmetric)

functions F,(rl5 r2) are expanded in some convenient basis set, for example

F,(ri , rT>= e
_*(n+r2) 2 cfrW^Ar’i + r\r'2) [6.84]

[41 For example, Kinoshita has used trial functions which, in addition to the terms contained in

[6.81], also include terms of the form s
h+ \u/s)‘(t/u)

2j
. Schwartz has successfully tried functions

of the type [6 81], but with some half-integer powers. Pekeris has also obtained extremely

accurate results by using trial functions expressed in terms of the three perimetric coordinates

u = f (r, + r12 - r,), v = eO, + r l2 - r2 ) and w = 2e(r, + r2 - r12), with e - ( b 0)

[5] The name ‘configuration interaction’ (or ‘configuration mixing’) arises from the fact that a tna

function of the form [6.83] may be written symbolically as

4>
= c 10,io(ls, Is) + 2 n't’).

nlit’V

Here (Is Is) is the Is
2 configuration obtained for the ground state in the independent particle

approximation, and (nl, n'V) represent configurations ‘mixed’ into the ground state because the

electron-electron interaction l/r12 has non-zero matrix elements between the Is configuration

and other ones.
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where k is a non-linear variational parameter, and the coefficients c^
/;
are linear

variational parameters. If one sets A = 0 in [6.83], so that the trial wave ||i

function is restricted to the pure relative s-wave (/ = 0), only radial correlations

between the positions of the two electrons are introduced in the wave function.

In this way a radial limit for the ground state energy is approached when an

increasing number of parameters is included in the function F0(ri, r2 ). For

example, in helium this radial limit is about —2.879 a.u., and differs from the

correct value of —2.904 a.u. by 0.025 a.u. (=0.68 eV). This difference is due to

radial and angular correlations distributed among the higher relative partial

waves in the expansion [6.83],

4
An important drawback of the Cl approach is that the expansion [6.83]

converges much less rapidly than the Hylleraas method, which makes explicit

use of the interelectronic coordinate r]2 . This is due to the fact that the

expansion of ri 2 in Legendre polynomials P,(cos 6) converges very slowly. On

the other hand, the calculation of matrix elements (such as those occurring for

example in collision processes) is considerably simpler when use is made of Cl

wave functions instead of Hylleraas-type wave functions.

Before closing our discussion of variational wave functions for the ground

state of two-electron atoms, we give two explicit examples of simple wave

functions which represent improvements over the one-parameter ‘screened

hydrogenic’ wave function [6.70], with Ze = Z — 5/16. For helium, a useful

wave function is that of Byron and Joachain,

r2 ) = u ]s(ri)Mi s(r2 )
[6.85a]

where the Is orbital Mi s(r) is given by

u ls(r) = (4T7)-
1/2(Ae" ar + £e^r

) [6.85bJ

with A = 2.60505, B = 2.08144, a = 1.41 and f3
= 2.61. This (noi /alised)

function is an analytical fit to the Hartree-Fock orbital, to be discussed in

Chapter 7. The corresponding Hartree-Fock ground state energy is Eq —

-2.86167 a.u. For the negative hydrogen ion H~, a convenient (normalised)

wave function, obtained by Chandrasekhar, is given by

t/j0(ri, r2) = N(e- ar '-<3rz + e
'^ri

“ ar2
) [6.86]

47T

with N = 0.3948, a = 1.039 and (3
= 0.283. The wave function [6.86] yields

an energy E0 = -0.514 a.u. and therefore correctly predicts a bound state for

the H~ system. Although the ionisation potential IP = 0.014 a.u. resulting

from [6.86] is rather far from the correct value 7p
x = 0.028 a.u., it is much

better than the negative value /p = -0.027 a.u. corresponding to the simple

variational function [6.70]. Wave functions of the type [6.86], with a f (3, are

known as ‘open shell’ wave functions. We note that the values of a and/|0

obtained in the present case imply that H can be viewed as a two-electron

system in which one electron is weakly bound in the field of a polarised

hydrogen atom.
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Variation- perturbation method

Let us now return to the perturbation treatment which we started at the

beginning of this section by calculating the first-order energy correction E0 .

It is possible to obtain higher order corrections by using the variation-

perturbation method discussed in Section 2.8. In order to display explicitly the

Z dependence of the various orders of perturbation theory, it is convenient to

choose Za0 as our unit of length and Z2
e
2
/(4irf0 )a0 = Z2

a.u. as our unit of

energy. Setting

Pi = Zt\, p2 — Zr2 , piz=\pi~p2
\

[
6 - 8? ]

the Schrodinger equation [6.3] then becomes

(H0 + A/T)<KPi j Pi)
= e«KPi> P2) C6 - 88]

where

Ho
1

P2

//'=—, A = Z _1
,

a = E/Z2
[6.89]

Pl2

With this choice of units, the ground state energy e0 = Eo/Z
2
,
expanded in

powers of A, reads

E0 = 2 ” f [6 -90]

n=0

Following the procedure outlined in Section 2.8, approximate values of Co

may be obtained by using trial functions 4>'
l

\ <£
(2:

,
... in the functionals

Fi[(l)
w

], F2[cl)
(2)

], and so on. Table 6.4 shows the first few values of e0

(2 n =£ 10) calculated by Scherr and Knight from elaborate Hylleraas-type

trial functions. The agreement between the values of E0 = Z2
e0 obtained from

Table 6.4 Values of fo° (in a.u.

Scherr and Knight. WeT*ecafl that £0

crivpn Tin a.u. 'I bv En > ~
Fn

for the first few orders of perturbation theory, as obtained by

5/8. The corresponding values of E0 are
- 1 and So

-

Order n of
Value of

(n)

Perturbation theory EO

2
-0.15766

3
0.00869

4
-0.00088

5
-0.00103

5
-0.00061

7
-0.00037

g
-0.00024

9
-0.00016

10
-0.00011
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[6.90] and the results of Table 6.4 and those calculated from the Rayleigh-Rlti

method (quoted in the last column of Table 6.3) is excellent. It is interesting to

note that for the case of H it is necessary to include the values of «4" } up to

order n = 7 to obtain agreement with the correct result (E 0 = -0.528 a.u.)

within 0.001 a.u. (==0.027 eV).

Comparison with experiment

The extremely accurate result [6.82] is actually lower than the experimental

value of the ground state of helium ! This, however, is not a paradox since [6.82]

is only an upper limit to the exact non-relativistic value ofE0 corresponding to an

* infinitely heavy nucleus (i.e. the ground state of the Hamiltonian [6.2]). Before

comparing theory and experiment several corrections must therefore be cal-

culated, which we now discuss briefly.

We begin by considering the motion of the nucleus. From Appendix 8 and

equation [6.1], we see that the Schrodinger equation in which this effect is

ignored (i.e. in which one setsM = <») is then modified in two ways. Firstly, as

in the case of one-electron atoms, the reduced mass /jl = mM/(m + Af) of the

electron with respect to the nucleus replaces the mass m of the electron.

Secondly, a ‘mass polarisation’ term (— h 2/M)V
ri

• Vr _

appears in the Schrfidin-

ger equation.

The reduced mass correction is easily taken into account by using the method

discussed in Chapters 1 and 3 for hydrogenic atoms. We introduce a new atomic

unit of length aM = aQm/ /x and a new atomic unit of energy

(477£o)<C (4TTEo)a0 m
[6.91]

\
which differs from the usual atomic energy unit e

2
/(4Tre0)a0 by the 1. ^yr n/m.

After having calculated the energy Ex corresponding to infinite nuclear mass

(M = oc
) we may therefore obtain the value appropriate to the reduced mass

H by writing

[6.92]

Thus, as for one-electron atoms (see Chapters 1 and 3), the reduced mass effect

modifies all the energy levels of the atom in the same manner, all the frequencies

of the spectral lines being reduced by the factor fx/m — 1 — m/M. If we call

AFj the reduced mass correction to be applied to the energy levels E, ,
we see

that

= E^ - Eoo

y

[6.93]
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and we notice that AE 1 is positive. In particular, for the ground state of
4He this

correction reduces the ionisation potential I? (corresponding toM - ») by an

amount of about 27 cm' 1

. ....
We now turn to the correction arising from the ‘mass polarisation term.

Calling AE2 that correction, and using first-order perturbation theory, we have

(in a.u.)

AE? =
1

M (i/'olV,,
' VrJife)

= 77 (i/'olPi ' P2l*^o)M
[6.94]

where r2) is the spatial part of the ground state wave function,

corresponding to the case M = *, and p, is the momentum of electron i. We

note that if i is a simple product of individual orbitals u<(r.) (i 1, 2), then

±E 2 = 0 since the expectation value of the momentum, <p), vanishes lor a

stationary bound (discrete) state. With an accurate Hylleraas-type variational

wave function, it is found that for
4He the correction AE2 is about 4.8 cm .

The discussion of the relativistic corrections and of the radiative corrections

(Lamb shift) falls outside the scope of this book [6]. Calling AE 3 the former

ones, and AE4 the latter ones, we list in Table 6.5 the numerical values of these

corrections for helium and several helium-like ions. Also given in Table 6.5 are

the reduced mass correction AE x
and the mass polarisation correction Ah 2

discussed above. When subtracted from the non-relativistic ionisation potentia

n (corresponding to M = <*), these four corrections yield th>total theoretical

ionisation potential if, which is seen from Table 6.5 to be in excellent

agreement with experiment. Of particular interest is the comparison between

the theoretical and experimental values of the ionisation potential for helium.

From the work of Frankowski and Pekeris, and Schwartz, the theoretical value

is

[6.95]
if = (198 310.699 ± 0.05) cm 1

while the experimental value obtained by Herzberg is

\ /fP = (198 310.82 ± 0.15) cm

The fantastic agreement between [6.95] and [6.96] may be considered as one of

the most striking triumphs of quantum mechanics.

[6.96]

6.6 EXCITED STATES OF TWO-ELECTRON ATOMS

We now turn to the study of the excited states of helium-like atoms. Disregard-

ing for the moment the ‘double excited states’ (which will be considered in t e

next section), we shall analyse various ‘genuinely discrete excited states o

two-electron atoms with Z s* 2. For the sake of simplicity we shall neglect all

[6] A detailed account may be found in Bethe and Salpeter (1957).

278



Excittdmm oftm*Uam atom

8 d«§i§
+1 +1 +1 +1 +1 +1

8 0 Os O O
r| (N \C•— m o rs O' ^

'O oo o < Csl

ON ^ Tf O' vOm'Oino^
rH N ff)

rsj on
On On CNO vO vO N
ro © ON O' c*N •—

*

oo^h'inoTt-O m o n o 4^ OO O ^ (N (N
ON Tf ON VO^ NO fsj O —

I

-h in r^i

Tf CMO vO O' fN OO O
r<U^ \D VN OO O
O O O' ^ Csi ON

I MfOON
I I I

^ S 00

8 ft..

2

rfi Tf tT in 'JD 'O

o Ji
a

'P *-> C
05 ^ O
.2 -r *-<

"e tq o
.2 < id

o*. —
r-- q\- in (N oo ^ vO 't

uy i—t O' vO OO no 'O

^ « r- vo ^ oo

rn hi N in "t
cm rj- r-« O ^

^ ^ r> < &.
M K?

ui c
^•8 3
£ 8 c
•Sta
H 3 8.

rj- O OO - m M
Tf oo oo in m ino i/~i -<3- m i/~v

o ^ 6 m vo
ON t N in O OO M X OOlOooOrtrt-H

ON
'-J rj- ON vo^ 'OfNO -H—« rsj rr\

II J#D)U

2n



Two-electron atoms
6.6

the small corrections (motion of the nucleus, relativistic and radmtive correc-

tions) mentioned at the end of the preceding section Our starting point

therefore be the Schrodinger equation [6.3] and our discussion of Section 6.4

based on the independent particle model.

Perturbation theory

A, the ease of the ground state, we shall firs, use perturbation theory. We

again choose to split the Hamiltonian [6.2] as H - H0 + H ,
where me

unperturbed Hamiltonian H0 is given by [6.24] and H - 1An is the perturba-

tion The properly symmetrised ‘zero-order’ spatial wave functions for the

genuinely discrete excited states we are considering are^ lheref°r' the

^
Ve

s

functions n> given bV C6 ' 38^ the corresponding zero'order energlCS

be

Since

1

the energy levels [6.39] are degenerate with respect to / and m, and also

exhibit^ the -exchange degeneracy', we should in principle use degenerate

perturbation theory. However, by using the expansion tb.bjj of l/rn in

spherical harmonics and the orthogonality property of the Ylm ,
it is straightf

ward to prove that the matrix elements of H' between two degenerate zero-

wave functions «/4°
7 corresponding to different / or m vanish. Moreover, since H

is invariant for a permutation of the spatial coordinates of the two electrons, it is

clear that the matrix elements (^\HW) of H' between two degenerate

zero-order wave functions corresponding respectively to a para and an o

state vanish Thus, from the point of view of degenerate perturbation theory

the wave functions [6.38] are already the correct ‘zero-order’ wave funcuons and

we can use non-degenerate perturbation theory directly to calculate the

first-order energy corrections. That is

= <^®|//'|</4
0)

>
t6 - 97]

where the plus sign refers to pars states and the rntnus sign to ortho spates, as

usual Using the expression [6.38] of i/4 and the fact that 7 12 ’

[6.98]= J + K, E(V = J K

where

J = kioo(r,)|
2— |^/m(r2)|

2
drj dr2

t*12

[6.99]

and

K = iA*oo(ri)^m(r2)
—- ^ioo(r2)*A«/m(r i) dr i

dr2 [6.100]

*12

W1

The integral J is called the Coulomb (or direct) integral. By analogy with the

discussion following [6.55], we see that it represents the Coulomb interaction
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between the charge distributions of the two electrons. The integral K is known

as the exchange integral ; it is the matrix element of 1 /r12 between two states such

that the electrons have exchanged their quantum numbers. Using the fact that

the hydrogenic functions t//„/m(r) are given by tpn!m(.r) = R„i(r)Y,m(6, <t>) (see

[3.48]), together with the expansion [6.62] and the orthonormality property of

the spherical harmonics, we have

Jnl
=

•oo

&r2r
22R 2

ni(j2)

P
drirfRfo(fi) —

Jo

[6 . 101 ]

and
i

K„, =
1

21 + 1

dr2r\R io(r2)R ni(r2 ) dnrjRioCnJRniin)
(r<y

(r>)
l+l [6 . 102 ]

where we recall that r< is the smaller and r> the larger of ri and r2 . In the above

formulae we have explicitly indicated that the integralsJ andK depend on n and

/, but not on m. The first-order energy corrections [6.98] may therefore be

written more explicitly as

E%± = Jnl ± Knl [6.103]

and we remark that the independence of these energy shifts with respect to

m can also be deduced from the fact that the perturbation H' = \/r X2 commutes

with Lz .

Adding the corrections [6.103] to/fhe zero-order energies [6.39], we thus

obtain the ‘first-order’ energy values

EnU± - Efl + E(

njl =~
(
1 + if) + 3nl ± Km \ 104]

The integrals Jni and Knl can be evaluated explicitly (see for example

Problem 6.4 for the case n = 2, l = 0, 1), but we shall use here only a couple of

their general properties. First of all, it is obvious from [6.101] thatJnl must be

positive. Furthermore, for / = n -
1 the radial wave function R„,„-i has no

nodes, so that we deduce directly from [6.102] that Kni„- 1
> 0. It turns out

that in the general case one has Kni > 0, so that we see from [6.104] that an ortho

(spin triplet) state has a lower energy than the corresponding para (spin singlet) state

having the same value of n and l. This conclusion is in accordance with our

discussion at the end of Section 6.4. In fact, the role of the spin-dependent

exchange force introduced at that point can be made explicit in the following

way. We first note from [6.11] and [6.15] that the operator
y

S, S2 = is
2 - j [6.105]

yields the value -3/4 when acting on singlet spin states (5 = 0) and 1/4 when

acting on triplet spin states (S = 1). The first-order energy correction [6. 103]
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can therefore by symbolically written as

Ett± = Jnl
~

2(1 + 4S 1
' S2)Knl

- J„ ~ id + [6 ' 1061

where we have introduced the rr, operators, which are related to the spin

operators S, by

S i
= jo-i (ina.u.) [6.107]

We see that in the sense specified by [6.106] the energy shifts E%± - and hence

the first-order energy values [6.104] - depend explicitly upon the relative

orientation of the electron spins, even though the Hamiltonian [6.2] does n

contain spin-dependent terms. We also remark that the spin-dependent e

change force responsible for this effect is of the same order of magnitude as the

electrostatic force. It is therefore much stronger than the spin-dependent fore

arising from relativistic effects, such as the spin-orbit interaction which has been

shown in Chapter 5 to yield corrections of order (Za)
2
to the energy levels. In

fact as Heisenberg first observed, the exchange force is strong enough to keep

[he electron spJaligned in certain solids, and hence is responsible for the

phenomenon of ferromagnetism.
first-order

The splitting of the unperturbed energy evels predteted.bs
.

the fi'st 0™e

expression [6.104] is illustrated schematically in Fig. 6.8 for the cas •

The effects of the Coulomb integrals Jn and of the exchange Integra s 2 /

displayed separately. We remark that J2 \
\jf20 ^

so that the energy o

S5Ef >•? >rx «
from the discussion following [6.5 1J. We also see irom m

E t

E\°i

r
/

1 /
/ /
//

JL

Is 2p

Is 2s

|j»

T — 2'P

— 2’P

2Kla

k 2
3
S

«, The splitting of the unperturbed heliutnM for n - 2 b, - Coulomb iu.egmt, .nd the

exchange integrals K2i-
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states lie below the singlet states corresponding to the same values of n and /, in

agreement with the foregoing discussion.

Variational method

As we remarked in Section 2.8, the application of the Rayleigh—Ritz variational

method to excited states of a quantum system is in general more difficult than

for the ground state, because the trial wave function corresponding to an excited

state must be orthogonal to the wave functions of all the eigenstates having a

lower energy. However, we also noticed in Section 2.8 that an important

simplification occurs when the Hamiltonian can be diagonalised simultaneously

with a Hermitian operator A. Indeed, we saw that in that case a trial wave

function entirely constructed from eigenfunctions ofA corresponding to a given

eigenvalue a, is automatically orthogonal to all the eigenfunctions of A
corresponding to eigenvalues aj different from a,; this trial wave function will

therefore provide an upper bound for the lowest energy eigenvalue associated

with the eigenvalue a,.

We now apply these ideas to the case of two-electron atoms. Among the

operators which can be diagonalised simultaneously with the Hamiltonian [6 .2 ],

we shall consider the permutation operator P \i (see [6.4]) as well as the

operators S
2 and L 2

. First of all, since para wave functions (which correspond to

the eigenvalue +1 of P \2 and to the value S = 0 of the total spin) are

orthogonal to ortho wave functions (corresponding to the eigenvalue - 1 of Pn
and to the total spin S = 1), we can study separately the variational determina-

tion of the para and ortho energy levels, provided trial functions having the

appropriate para or ortho symmetry are used in the variational principle.

Moreover, because the eigenfunctions belonging to states with different values

of L are orthogonal, we can consider a separate variational problem for each

value of L by using trial functions which exhibit the angular d> Vndence

corresponding to a state of given L . In this way we see that a minimum principle

for the lowest energy state belonging to a given L and S will always be obtained

without imposing further orthogonality constraints on the trial function. Hence,

if we adopt trial functions 4> having the correct para or ortho symmetry and the

appropriate angular dependence, we may use directly the Rayleigh—Ritz

method - that is, substitute the trial function d> in the functional [6.68] - to

obtain upper bounds for the energies of the states 2
J
S, 2 P, 2 P, 3 D, 3 D, and

so on. On the other hand, when calculating the energy of the 2
1

S state by the

variational method, one must explicitly constrain the trial function to be

orthogonal to the wave function of the ground state 1
1

S . Similarly, the trial wave

function for the 3*S state must be made orthogonal to the wave functions of both

the 1
1

S and 2
1

S state, the trial wave function for the 3‘P state has to be made

orthogonal to the wave function of the 2‘P state, and so on. It should be noted /

from our discussion at the end of Section 2.8 (see [2.380]) that even after the

orthogonalisations have been performed we do not necessarily have upper

bounds for the energies of these excited states, since the wave functions of the

lower states are only known approximately.
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As an illustration of the foregoing analysis we shall consider the lowest four

excited states of helium. We begin by studying the 2 S, 2 P and 2 P states,

which can be treated by the ‘standard’ Rayleigh-Ritz variational

without imposing additional orthogonality conditions; we then go

the 2
1

S state, whose wave function must explicitly be orthogonalised to the wave

function of the ground state.

The 2
3S state

This is the lowest ortho (space-antisymmetric) state, corresponding to the

configuration ls2s. On the basis of the independent-particle model discussed in

Section 6.4 and of our first-order perturbation theory calculation, i

reasonable to adopt for the spatial part of the wave function a simp e trial

function which is the antisymmetrised product of an inner (Is) or is

corresponding to the ‘effective charge’ Z, and an ‘outer (2s) or l a 2s

corresponding to the effective charge Z0 . That is

where

4> 2 3 s(r l5 r2)
= Af[Mi s(ri)o2s(r2)

~ ^2 s(fi)“tsC^2)]

Mis(r) = e
Zr

z>2s(r) = (1 - UII^Ẑ

[6.108a]

[6.108b]

and N is a normalisation constant. Upon substituting [6. 108] into the functl°"

[6 68], and varying the variational parameters Z, and Z0 to obtain the mimm

energy, Eckart found the values Z
t
= 2.01 and Z0 = 1-53, which yield the

energy Ev% = -2.167 a.u. (= -58.97 eV).

Very accurate results for the energy of the 2
3
S state may be obtained by using

elaborate Hylleraas-type variational functions depending on the three vana es

(r , , r2 ,
ru) or the Hylleraas coordinates s = r t + r2 , t - r, r2 and u r i 2 •

course the trial wave function 0(s, t, «) must now be space-antisymmetric, and

hence has to be an odd function oft. The ‘exact’ value obtained in this way by

Hylleraas and Undheim and more recently by Pekens el ai (using genera i

Hylleraas-type wave functions) is Efk ~ 2 - 175 a -u -

(
.

'
'

,

agreement between the Eckart result and this ‘exact’ value is seen to be good,

considering the simplicity of the trial function [6.108J.

The 2'P and 2
3P states

Since the 2‘P and 2
3P states are respectively the lowest para and ortho states

corresponding to the configuration ls2p, simple trial wave functions for these

states may be written as

<f> 2 '.ip (r , > r2 ) = Af±[Mis(ri)®2pm(r2)
± ®2pm('i)«u(r2)]

[6.109a]

where the plus sign refers to the 2‘P state, the minus signs to the 2
3P state, N ±
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are normalisation constants, and
’to

«is(r) = e

v2pm(r) = re
•Zor/2

K,,m(r), m = 1, 0, -1 [6.109b]

the symbol r denoting the angular variables of r. Substituting the trial func-

tions [6.109] into the functional [6.68] and varying the parameters Z\ and

Z0 to obtain a minimum for the energy, Eckart found for the 2‘P state the

values Zy = 2.00 and Z0 = 0.97, giving the energy £2 'p
= -2.123^a.u.

(= -57.77 eV), which is in excellent agreement with the ‘exact’ result Zs“p =

-2.124 a.u. (= -57.80 eV) of Pekeris. For the 2
3P state Eckart obtained for

« the variational parameters the optimum values Z; = 1.99 and Z0 = 1.09, the

corresponding energy being E2>p
= -2.131 a.u. (= —57.99 eV), in very good

agreement with the ‘exact’ result = —2.133 a.u. (= —58.04 eV). It should

be noted that for both the 2
1 P and 2

3P states the value of Zq is much closer to

Z — 1 = 1 (corresponding to complete screening) than for the 2
3
S state which

we have studied previously.

The 2
1S state

Since the 2*S state is a para (space-symmetric) state corresponding to the

configuration ls2s, one could attempt to construct a simple trial wave function,

similar to the 2
3
S wave function [6.108], but which would be space-symmetric

instead of space-antisymmetric. That is,

d>2's(n> r2) =
<^[ui s(ri)z’2S(r2) + ^sOOMisfa)] [6.110a]

where «| 5 is again an ‘inner’ (Is) orbital, v2s an ‘outer’ (2s) orbital and Af a

normalisation constant. However, a trial wave function of the forrr. VI 10a] is

not necessarily orthogonal to the wave function of the ground state j. As we

pointed out above, this orthogonality constraint must therefore be imposed

explicitly. A simple variational wave function of the form [6. 1 1 OaJ, which does

satisfy the requirement of being orthogonal to the ground state wave function

[6.85], is such that the orbitals MU(r) and v2s(r) are given by

wisto = e“
2r

v2s(r) = e“
T,r — Oe“ Tzr [6.110b]

where the ‘optimum’ variational parameters, obtained by Byron and Joachain

are given by i\ — 0.865, r2 = 0.522 and C = 0.432 784. The corresponding

energy is£2 's
= -2.143 a.u. (= -58.31 eV) which is close to the ‘exact’ result

E2*s
~ -2.146 a.u. (= -58.40 eV) obtained by Pekeris.

Another variational approach which may be applied to the study of the 2
1

S/

state consists in using the Hylleraas-Undheim theorem (see Section 2.8). A
trial function is first chosen, which has the symmetry of a ‘S state, and contains

a number of variational parameters. According to the Hylleraas-Undheim

theorem, the second root of the determinantal equation [2.387] then provides an
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upper bound for the energy of rhe 2'S state. In this way very accurate results for

theenergy of the 2
L

S state, and also for other excited states of helium, have bee

obtained.

6.7 DOUBLY EXCITED STATES OF TWO-ELECTRON ATOMS.

AUGER EFFECT (AUTOIONISATION). RESONANCES

In the language of the independent particle model introduced in Section 6.4 the

‘genuinely discrete’ excited states which we have studied in the preceding

section aU correspond to singly excited states, for which one electron occupies

the ground state (Is) orbital and one occupies an excited orbital. However we

noticed in Section 6.4 (see [6.34]) that there exist also doubly excited states of the

Hamiltonian [6.24], in which both electrons occupy excited orbitals f omam

nle 2s
2 2s2p, 3p4d, etc.). We remarked that all these states he above th

ionisation threshold and are therefore discrete states embedded in the continuum^

Let us now study the action of the perturbation H - 1An °n a given doubly

excited state |a>, having an ‘unperturbed’ energy Ea and a correspond g

zero-order wave function t/4
0)

. Because of the presence of continuum energy

levels in the neighbourhood ofE%\ an eigenfunction of the full Hamiltonian H

in this energy region is

'I'ff?) - a{E) i/4
0) + b(E, E'ME') dE' [6 . 111 ]

J

where ME’) is a properly symmetrised continuum wave function describing the

rvstem made of^free electron of kinetic energy E' and a one-electron atom. •

(ion) It is clear that the perturbation H' will cause the discrete state iba o

interact with the nearby continuum states. Hence, in addition to an energy shift

of the discrete state, a radiationless transition from the doubly excited state to a

state of an ionised configuration will occur. Such a transition is known as the

Auger effect or autoionisation, and the doubly excited states (which ate unstable

against ionisation) are called autoiomsing states. Direct application of the Ferm

Golden Rule (see [2,359]) shows that, to first order of perturbation theory, e

transition rate for autoionisation is given by

IF = ^ K^(£)t//'|4
0)

)l

2
Pf(^) [6 ’ 112]

where pf(E) is the density of final states corresponding to the continuum wave

function V(£), and the kinetic energy E of the free electron is specified by

energy conservation. Not only helium-like atoms (ions) but all atoms or 10

with two or more electrons possess such autoiomsing states.

As an example, let us consider the (2s2p) P state of helium, i

electrons form a singlet spin state in the configuration 2s2p

excited from the ground state (Is)
2
‘S by the absorption of (ultra-violet) ra

tfon! since the selection rules AL = ±1 and AS = 0[7] are satisfied. Once

[7] These selection rules will be proved in Chapter 8.
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6.7 Doubly excited states of two-electron

excited, the (2s2p)'P state can decay via radiative transitions to bound statee ofH*

allowed by the selection rules (that is, *D and S states, including of course tlM

ground state). However, it can also decay via a radiationless (autoionising) transi-

tion into a free electron and a He ion in the ground state, the kinetic energy of

the free electron being determined by conservation of energy. Explicit calcula-

tions show that the autoionising transition (Auger effect) is much more probable

than a radiative transition to a He bound state, and this is also true for the other

doubly excited states of helium. As a result, spectral lines of emission spectra

corresponding to doubly excited states of helium are very weak.

The presence of autoionising states in the continuum spectrum of two-

electron atoms has several important consequences. Firstly, these states will

show up in the absorption spectrum of the system. For example, if one analyses

the absorption spectrum of helium corresponding to the photoionisation process

hv + He(l 1
S) —» e~ + He" [6.113]

one observes that sharp peaks or resonances ,
superimposed on the smooth

continuum absorption, occur in the neighbourhood of the energy of autoionis-

ing states. This is illustrated in Fig. 6.9, which shows the resonances in the

helium continuum absorption spectrum obtained by Madden and Codling, who

used an electron synchrotron to obtain a continuous photon source in the

wavelength region around 200 A. For example, the large peak shown in Fig. 6.9

appears at the energy corresponding to the 2s2p level. In the vicinity of the

energy of an autoionising state, which we denote by the symbol He** (doubly

excited He state), the reaction [6.113] may thus be viewed as proceeding

\

l

6.9 Resonances found in the continuous absorption spectrum of helium by R. B. Madden and K.

Codling.
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through the steps

hv + HeCl'S)-* He**-* e" + He+ [6.114]

where the autoionising state He** corresponds to a temporarily bound or

resonant state of the compound system (e + He ).

A second way in which the autoionising states of two electron atoms manifest

themselves is in the collisions of electrons with the corresponding one-electron

atom or ion. Consider for example the scattering of electrons by He ions. If the

incident electron has just the right kinetic energy, an autoionising state He

will be formed, and this compound state of the system (e + He ) will

subsequently decay into a free electron and a He+
ion. Thus the scattering event

may be analysed in terms of the two-step process

+ He + He** ^ e" + He+ [6.115]

in which a resonant state of the (e~ + He+
) system is temporarily obtained. As

in the case of the absorption spectrum, a dramatic peak or resonance is then

observed in the scattering cross-section. We shall return in Chapter 12 to the

study of these resonances, which have become the subject of numerous

investigations in recent years.

PROBLEMS

6.1 Prove that eigenfunctions <A(r i , rz) of the Schrodinger equation [6.3]

corresponding to degenerate eigenvalues can always be chosen to be

either space-symmetric [^ + (r 2 , n) = <Mrt, r 2 )] or space-antisymmetric

[i/f_(r 2 , rO = -t/'-(ri > r 2 )].

6.2 Study the action of the operator S2 = 3/2 + 2Sj • S 2 on the four spin

functions [6.12] and obtain the results quoted in Table 6.1.

6.3 Calculate the average values of

(i) r\ + r
2

,
(iff S(rj), (Hi) S(rj 2)

for the ground state of helium by using:

(a) the zero-order product of hydrogenic wave functions given by

[6.35], with Z — 2;

(b) the simple ‘screened’ variational function given by [6.70], with

Ze
= 27/16 (see [6.78]);

(c) the Hartree-Fock wave function [6.85].
2x _

Compare your results with the ‘exact’ values (r l
+ r2>

- 2.3V,

<S(n)> = 1.81 and <S(r 12 )>
= 0.106 (in a.u.).

6.4 Evaluate explicitly the Coulomb integral J „/ and the exchange Integra

given respectively by [6.101] and [6.102] for the cases n = 2, l = 0, 1.

Using [6 104], obtain the corresponding ‘first-order’ energy values for the

energies of the 2‘S, 2‘P, 2
3
S and 2

3P states of helium.

6.5 A helium atom is excited from the ground state to the autoionising state

2s4p by absorption of ultraviolet light. Assuming that the 2s electron
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moves in the unscreened Coulomb field of the nucleus and the 4p electron

in the fully screened Coulomb potential — 1/r:
i
I#

(a) Obtain the energy of this autoionising level and the correspondi||pp Iff

wavelength of the ultraviolet radiation.

(b) Find the velocity of the electron emitted in the autoionising process in

which the autoionising level 2s4p decays into a free electron and a He +

ion in the ground state Is.
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Many-electron atoms

We have seen in the preceding chapter that Schrodinger’s equation cannot be

solved exactly for two-electron atoms or ions, so that approximation metho s

must be used. We also saw in Chapter 6 that very accurate results can e

obtained for the energy levels and wave functions of helium-hke atoms by

performing variational calculations - such as those of the Rayleigh-Ritz type

in which elaborate trial functions containing a large number ofvar.auona

parameters are used. Extended variational calculations of this kind have a

been carried out for other light atoms (such as lithium, which contains thre

electrons) but this approach becomes increasingly tedious when the number o

atomic electrons increases. We shall therefore develop in this chapter some

general methods which, at the expense of simplifying assumptions, can be

applied to study the structure of many-electron atoms and ions

The starting point of all calculations on many-electron atoms is the centralfield

approximation, which we have already discussed in the previous chapter for the

case of two-electron atoms. The basic idea of this approximation is that each of

the atomic electrons moves in an effective spherically symmetric potential V(r)

created by the nucleus and all the other electrons. We shall first discuss some

general properties of this central potential, and show that a number o

qualitative features of many-electron atoms - including the periodicity in t

properties of the chemical elements - can be understood without a detai

knowledge of the form of this central field. Next, we turn to the problem of the

determination of the potential V(r), for which we first discuss the simpl

semi-classical method of Thomas and Fermi, and then the more precise

Hartree-Fock or self-consistent field approach. We conclude this chapter y

considering the corrections which must be applied to the central e

approximation.

7.1 THE CENTRAL FIELD APPROXIMATION

Let us consider an atom or ion containing a nucleus of charge Ze and N

electrons. A detailed treatment of this system should take into account:

1. The kinetic energy of the electrons and their potential energy in the

electrostatic (Coulomb) attractive field of the nucleus (assumed to e

point-like and infinitely massive).
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The central field approximtim

2. The electrostatic (Coulomb) repulsion between the electrons.

3. The magnetic interactions of the electronic spins with their orbital

(spin-orbit interactions).

4. Several small effects such as spin-spin interactions between the electrons,

various relativistic effects, radiative corrections and nuclear corrections (dlM

to the finite mass of the nucleus, its finite extension, nuclear magnetic dipole

moments, etc.).

It is clear that such a detailed study of a many-electron atom is a very difficult

task, in which approximations must be made. In what follows, we shall neglect

all the ‘small’ effects mentioned in 4. The spin-orbit interactions (3 above) will

* be considered in Section 7.5 when we discuss the corrections to the central field

approximation. Thus, keeping only the attractive Coulomb interactions be-

tween the electrons and the nucleus (which we assume to be infinitely heavy)

and the Coulomb repulsions between the electrons, we write the Hamiltonian of

the Af-electron atom (ion) in the absence of external fields as

2m %
Ze 2

\

(4ire0)r,7
+

N
2

(4ire0X>
[7.1]

where r, denotes the relative coordinate of the electron i with respect to the

nucleus, rtj = |r, - r, and the last summation is over all pairs of electrons. Al in

the previous chapter, it is convenient to use atomic units, so that the

Hamiltonian [7.1] becomes

h - i (4 *?,--)+ i 1
1= 1—\ 2 T

x J i <>=1 r
ij [7.2]

and the Schrodinger equation for the Af-electron atom wave function M/
(0 |,

92 > • • • ?iv) reads

2
;=

l

:t^on

,

^(91 ,92 > • • 9n )

i<j—l r
i>'J

= EViqu q2 , . . • 9n) [7.3]

where q t
denotes the ensemble of the (continuous) spatial coordinates r, and

(discrete) spin coordinates of electron t.

Since we are dealing with a system containing N indistinguishable particles,

its Hamiltonian must be invariant under an interchange of the coordinates

(spatial and spin) of any two particles. This is clearly the case for the

Hamiltonian [7.2], which is independent of the spins of the electrons, and is

symmetric in their spatial variables. Moreover, because electrons have spin 1/2

and hence are fermions, the Pauli exclusion principle requires that the total wave

function , 92, 9n) be completely antisymmetric, i.e. changes sign if the

coordinates (spatial and spin) of any two electrons are interchanged.
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Let us for a moment ignore the spin of the electrons. The Schrodinger

equation for the purely spatial wave function ip (r„ r2 ,
... tN) then reads

Hip (rx , r2 ,
... tN) = Exp (rl5 r2 ,

.

.

or, using the expression [7.2] of H,

1 Z

rjv) 4]

‘ N N
}

+ 2 -
T; I t<j— 1 r

ij

.

<Kr l ) r2> • ' r2v)

= Expiii, r2 , . . . r^-) [7.5]

We see that this equation is a partial differential equation in 3N dimensions

involving the coordinates rl5 r2 , . . . r„ of the electrons. Because of the

presence of the terms l/ry ,
which express the mutual repulsion of the electrons,

this equation is not separable. We have already encountered this situation in our

study of helium-like atoms. However, in contrast to the case of two-electron

atoms, where the term l/r12 can be treated by perturbation theory, the term

V. i/r .. which appears in [7.5] is in general too large to be treated as a

perturbation. Indeed, even though for a fairly large value of Z any one of the

terms l/r« is small compared to Z/r„ there are many l/ry terms, and their total

effect may become of the same size as that of the interaction between the

electron i and the nucleus. Thus, if we want to apply perturbation theory in a

meaningful way to the present problem, we must define a new unpertur e

Hamiltonian which is not just the sum of hydrogemc Hamiltonians

y (_q/2)V 2 - Z/r,), but which includes, at least approximately, the mutua

repulsion between the electrons. On the other hand this unperturbed Hamilto-

nian should be sufficiently simple so that the corresponding Schrodinger

equation is tractable.

The answer to this problem, proposed by Hartree and by Slater, is to use as

our starting point the central field approximation. This approximation is based on

an independent particle model, in which each electron moves in an effective

potential which represents the attraction of the nucleus and the average effect o

the repulsive interactions between this electron and the (N - 1) other electrons.

Moreover, since the overalTeffect of the (N - 1) other electrons is to screen the

central Coulomb attraction between an electron and the nucleus, it is clear a

the inter-electron repulsion term 2,-<y l/r,
;
contains a large spherically symmet-

ric component, which we shall write as 2,-5(n). A good approximation to t e

effective potential energy of an electron is therefore provided by a spherically

symmetric potential V (r) such that

V(r) = -y + S(r) t7 -6]

We may readily obtain the form of V(r) at large and small distances. Indeed,

let us first consider an electron t whose distance r, from the nucleus is large

compared to the distances r
}
associated with the (IV - 1) other electrons. In this

case we have r,
y
= r, and l/ry - 1/r, so that the electron t moves m a potential
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given approximately by

The ctntral field appiiuumirMi

Z % l
1— + 2 -

r, j. i
r,

Z - N + 1

which corresponds to the Coulomb field of the nucleus, screened by the (N —
1)

other electrons. As the distance r
t
diminishes, this screening effect becomes lesi

pronounced. In fact, when the electron t is near the nucleus, so that r
y

=* r,- , the

potential felt by this electron is given approximately by

4

-- + (
2 -

r
i \y= i r

i

[7.8]

where the symbol () denotes an average over the distances of the (N — 1) other

electrons, and C is a constant. Thus we see that in the limit r, —

*

0 the effective

potential acting on the electron t is just the unscreened Coulomb potential

(-Z/r,) due to the nucleus. We shall therefore require that the effective central

potential V(r) be such that

V(r)-> r —» 0 [7.9a]

v(r)
Z - N + 1

5

r

r —

>

oc

In particular, for a neutral atom (such that Z - N), we have

r-**>

[7.9b]

[7.9c]

The determination of the effective potential at intermediate dis'-'nces is a

much more difficult problem, to which we shall return in Sections
7

ytnd 7.4

where we discuss the Thomas-Fermi and Hartree-Fock methods, respectively.

At this point, however, it is important to realise that for intermediate values of r

the potential V(r) - which represents the attraction of the nucleus plus the

average repulsion of the other electrons — must depend on the details of the

charge distribution of the electrons, or in other words on the dynamical state of

the electrons. As a result, the same effective potential V{r) cannot account for the

full spectrum of a complex atom (ion). However, if we restrict our attention to the

ground state and the first excited states, it is reasonable to assume that a fixed

central potential V(f) can be used as a starting point. In fact, we shall see below

that many important features concerning the structure of complex atoms or ions

can be obtained by using only the information contained in equations [7.9],

without a detailed knowledge of the central potential V(r).

Let us now return to the Hamiltonian [7.2], From the foregoing discussion iti

is clear that a meaningful separation of H into an unperturbed part and a

perturbation may be achieved by writing

H = HC + H {
[7.10]
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Many-electron atoms

where

7.1

N / i

Hc = 2 (
-Y

+
i= 1

N
= 2

i=l
^ V* + V(r,) [7.11]

is the Hamiltonian corresponding to the central field approximation, and

V(r,)

i T Vi

1

N
1 (Z

*. = 2 f -2 -
i</'= 1 *ij i \'i

N
= 2 ri<7=l >ij

2 sfc) [7.12]

is the remaining part of the full Hamiltonian [7.2] containing the remaining

spherical and all the non-spherical part of the electronic repulsion. All we have

done, of course, is to add and subtract the expression X, Vfr,) in [7.2], but the

perturbation H\ defined by [7. 12] is now much smaller than the term X,<,- 1 Ay-

representing the full mutual repulsion between the electrons.

We shall therefore begin by neglecting the perturbation H j
and concentrate

our attention on the central field Hamiltonian Hc which, as seen from [7.6] and

[7.10], contains the kinetic energy, the potential energy in the field of the

nucleus, and the average (spherical) electron repulsion energy. The correspond-

ing Schrodinger equation for the spatial part of the N-electron central field wave

function i/»c(ri, r2 , . . . rv ) then reads

N
Hc4>c ~

2]
>=

i

-j v* + V(r
t) <AC E^c [7.13]

and is separable into N equations, one for each electron. A solution of [7.13]

may therefore be written as

<Pc,= Ma,Al)“a
2
(r2)

' •
• Ma

,v (
rn) [7 - 14]

where the (normalised)
7
individual electron orbitals w

0l
(rj), Ma2(r2) . • • are

solutions of an equation having the form

[-1 Vr + T(r)]u„im,(r) = E nl unlm,(t) [7.15]

and the symbol a
t
in [7.14] refers to the three quantum numbers (n,7iWt/.) of

electron i.

With the substitution W;—> m, the equation [7.15] is identical to [6.48],

which we already discussed in our study of two-electron atoms. Since the

potential V(r) is central, the one-electron or central field orbitals unim[r) are

products of radial functions times spherical harmonics,

Wr) = R n,(r)Ylmi(d, <t>)
[7.16]
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where the radial functions satisfy the equation

d2
2 d_ _ /(/ + 1)

dr
7

r dr r
2

7?«/(r) + V(r)/?„,(r) = £B/7?n/(r) [7.17]

We recall that the principal quantum number n is defined to be n = nr + l + 1,

where nr is the number of nodes of the radial function. The quantum numbers n,

l and m
t
can therefore take the values

n= 1,2,...

7 = 0, 1, 2, . . . n - 1

mi =-/,-/+ 1, .. . +/ [7.18]

As we already noted in connection with [6.48], the central field orbitals u„lm(t)

should not be confused with the hydrogenic wave functions ip„im(r) of

Chapter 3, since the radial functions R„i(r), solutions of [7.17] differ from the

hydrogenic radial functions [3.53], which correspond to the particular choice

V(r) = -Z/r.

Because the potential V(r) in [7.15] is spherically symmetric, the energy

eigenvalues Ent do not depend on the quantum number m
t

. However, in

contrast to the hydrogenic case, the individual electron energies depend on both

n and /. The total energy Ec in the central field approximation is of course the

sum of the individual electron energies, namely

Ec = 2 E„
iti

[7.19]
i= 1

As in the case of two-electron atoms discussed in Chapter 6, we note that there

is exchange degeneracy, since any spatial wave function obtained from [7. 14] by a

permutation of the electron coordinates is an equally good solutioi. [7.13]

corresponding to the same energy [7.19], )

Spin, the Pauli exclusion principle and Slater determinants

So far we have not introduced the spin of the electrons into our central field

model. This is readily done by multiplying the one-electron spatial orbitals

Unimfr') by a spin- 1/2 eigenfunction \\ /2 ,m,? thus forming the (normalised) spin

orbitals

= Rni(r)Ylm,(e, 4>)xw,m, [
7 .20]

characterised by the four quantum numbers n, l, m
t
and m

s
. The three ‘spatial’

quantum numbers n, l and mt
can take the values given in [7.18], while the spin

quantum number m
s
is such that ms

= ±1/2. It is clear that the spin orbitals

[7.20] satisfy the equations

[-^V 2 + V(r)]unim ,m< = En,unlmimt [7.21]
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Since the energy E nl
does not depend on the quantum numbers m, and m, ,

we

see that each individual electron energy level is 2(2/ + 1) times degenerate.

Our next task is to built up out of single-electron spin orbitals a total

N-electron (central field) wave function 'P c(?i , q2 , • • • </.v) which is antisym-

metric in the (spatial and spin) coordinates of any two electrons, in order to

satisfy the requirements of the Pauli exclusion principle. This may be accom-

plished in a simple way as follows. Let us designate the four quantum numbers

(n, l, m, ,
ms )

corresponding to given independent particle states in the atom by

the single letters a, p, ... v. The total wave function Tc describing an atom in

which one electron is in state a, another in state (3 ,
and so on may then be

written as a N x N determinant.

1

?2 ) • • • Qn)

«a(?l) W/3(?l)
’ ‘

’ Uv(<h)

ua(q2) up(q2)
' ufq2)

ua(qN) u^qN)
' • ufqN)

[7.22]

which is known as a Slater determinant. This wave function is obviously

antisymmetric because if we interchange the (spatial and spin) coordinates of

two electrons (say q x
and q 2 ) this is equivalent to interchanging two rows, so

that the determinant changes sign. The eigenvalue Ec of the central field

Hamiltonian Hc corresponding to a given Slater determinant is just the sum

[7.19] of the energies of the N individual states which are present in the

determinant.

We note that since a determinant vanishes when two columns (or rows) are

equal, the Slater determinant [7.22] will vanish if two electrons have the same

values of the four quantum numbers n, /, m, and ms
. Within the framework of

the independent-particle model, we may therefore state the exclusion principle

in the form originally discovered by Pauli in 1925, namely that no two electrons in

an atom can have the same set of four quantum numbers.

The (Nl)~
l/2

factor appearing in [7.22] is a normalisation factor, arising from

the fact that there are N\ permutations of the electron coordinates q x , q2 , .

qN If we denote by P a permutation of the electron coordinates, we may rewrite

the Slater determinant^.22] as

Tc(?1 , q2 , • • qN) = 2 i-lfPuMupiqi) '
'

' [7.23]

where the symbol (-l)
p

is equal to +1 when P is an even permutation and to

- 1 when P is an odd permutation [1], and the sum is over all permutations 1 .

Let us now investigate the behaviour of the Slater determinant [7.22] under

the inversion transformation r, —» -r,- Since a spin orbital [7.20] has parity

(-1)', the Slater determinant has the well-defined parity

(-!/>(- 1)'2 • •
• (-l/N = (-l)2i/

' [7.24]

[1] We recall that a permutation P is said to be even or odd depending on whether the number of

interchanges leading to it is even or odd.
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and will therefore be even or odd under the inversion transformation, depend*

ing on whether the sum of the orbital angular momentum quantum numtelf

the electrons, is even or odd. I

As a simple example, let us consider the ground state (Is)
2
'S of helium. The

spin orbitals for the two electrons are then given by

“100 , 1/2
= u ioo(r)Xi/2 ,i /2 — “ioo(r)<* for m, = +1/2 [7.25a]

and

“ 100,- 1/2
= Wioo(r)A'i/2 ,-i /2

= “ioo(r)/3 for m
s
= —1/2 [7.25b]

where a and /3 are the spin functions defined by [2.209], and the orbital «ioo(r) U
that introduced in Section 6.4. According to [7.22], the two-electron wave

function 'Pc(# 1 , q2) describing the helium ground state in the central field

approximation is

'I'cCtfi , Qi)

1

J2

Uioo(ri)a(l)

M ioo(r2)o(2)

«ioo(ri)/3(l)

Mioo(r2)/3(2)

= Uwo(ri)uloo(r2) [«( 1 )>8 (2 )
- a(2)/3(l)] [7.26]

in accordance with the results obtained in Chapter 6.

It is a simple matter to verify (Problem 7.1) that the central field Hamiltonian

Hc commutes with both the total orbital angular momentum operator L and the

total spin operator S. That is,

where

[Hc , L] = 0 [7.27a]

' UL-, S] = 0 [7.27b]

*
L = 2 Li [7.28a]

i /=i

S = 2 S, [7.28bj
i=i

Here L, and S, denote respectively the orbital angular momentum and the spin

operator of the ith electron. As a consequence, it is possible to obtain

eigenfunctions ofHc which are also eigenfunctions of the operators L2
, S

2
, L,

and Sz , with eigenvalues given respectively by L(L + 1 )h
2
, S(S + 1 )h

2
, Mt fi

and Msh (h =1 in a.u.). Such eigenfunctions will be denoted by \aLSMLMs),
where a is an index representing additional information (such as the radial part

of the wave function, the parity, etc.). It is precisely this ‘coupled representa-

tion’ L, S, Ml ,
Ms which we used in Chapter 6 to discuss the two-electron

problem. Now, in obtaining the Slater determinant [7.22] we used spin-orbitals

unim,m, expressed in the n, /, m/, ms representation. As a result, a Slater

determinant [7.22] is an eigenfunction of the operators Lt and S,, but not
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necessarily of L2 and S2
,
and we must in general construct.Unear ^^imu

of Slater determinants to obtain an eigenfunction of L , S , L. and ^see

Problem 7.2). The helium ground state considered above is a simP^ cas

^
L = 5 = 0) for which a single Slater determinant is an eigenfunction of fou

operators L2
, S

2
,
Lz and Sz .

Electron states in a central field. Configurations, shells and subshells

We have shown that within the framework of the central field approximation

the energy levels Ec of an atom (ion) having N electrons are given by summing

the Individual electron energies Enl ,
while the iV-electron wave function

qr (a q2 , . . . qN) are obtained by forming Slater determinants (or linear

combinations of them) with the individual spin orbitals - The problem o

finding the eigenvalues and eigenfunctions of the central fie d Hamil oman Hc

is therefore reduced to the determination of the individual energy^ levels E ,

and the spin orbitals [7.20]. Since the spherical harmonics Yhmi(6, <^) and t

solving the radial equation [7.17] for an attractive potential V(r) satisfymg the

C

°Theorde/ of the energy levels E„ does no, depend to ..crucialI Wjjyon the

detailed form of the potential V(r). If V(r) were simply the Coulomb field Z/r

of the nucleus, all the levels l = 0, 1, . . . » ~ 1 corresponding to a given va-

lue of n would coincide. The screening due to the other electrons results in a

raising of the energy levels, this effect being more pronounced as n and

increase, since in this case the orbitals are concentrated at larger values o .

Thus, for a fixed value of / the energy Enl is an increasing function of n and for a

given value of n it is an increasing function of l (the orbitals with larger v

being ‘forced’ out by the centrifugal barrier). If we restrict our attention to

ground and lowest excited states, the order of succession of the "dividual

energy levels Enl
(which can be inferred from spectroscopic evidence) is ne y

the same for aU atoms, and is given in Table 7.1. It is worth noting thatt his

sequence is different from that in hydrogen, where the energy levels depend

only on n and£ n > eL For example the 4s state, which has a higher energy

S: ,he’£ to tdrogen, ,s depressed because of to, low angular

momentum which causes this orbital to be large at small r, where it can feel the

XuS attraction. We also see that as a rule the individual electron energy

p , i, an increasing function of the sum n + l.

"in the central field approximation, the total energy [7.19] of the atom depends

only on the number of electrons occupying each of the individual energy levels

F Therefore as we already noted in Section 6.4 for the particular case of

d* total energy is entirely determined by the elearon

configuration, that is by the distribution of the electrons with respect to

quantum numbers n and l. Thus the assignment of an electron configuration

requires the enumeration of the values of n and l for all the electrons of the atorm

We recall that in the usual spectroscopic notation the value of n is given
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7.1 Tht cttural fitld approximation I

Tabic 7.1 The ordering of the individual energy levels The energy increases from bottom M
top, the brackets enclosing levels which have so nearly the same energy that their order can vw

|

from one atom to another. Also given is the spectroscopic notation for the subshell (nl) atld ft*

maximum number 2(2/ + 1) of the electrons allowed in a subshell

Quantum numbers Spectroscopic

n .
1 notation for

subshell (nl)

Maximum number

of electrons allowed

in the subshell

= 2(2 1 + 1)

[6,2 [
6d 10

5,3 5f 14

7,0 L 7s 2

6,1 6p 6

r 5,2 "5d 10

4,3 4f 14

.6,0 _6s 2

5,1 5p 6

'4,2 " 4d 10

.5,0 L 5s 2

4.1 4p/ 6

r 3,2 [3d 10

.4,0 ,4s 2

3,1 3p 6

3,0 3s 2

2,1 2p 6

2,0 2s 2

1,0 Is 2

number, that of l as a letter (s for l — 0, p for / — 1 , and so on) and the number

of electrons having given values of n and l as a numerical superscript (for

example (2s)

2

or 2s
2

, (3p)
4
or 3p

4
, etc.).

Electrons having the same, value of n and l are said to belong to the same

subshell [2]. According to our foregoing discussion, there are 2(21 + 1) states

having the same value of n and l but different values of m, and ms
. Such states arc

called equivalent. In spectroscopic jargon the electrons having the same value of

n and l (i.e. belonging to the same subshell) are known as equivalent electrons.

Because of the Pauli exclusion principle there cannot be more than one eleci

in each individual state labelled by the quantum numbers (n/w;m
s). Thus t.^

maximum number of electrons in a subshell is 2(2/ + 1), so that

For l = 0 (s electrons) this maximum number is 2

/ = 1 (p electrons) this maximum number is 6

/ = 2 (d electrons) this maximum number is 10

/ = 3 (f electrons) this maximum number is 14

/ = 4 (g electrons) this maximum number is 18

/ = 5 (h electrons) this maximum number is 22 '

[2] Some authors use the word ‘shell’ (instead of ‘subshell’) to characterise electrons having the

same values of n and 1. We shall reserve the word ‘shell’ for electrons having only the same value

of n, the principal quantum number.
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7.2
Many-electron atoms

In addition to the ordering of the energy levels Enl ,
Table 7.1 also gives the

spectroscopic notation of the corresponding subshells, and the maxun

number of electrons allowed in each subshell. An assembly of 2(2/ )

eauivalent electrons is called a closed (or filled) subshell.

Electrons which have the same value of the principal

said to belong to the same shell. Following a notation introduced in Chapter 1

for the hydrogenic atoms, and commonly used in discussing X-ray sPect™

complex atoms, the value of the principal quantum number n is sometimes

specified by a capital letter according to the correspondence

Value of n 1 2 3 4 5 6

l l l l $ $

Code letter K L M N O P

The number of electrons in a shell is 2rf, in which case we have a

closed (or filled) shell.

Degeneracies

Since the assignment of an electron configuration requires only the enumeration

of the values of n and / for all electrons, but not those of m

,

and ms , a given

degeneracy s will be attached to a configuration. Ut -ij* the^mtaof

electrons occupying a given individual level and , ,

degeneracy of that level. There are

, =
5

'
! _ [7.29]

dl vM -
v,)!

ways of distributing the v, electrons among the <5,
individual states

ing to the level E n , ,
and we note that d, = 1 for a closed subshell (such t

8) The total degeneracy or statistical weight g of the configuration is then

obtained by forming the product of d
t
with the degeneracies corresponding to

the electrons of the other subshells.
, ,

As an example, let us consider the ground state of the carbon atom, which h

the configuration 1s
2
2s

2
2j^

2
. In this case.

for the two Is electrons: v = 2, 8=2, d = 1

for the two 2s electrons: v = 2, 5 = 2, d = 1

for the two 2p electrons: v = 2, 5=6, d = 15

and the total degeneracy of the ground state configuration of carbon is g = 15.

7.2 THE PERIODIC SYSTEM OF THE ELEMENTS

We are now equipped with all the necessary information to discuss the

electronic structure and the ‘building up’ (aufbau) of atoms. For the sake of

simplicity we shall only consider the ground state of neutral atoms.
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7.2 The periodic system of the elements

electrons of an atom of atomic number (nuclear charge) Z then occupy {foe

lowest individual energy levels in accordance with the requirements of the Pauli

exclusion principle discussed above; the ordering of the individual levels is that

displayed in Table 7.1. The ground state configuration of an atom is therefore

obtained by distributing the Z electrons among a certain number / of sub-

shells, the first (/ - 1) subshells being filled and the last one - corresponding

tO the highest energy — generally not, except for particular values of Z

(2, 4, 10, 12, 18, etc.). The least tightly bound electrons, which are in the

subshell of highest energy, and in insufficient numbers to form another closed

subshell, are called valence electrons. In going from one atom having atomic

number Z to the next one, with atomic number Z + 1, the number of electrons

increases by one, the (Z + 1) electrons occupying the lowest energy levels

allowed by the exclusion principle. In this way the subshells are progressively

filled. This is illustrated in Table 7.2 which gives the electron configuration of

the ground state of neutral atoms. Also given in Table 7.2 are the ionisation

potential and the ground term, the7 latter being written according to the

Russell- Saunders notation

25 + 1 rLJ

whereJ is the total angular momentum quantum number and the code letters S,

P, D, . . . correspond to the values L = 0, 1, 2, ... as described in Chapter 6.

We shall return in detail in Section 7.5 to the assignment of the term values.

The table begins with hydrogen, which has the ground state configuration Is.

The ionisation potential, as we have learned in Chapter 3, is 13.6 eV and the

ground term value is clearly
2
Si /2 ,

since we have L(=l )
= 0, S( rr s) = 1/2 and

K=j) = 1/2-
£ . , 2 .

The next element, helium,\has the ground state configuration Is and was

studied in detail in Chapter 6. Since L = 0 and A = 0 in this case, the ground

term value is
l
S0 - We see by looking at Table 7.2 that helium has the largest

ionisation potential (24.59 eV). We also note that the two electrons of helium fill

the K shell (n =1). \

The third element, lithium, has the ground state configuration ls
2
2s (abbrex \

ated as [He]2s in the table) because the configuration Is
3

is forbidden by the-'

exclusion principle. The ground term value of lithium is
2
S 1 /2 ,

since we have

one electron outside a closed shell. If the screening of the nuclear charge

by the two inner Is electrons were perfect, the outer electron would feel an ef-

fective charge Ze = 1, the corresponding ionisation potential being then

13.6/4 = 3.4 eV. In fact the screening is not perfect and, as a result, the

ionisation potential is somewhat larger, being 5.39 eV.

With the next element, beryllium (Z = 4) the 2s subshell is filled and the

ground state configuration is ls
2
2s

2
. Since we have a closed subshell as in

helium, the ground term is 'S0 . The ionisation potential (9.32 eV) is larger than

for lithium, because of the increase of the nuclear charge.

The 2p subshell becomes progressively filled beginning with boron (Z - 5,

ground state configuration ls
2
2s

2
2p) up to neon (Z = 10, ground state
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Table 7.2 Electronic configuration, term value and ionisation potential of

ground state

M in their

Element

1 H hvdrogen

2 He helium

3 Li lithium

4 Be beryllium

5 B boron

6 C carbon

7 N nitrogen

8 O oxygep-—-

—

9 F fluorine

10 Ne neon

11 Na sodium

12 Mg magnesium

13 A1 aluminium

14 Si silicon

15 P phosphorus

16 S sulphur

17 Cl chlorine

18 Ar argon

19 K potassium

20 Ca calcium

21 Sc scandium

22 Ti titanium

23 V vanadium

24 Cr chromium

25 Mn manganese

26 Fe iron

27 Co cobalt

28 Ni nickel

29 Cu copper

30 Zn zinc

31 Ga gallium

32 Ge germanium

33 As arsenic

34 Se selenium

35 Br bromine

36 Kr krypton

37 Rb rubidium

38 Sr strontium

39 Y yttrium

40 Zr zirconium

41 Nb niobium

42 Mo molybdenum

43 Tc technetium

44 Ru ruthenium

45 Rh rhodium

46 Pd palladium

47 Ag silver

48 Cd cadmium

49 In indium

50 Sn tin

51 Sb antimony

Electronic

configuration f

Is

Is
2

[He]2s

[He]2s
2

[He]2s
2
2p

[He]2s
2
2p

2

[He]2s
2
2p

3

[He]2s
2
2p

4

[He]2s
2
2p

5

[He]2s
2
2p

6

[Ne]3s

[Ne]3s
2

[Ne]3s
2
3p

[Ne]3s
2
3p

2

[Ne]3s
2
3p

5

[Ne]3s
2
3p

4

[Ne]3s
2
3p

5

[Ne]3s
2
3p

6

[Ar]4s

[Ar]4s
2

[Ar]4s
23d

[Ar]4s
2
3d

2

[Ar]4s
23d

3

[Ar|4s3d
5

[Ar]4s
2 3d

5

[Ar]4s
23d

6

[Ar]4s
2
3d

7

[Ar]4s
23d

8

[Ar]4s3d'°

[Ar]4s
23d

i0

[Ar]4s
23d'°4p

[Ar]4s
23d

10
4p

2

[Ar]4s
23d

10
4p

3

[Ar]4s
23d

,0
4p

4

[Ar]4s
23d

lu
4p

5

[Ar]4s
2
3d‘°4p

6

[Kr]5s

[Kr]5s
2

[Kr]5s
24d

[Kr]5s
24d 2

[Kf]5s4d
4

[Kr]5s4d
5

[Kr]5s
z4d 5

[Kr]5s4d
7

[Kr]5s4d
8

[Kr]4d 10

[Kr]5s4d
10

[Kr]5s
24d 10

[Kr]5s
24d 10

5p

[Kr]5s
24d l0

5p
2

[Kr]5s
z4d'°5p

3

Term+

‘So

Sj/2

‘So
2
P./2

3
Po

4
S3/2

3p2

*3/2

‘So

S
1 /2

‘So
2
P,/Z

3
Po

4
S3/2

3p2
2P 3 /2

‘So

Ionisation

potential (eV)

13.60

24.59

5.39

9.32

8.30

11.26

14.53

13.62

17.42

21.56

5.14

7.65

5.99

8.15

10.49

10.36

12.97

15.76

2
S

] / 2
4.34

So 6.11
2D 3 /2

6.54
3f 2

6.82
4F,/2

6.74
7
s 3

6.77
6
Ss/2 7.44

5d4
7.87

4F9/ 2
7.86

3t?r 4
7.64

2
S

1 / 2
7.73

'So 9.39

2P 1/2
6.00

3
Po 7.90

4
S 3 -2

9.81

3p2
9.75

2
P3-2 11.81

'So 14.00

2
S ,/2

4.18

'So 5.70
2D 3 /2

6.38

3f2
6.84

6d,,2
6.88

7
Sb 7.10

6
Ss/2 7.28

5f 3
7.37

4F9/2
7.46

'So 8.34

2S ,/2
7.58

‘So 8.99

2P |/2
5.79

3P„ 7.34

VS „ 2
8.64



T.U.
»

z Element Electronic

configuration4

Term4 lonuatim

potential (*W)

52 Te tellurium [Kr]5s 24d l 0
5p

4 3p2 9.01

53 I iodine [Kr]5s
24d 10

5p
5 2

Pv/2 10.45

54 Xe xenon [Kr]5s24d‘°5p
6

‘So 12.13

55 Cs cesium [Xe]6s
2
Sl /2 3.89

56 Ba barium [Xe]6s
2

'So 5.21

57 La lanthanum [Xe]6s25d
2D3/2 5.58

58 Ce cerium [Xe](6s
2
4f5d) Cg4 ) 5.47

59 Pr praseodymium [Xe](6s
2
4f

3
) Ch/i) 5.42

60 Nd neodymium [Xe]6s
2
4f

4 X 5.49

61 Pm promethium [Xe](6s
2
4f

5
) (

6H 5 /2 ) 5.55

62 Sm samarium [Xe]6s
2
4f

6 7F0 5.63

63 Eu europium [Xe]6s
2
4f

7
“S7/2 5.67

64 Gd gadolinium [Xe]6s
2
4f

7
5d

9D 2 6.14

65 Tb terbium [Xe](6s
2
4f

9
)

6
H,5/2 5.85

66 Dy dysprosium [Xe](6s
2
4f

10
) (

S
I8) 5.93

67 Ho holmium [Xe](6s
2
4f
n

) (

4
I.5/2) 6.02

68 Er erbium [Xe](6s
24f

12
) (

3H6 ) 6.10

69 Tm thulium [Xe]6s
2
4f

13 2f7/2 6.18

70 Yb ytterbium [Xe]6s
2
4f

14
‘So 6.25

71 Lu •lutetium [Xe]6s2
4f

145d
2D 3 /2 5.43

72 Hf hafnium [Xe]6s
2
4f

145d2 3f2 7.0

73 Ta tantalum [Xe]6s
2
4f

145d 3 4f3/2 7.89

74 W tungsten [Xe]6s
2
4f

145d4 5D„ 7.98

75 Rc rhenium [Xe]6s
2
4f

14
5d 5 6

Ss /2 7.88

76 Os osmium [Xe]6s
2
4f

, 45d6 5D4 8.7

77 Ir iridium [Xe]6s2
4f

145d
7

(

4f,/2 ) 9.1

78 Pt platinum [Xe]6s4f'
4
5d

9 ‘D, 9.0

79 Au gold [Xe]6s4f
14
5d

10 2
Sl/2 9.23

80 Hg mercury [Xe]6s 2
4f

, 45d 10
'So 10.44

81 T1 thallium [Xe]6s
2
4f

14
5d

10
6p

2P ,/2 6.11

82 Pb lead [Xe]6s
2
4f

145d 10
6p

2 3
Po 7.42

83 Bi bismuth [Xe]6s
2
4f

14
5d

] 0
6p

3 4
S 3 / 2

7.29

84 Po polonium [Xe]6s
2
4f

145d 10
6p

4 3p2
8.42

85 At astatine [Xe](6s
2
4f

1

4

5d
1 °
6p

5
)

2P 3 '2 9.5

86 Rn radon [Xe]6s
2
4f

14
5d

10
6p

6
‘So 10.75

87 Fr francium [Rn]7s
2
Sj /2 4.0

88 Ra radium [Rn]7s
2

‘So 5.28

89 Ac actinium [Rn]7s 26d
2D 3 /2

6.9

90 Th thorium [Rn]7s
26d2 3f2

91 Pa protactinium [Rn](7s
2
5f

2
6d) (

4k„ /2)

92 U uranium [Rn]7s25f
3
6d

5l6 4.0

93 Np neptunium [Rn]7s
2
5f

46d
6
Lii/2

94 Pu plutonium [Rn]7s
2
5f

6 7F0 5.8

95 Am americium [Rn]7s
2
5f

7 8
S 7/ 2

6.0

96 Cm curium [Rn]7s
2
5f

76d
9d 2

97 Bk berkelium [Rn]7s 2
5f

86d
8H )7/2

98 Cf californium [Rn]7s
2
5f‘° 'Is

99 Es einsteinium [Rn]7s25f"
4
TA

1 5/2

100 Fm fermium [Rn](7s
2
5f

12
) (

3H6 )

101 Md mendelevium [Rn](7s
2
5f

13
) (

2f7/2 )

102 No nobelium [Rn](7s
2
5f

14
) (‘So)

103 Lw lawrencium [Rn]7s2
5f

l 4
6d) (

2D 3/2 )

4 Configurations and terms in parentheses are estimated.

303



Many-electron atoms 7.2

configuration ls
2
2s

2
2p

6
). Since the 2p individual energy level is somewhat

higher than the 2s level, the ionisation potential of boron (8.30 eV) is smaller

than that of beryllium. For neon the ionisation potential reaches the value of

21.56 eV, which is larger than any other one, except helium. We note that since

the 2p subshell is closed for neon, its ground term value is ’So . In fact, neon has

the maximum number of electrons allowed in the n = 2 (L) shell.

With Z = 11 (sodium) the eleventh electron must go into the 3s subshell.

The ionisation potential of sodium (5.14 eV) is therefore much smaller than that

of neon. From Z = 11 to Z = 18 the 3s and 3p subshells are progressively

filled, the ground state configuration of argon (Z = 18) being ls
2
2s

2
2p

6
3s

2
3p

6
.

The process of filling the n = 3 states is temporarily interrupted at Z = 19

(potassium). Indeed) looking at Table 7.1, we see that after the 3p subshell is

filled the first departure from the ordering according to the lowest value of n

occurs. The added electrons in potassium (Z = 19) and calcium (Z = 20) thus

go into the 4s rather than the 3d subshell, the 3d level being energetically less

favourable because of the screening by the argon core [Ar],

The filling of the 3d subshell is therefore deferred until scandium (Z = 21),

which has the ground state configuration ls
2
2s

2
2p

6
3s

2
3p

6
4s

23d (or [Ar]4s
23d in

abbreviated notation). It is the first element of the so-called first transition or iron

group, extending from Z = 21 to Z = 30 (zinc). It is worth noting that because

the 4s and 3d states are very close in energy, a competition between these two

states develops, and the process of filling is not so regular as for the previous

subshells. Thus from scandium (Z = 21) to vanadium (Z = 23) the added

electrons occupy successively the states 4s
2
3d, 4s

23d2 and 4s
23d 3

, but chromium

(Z = 24) has only one 4s electron, the state 4s3d5 being energetically more

favourable than 4s
2
3d

4
. With manganese (Z = 25) the added electron goes into

the 4s state left free in chromium, so that Mn has the ground state configuration

[Ar]4s
23d5

. The 3d subshell then continues to be filled regularly with iron

(Z = 26, ground state configuration [Ar]4s
23d

6
), cobalt (Z = 27, ground state

configuration [Ar]4s
23d7

) and nickel (Z = 28, ground state configuration

[Ar]4s
23d 8

), but this regularity is again broken with copper (Z = 29) which has

only one 4s electron (as does chromium), its ground state configuration being

[Ar]4s3d
10

. The last element of the first transition or iron group, zinc (Z = 30)

has the ground state configuration [Ar]4s
2
3d

10
.

—T'he elements of the first transition group have ground state configurations in

which the outer electrons occupy states of the type (n + l)s
2ndx

or (n + l)s

ndx+1 with n = 3. Two other sets of transition elements, the second transition

or palladium group (from Z = 39 to Z = 48) and the third transition or platinum

group (from Z = 71 toZ = 80) correspond to similar situations, but with n = 4

and n = 5, respectively. Here again a competition develops between the nd and

the (n + l)s levels, and irregularities in the filling of the subshells occur.

The rare-earth elements or lanthanides are the 14 elements, beginning with

lanthanum (Z = 57) which correspond to the filling of the 4f subshell, the 4s

subshell being already complete. We note that this filling of the 4f subshell is

irregular, with a competition taking place between the 4f and 5d levels.
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Analogous to the rare>earth elements are the actinides, beginning with actinium

(Z = 89) in which the 5s subshell is complete and a competition occur! between !f

the 5f and the 6d states.

The electron configurations of atoms with large values ofZ are clearly difficult

to explain on the basis of the simple qualitative arguments developed above.

One reason, which we have already mentioned, is that various energy levels are

very close in energy. Also, for large Z, relativisitic effects (such as spin-orbit

coupling) become important and prevent the simple decoupling of the space and

spin parts of the wave functions, which we have made here. We shall return to

spin-orbit effects in Section 7.5.

Ionisation potentials

It is apparent from Table 7.2 and from Fig. 7. 1 that in going from an dement to

the next one, the ionisation potential of the added electron does not Vary in a

monotonic way with Z. In particular, the ionisation potential is seen to reach

maximum values for the noble gases (He, Ne, Ar, Kr, Xe) which have a full K
shell or p subshell. It is smallest for the alkalis (Li, Na, K, Rb, Cs) whose

electron configuration corresponds to that of a noble gas plus an s electron.

These features can be understood qualitatively by recalling that the electrons

in the same subshell have equivalent spatial distributions, so that their screening

of one another is rather small. For example, in the case of helium we saw in

Section 6.4 that the screening constant corresponding to the shielding between

the two Is electrons is given approximately by S — 0.30. As a result, the

effective charge Ze increases as Z increases during the filling of a subshell, and

the ionisation potential is maximum for a closed subshell. On the other hand,

Atomic number Z

7.1 The ionisation potential as a function of the atomic number Z. The maxima occur at Z - 2

(He), Z = 10 (Ne), 2 m 18 (Ar), Z - 36 (Kr), Z = 54 (Xe) and (not shown) Z = 86 (Rn).
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when a subshell has been filled, the added electron must go into another state

having a larger value of n or /, whose orbital is concentrated at larger r values,

outside the closed subshells. Thus in this case the increase of the nuclear charge

Z is more than compensated by the very effective screening of the inner

electrons on the outer one, and the ionisation potential is significantly reduced.

Chemical properties and the Mendeleev

classification of the elements
j

The chemical properties of an atom are related to the possible interactions of

this atom with other ones, and in particular to its possibility of being bound with

other atoms to form a molecule. At the low energies involved in chemical

reactions, the interactions between atoms are mostly determined by the least

tightly bound or valence electrons which, as we have seen, are in the outer

subshell. The key factors are the number of occupied electron states in this

subshell, and the energy interval between this subshell and the next (empty)

one. For example, an atom tends to be chemically inert if (i) its outer subshell is

filled, and (ii) there is an appreciable energy difference between this subshell

and the next higher one, so that it takes quite a lot of energy to perturb the

atom. This is the case for the noble gases (He, Ne, Ar, Kr, Xe). On the other

hand, the alkalis (Li, Na, K, Rb, Cs) which contain a single weakly bound s

electron outside a ‘noble gas’ core are very active chemically, because they will

frequently loose their valence electron in their interactions with other atoms.

The halogens (F, Cl, Br, I) which have a p subshell lacking only one electron

(that is a ‘hole’ in their outer p subshell) will also exhibit a large chemical

reactivity, because of their high electron affinity - their tendency to capture an

electron in order to reach the more stable arrangement corresponding to

completely filled subshells. In particular, a halogen (such as F) will readily

combine with an alkali (such as Li) to form a F~ ion and a Li
+

ion, which bond

together. This is an example of ionic bonding, which will be discussed in

Chapter 9. „
The rare gases, alkalis and halogens provide examples of recurrences (as Z

increases) of similar chemical properties, due to regularities in the structure of the

outer electron shells. These recurrences led Mendeleev in 1869 to classify the

elements in a table, the periodic table, such that the elements of a same column

(group) have comparable chemical properties and those of a same row are said to

form a period. The atomic number Z of an element was then obtained by

ordering the spaces in the table. It is worth noting that when Mendeleev

proposed his periodic table in 1869 neither electrons nor nuclei were known,

and that he also had the foresight to leave some empty spaces in his table, to be

filled by elements not yet discovered. Mendeleev subdivided the set of elements

into seven periods; this subdivision is still kept today and includes elements

discovered later. A modern version of the Mendeleev, or periodic, table of the

elements is given in Table 7.3. We see that each of the periods begins with an

alkali element and ends with a noble gas atom, except for the seventh period,



t

Lanthanides

58

Ce
140.12

59

Pr

140.91

60

Nd
144.24

61

Pm
(145;

62

Sm
150 35

63

Eu
151.96

64

Gd
157.25

65

Tb
158.92

66

Dy
162.50

67

Ho
164.93

68

Er
167.26

69

Tm
168 93

70

Yb
173.04

71

Lu
174.97

t 90 91 92 93 94 95 96 97 98 99 100 101 102 103

Actinides Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

232.04 1231) 238.03 (237) (242) (243) (247) (249! (251) (254) (253) (256) (25)1 <2571

which is incomplete. We remark, parenthetically, that nothing in atomic

structure prevents atoms with Z > 100 existing. The reason that such atoms are

not observed naturally is that their nuclei undergo spontaneous fission, and are

unstable.

To conclude our discussion, we emphasise once more the importance of the

Pauli exclusion principle. Indeed, the variety which we find in the periodic table

is basically a consequence of the Pauli principle. If it were not obeyed, all the

electrons of an atom would be in the Is subshell (which has the lowest energy),

and all atoms would be more or less alike, with spherically symmetric charge

distributions having very small radii.
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7.3 THE THOMAS-FERMI MODEL OF THE ATOM

We now turn to a basic problem in the central field approximation, namely the

determination of the central potential V(r). This problem will be analysed by

using two approaches. The elaborate Hartree—Fock method will be studied in

the next section, while the simpler Thomas-Fermi model, which is based on

statistical and semi-classical considerations, is discussed here.

The Fermi electron gas

Before we analyse the theory developed by Thomas and Fermi for the ground

state of multielectron atoms, it is convenient to consider the simpler problem of

the Fermi electron gas, that is a system consisting of a large number N of free

electrons confined to a certain region of space [3]. We shall suppose that the N
free electrons of our system are confined to a large cube of side L. Each of the

electrons is therefore moving independently in a potential which is constant (we

may take this constant to be zero) inside the cube, and is assumed to be infinite

at the boundary. Thus, the spatial part of the wave function describing the

motion of an electron satisfies the free particle Schrodinger equation [4]

h2

_
2m dx 2

+
dy

2 dz
4>0d = Etjj(r) [7.30]

inside the cube, while i/r = 0 at the boundary.

Since the equation [7.30] is separable in Cartesian coordinates, we may use

the results obtained in Section 2.4 for the one-dimensional infinite square well

potential. Generalising these results to three dimensions, and moving the origin

of our coordinate system from the centre of the box to one corner, we find that

the eigenfunctions of [7.30] which vanish at the boundary (i.e. the wave

functions for a spinless particle in a cubical box of side L) are given by

n r TT

</w(r) = C sin -f- x sin sin
/«„ n?TT

[7.31]

L ~J-'\ L '/-\ L

where C = (8/L
3
)
1/2

is a normalisation constant and n x , ny ,
nz are positive

integers [5]. The corresponding allowed values of the energy E ol an electron are

(see [2.131])

E =
7T

2h2

2mL2

7r
2
h
2

2mL2

(n
2 + n

2 + n
2
)

[7.32]

[3] A good example of a Fermi electron gas is provided by the conduction electrons in a metal,

detailed discussion may be found in Kittel (1976).

141 In this section we shall- use SI units. ..... „ ,

[51 A zero value of nx ,
ny or nz leads to the unacceptable trivial solution ip - 0 everywhere,

and negative values of nx , ny ,
nz ,

do not yield different wave functions from those given by [7 . 3 1 J

.
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where

, , , , r 'ii
n
2 = n2x + n

2 + n\ [7.33]

We remark that each energy level [7.32] can in general be obtained from a

number of different sets of values of (nx , ny , nz), and is therefore usually

degenerate.

Since electrons have spin 1/2, we must multiply the spatial part [7.31] of their

wave function by the spin functions X\/2,m,> with m5
= ±1/2. The individual

electron wave functions are therefore the spin orbitals

*ftnx tiynBms
~ 4>nxnynff)X\/2,m1 [

7 -34]

and the quantum states of an electron are specified by the three spatial quantum
numbers (:nxnynz) and the spin quantum number ms . We note that for each

energy level [7.32] labelled by the quantum numbers (nxnynz), there are two
spin-orbitals, one corresponding to spin up (m

s
= + 1/2) and one to spin down

(ms
- = -1/2), so that the degeneracy of the individual energy levels [7.32] is

multiplied by two.

Because the energy spacings are very small for any reasonable macroscopic

box of side L, it is a good approximation to consider that the energy levels are

distributed nearly continuously. We may then introduce the density of states or

density of orbitals D{E), which is defined as the number of electron quantum
states (i.e. the number of spin orbitals) per unit energy range. Thus D{E) c\E is

the number of electron states for which the energy of an electron lies between E
and E + dE.

In order to obtain the quantity D{E), we consider the space formed by the

axes nx , ny and nz (see Fig. 7.2). Since nx , nv and nz are positive integers, we are

interested only in the octant for which nx > 0, ny > 0 and nz > 0. As seen from
Fig. 7.2 each set of spatial quantum numbers (nx , ny , nz) corresponds to a point

7.2 Three-dimensional n-space used in the calculation of D(E). To each state (n,, ny, n.) il

associated a cube of unit volume. For fairly large values of (nx , ny ,
nj the total number of state*

within n = (n( + n
y
+ ni)

l/1 equals the volume of one octant of a sphere of radius n in n-space.
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of a cubical lattice, and every elementary cube of the lattice has unit volume.

Thus, for fairly large values of the quantum triplet (nx , ny , n*), the total number

of spatial orbitals for all energies up to a certain value E is closely equal to the

volume of the octant of a sphere of radius « = (n x + ny + nz) . The total

number of individual electron states for energies up to E is therefore given

approximately by

Ns = 2 7rn
3 = \ itr? [7-35]

o 3 3

where the factor 2 is due to the two spin states per spatial orbital. Using [7.32]

and setting V = L3
, we may also write this result as

n _L VE3/2 [7.36]
s

3-7T
2 \h2

)

The number D(E) dE of electron states within the energy range (E,E + dE) is

then obtained by differentiating [7.36], namely

dNs
= D(E) dE =

2^5 (fr)
VE}/2 dE [7 ' 37]

so that

dlVs

D(£) =
dE

[7 . 38]

It may be shown that the above results remain valid for a volume of arbitrary

shape, provided its minimum dimension is much larger than the average

wavelength of the orbitals.

According to the Pauli exclusion principle, the total wave function describing

the entire system oiN electrons must be fully antisymmetric in the (spatial and

spin) coordinates of the electrons, and will therefore be a Slater determinant

constructed from the individual spin orbitals [7.34]. The corresponding total

energy is the sum of the individual electron energies. Assuming that the system

is in the ground state (i.e. our Fermi electron gas is at an absolute temperature

j = o), the lowest total energy is then obtained when the N electrons fill all the

spin orbitals up to an energy EF ,
called the Fermi energy, the remaining orbitals

(with energies E > EF ) being vacant. This is illustrated in Fig. 7.3, which

\ shows the density of states D(E) as a function of E, the occupied orbitals

corresponding to the ground state of the Fermi electron gas being represented

by the shaded area.

The Fermi energy may be evaluated by requiring that the total number N of

electrons in the system should be equal to

N =
f
E?

D(E) dE
lo

[7.39]

In writing this equation we have used the fact that the system contains many

electrons, so that the integral [7.39] is a good approximation to the correspond-



7.3 The density of states D(E) as a function of the energy E. The occupied orbitals corresponding to

the ground state of the Fermi electron gas are represented by the shaded area.

ing sum over discrete states. Moreover, since N is large, it does not matter
whether the last level contains one or more electrons. Using the result [7.38], we
have

so that

where

1

27T
2 (if)

f
J„

E ‘/2dE

3?l(f)
VE*

n
[7.40]

ef [7-41]

N
P= V [7.42J

is the number of electrons per unit volume, i.e. the density of electrons. We
note that the total energy of a Fermi electron gas in the ground state (at absolute

zero) is

E,nt = ED(E) dE

1 (2m \
\3/2 Ei

V Ei/Z dE

VI
vEyz

[7 .43]
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'

"

where we have used [7.38] and [7.40], The average electron energy at T = 0 K

is therefore

p - = £ £E ~ N 5
F [7.44]

It is also instructive to study the problem of the Fermi electron gas by

imposing periodic boundary conditions on the (spatial) wave functions of the

electrons, i.e. by requiring these wave functions to be periodic in x,y and 2 with

period L. Instead of the standing waves [7.31] we then have travelling wave

solutions of the Schrodinger equation [7.30], having the form

r'l = e
ikr [7-45]

As we already showed in Section 4.2, the allowed components of the wave vector

k are then given by (see [4.50]) -

u b =—n... k„ = n, [7.46]

where «x , ny and n2 are positive or negative integers, or zero. The number of

spatial orbitals in the range dk = dkx dky dkz is (L/2v) dkx dky dkz and th

number must be multiplied by 2 to take into account the two possible spin

states A unit volume of k-space will therefore accommodate VjA-n electrons

(with V = L3
). Thus, the individual electron states having energies up to

E = h 2
k
2
/2m will be contained within a sphere in k-space, of radius k , the

number Ns
of these states being given by

4t

7

3
3 3tt

2

= fef
2

VEi/2W \ h
2

/

[7.47]

in agreement with [7.36].
. . AT

We have seen above that in the ground state of our Fermi electron gas the

electrons fill all the states up to the Fermi energy EF . Thus in k-space all states

np to a maximum value of k equal to kF are then filled, while the states for which

k > kF are empty. In other words all occupied orbitals of a Fermi electron gas at

0 K fill a sphere in k-space having radius kF . This sphere, which is ca e t e

Fermi sphere, obviously contains

orbitals, so that

5 VkF = N

kF = (3tr
2
p)

1/3

[7.48]

[7.49]
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At the surface of the Fermi sphere, known as the Fermi surface , the energy it tht

Fermi energy

2m
Ev = ^kl [7.50]

and we note that the result [7.41] follows upon substitution of [7.49] in [7.50]. It

is also convenient to introduce the Fermi momentum pp, velocity Vp and
temperature Tp such that

pp 1 -j

EF = — = — mvl = kTp
2m 2

[7.51]

where k is Boltzmann’s constant.

The Thomas-Fermi theory for multielectron atoms and ions

The theory developed independently by Thomas and Fermi for the ground state

of complex atoms (or ions) having a large number of electrons is based on
statistical and semi-classical considerations. The N electrons of the system are

treated as a Fermi electron gas in the ground state, confined to a region of space

by a central potential V(r) which vanishes at infinity. It is assumed that this

potential is slowly varying over a distance which is large compared with the de

Broglie wavelengths of the electrons, so that enough electrons are present in a

volume where V(r) is nearly constant, and the statistical approach used in

studying the Fermi electron gas can be applied. In addition, since the number of

electrons is large, many of them have high principal quantum numbers, so that

semi-classical methods should be useful.

The aim of the Thomas-Fermi model is to provide a method of calculating

the potential V(r) and the electron density p(r). These two quantities can first be

related by using the following arguments. The total energy of an electron is

written as p
2/2m + V(r), and this energy cannot be positive, otherwise the

electron would escape to infinity. Since the maximum kinetic energy of an

electron in a Fermi electron gas at 0 K is the Fermi energy EF ,
we write for the

total energy of the most energetic electrons of the system the classical equation

£max = Ep + V(r) [7.52]

It is clear that Emax must be independent of r, because if this were not the case

electrons would migrate to that region of space where £max is smallest, in order

to lower the total energy of the system. Furthermore, we must have £max - 0.

We note from [7.50] and [7.52] that the quantity kp is now a function of r. That

is

£max - V(r) [7.53]
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Using [7.41] and [7.52] we then have

pOO = (f^'W, - V{r)rI [7 ' 541

and we see that p vanishes when V = Emax . In the classically forbidden region

V > Emax we must set p = 0, since otherwise [7.52] would yield a negative

value of the maximum kinetic energy £p • Let us denote by

<Kr) = -- V(r)
[7-55]

e

the electrostatic potential and by d>0 = ~EmJe a non-negative constant.

Setting

<b(r) = <f>(r)
- 4>o y

[7-56]

we see that p(r) and 3>(r) are related by

p(r) =^ {^J\e^(.r)r
2 * * 0 [7.57a]

_ o <t> < 0 [7.57b]

The equation <t - 0 (i.e. * = = may be thought of as

determining the 'boundary' r = r„ of the atom (ion) in this model. Now for a

neutral atom (N = Z) the electrostatic potential <p(r) vanishes at the boundary,

so that we shall set = 0 in that case. On the other hand 4>o > 0 for an ion.

A second relation between p(r) and 0>(r) may be obtained as follows. The

sources of the electrostatic potential <K0 are:

(i) the point charge Ze of the nucleus, located at the origin;

(ii) the distribution of electricity due to the N electrons.

Treating the charge density -ep(r) of the electrons as continuous, we may use

Poisson’s equation of electrostatics to write

V2
<t>(r) = |

[rd>(r)] = 77 p(0
e

Eo

[7.58]

\ The equations [7.57a] and [7.58] are two simultaneous equations for p(r) and

$(r). Eliminating p(r) from these equations, we find that for >

* s0 [7 - 59]

On the other hand, when $ < 0 we see from [7.57b] and [7.58] that

[r<f>(r)] = 0,

dr

$ < 0 [7.60]
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For r -* 0 the leading term of the electrostatic potential must be due to the

nucleus, so that the boundary condition at r = 0 reads

Ze
lim r<t>(r) = [7.61]
r—.0 47T£o

On the other hand, since the N electrons of the system are assumed to be

confined to a sphere of radius r0 ,
we must have the ‘normalisation’ condition

477 dr = N [7.62]

In order to simplify the above equations, it is convenient to introduce the new
dimensionless variable x and the function \(x) such that

r = bx, rd>(r) = *(*) [7.63]
477£0

where

(37t)2/3

b = ^773
- a0Z-

l/i = 0.8853 a^Z~ l/i
[7.64]

and a0 = (4ire0)h
2/me1

is the first Bohr radius. The relation [7.57] then

becomes

^(f [7 ' 65al

= 0 X < 0 [7.65bJ

and the important equation [7.59] may be written in dimensionless form as

0 = X-'V' 2 *»0 [7.66]

This is known as the Thomas-Fermi equation. For negative \ we see fr°m [7.60

1

and [7.63] that

* < 0 [7.67]

In addition, the boundary condition at r = 0, expressed by [7.61] now reads

*(0)
= 1 [7 .68 ]

It is clear from [7.66] and [7.67] that \ix) has at most one zero in the interval

(0, + 00). Let %o be the position of this zero. From our above discussion we have

x0 = r0/b, where r0 is the ‘boundary’ of the system. We also note that \ > 0 for

x < x0 and x < 0 for x > x0 . Moreover, the equation [7.67] has the solution

X = C(x - x0), where C is a negative constant, which must be equal to *'(*o).

As a result, the solution *(x) is entirely determined if we know it for x 0. We
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also remark that for any finite x0 the quantity x'(x0) must be different from zero,

since otherwise both x and would vanish at x = x0 ,
and the equation [7.6 J

would yield the unacceptable trivial solution \ = °-
.

The Thomas-Fermi equation [7.66] is a ‘universal’ equation, which does not

depend on Z, nor on physical constants such as h, m or e which have been

‘scaled out’ by performing the change of variables [7.63]. We also note that it is

a second-order, non-linear equation. Since the boundary condition at the origin

[7.68] only specifies one constraint, there exist a whole family of solutions x[x)

satisfying the Thomas-Fermi equation [7.66] and the condition [7.68], which

differ by their initial slope *'((». It is also clear from [7.66] that all these

solutions must be concave upwards. As illustrated in Fig. 7.4, we can classify

them into three categories:

1. a solution which is asymptotic to the x axis;

2. solutions which vanish for a finite value x — Xo,

3. solutions which never vanish and diverge for large x.

The physical meaning of the solutions belonging to the first two categories

may be obtained by looking at the ‘normalisation’ condition [7.62], Taking into

account [7.63], [7.65] and [7.66], this condition reads

N = Z
rxo

x
1/2
*
3/2 dx

'0

= Z
*X0

0

xx" dx

= Z[xX
' - x]o°

[7.69]

7.4 The three categories of solutions of the Thomas-Fermi ^uatton:

(1) neutral atom solution; (2) solution corresponding to a positive ion (N £.), I

corresponding to a neutral atom under pressure.
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Using the boundary condition [7.68J and the fact that *(x0)
- 0, we then hav#

\ \

N-Z
XoT'Oo) = [7.70]

Let us first consider neutral atoms for which N — Z. The condition [7.70]

then requires that x'(xo) = 0, so that x should vanish at the same point as x •

Since this condition cannot be satisfied for a finite value Xo by non-trivial

solutions, the point x0 must be at infinity. As a consequence, the solution ,v(x)

corresponding to a neutral atom must be asymptotic to the x axis, namely

*(00) = 0 [7.71]

and is therefore the (unique) solution classified above in the first category. We
remark that since *(x) vanishes only at infinity, there is no ‘boundary’ to the

neutral atom in the Thomas-Fermi model.

The Thomas-Fermi equation [7.66] and the boundary conditions [7.68] and

[7.71] define a universal function *(x) for all neutral atoms. Values of this

function, obtained by numerical integration, are given in Table 7 .4. We remark

from this table that x(x) is monotonically decreasing. It can be shown that the

asymptotic form of *(x) for large x is given by the function 144 x
i

. At x = 0

one has *'(0) = -1.588 so that in the vicinity of the origin

*(x) = 1 - 1.588* + • •
• [7.72]

Knowing the universal function *(x), we can obtain the function d>(r), and

hence the electrostatic potential <f>(r), the potential energy V(r) and the density

p(r). Using [7.55], [7.56], [7.63], and remembering that <fo
= 0 for a neutral

atom, we see that in the Thomas-Fermi model the central potential V(r) is given

for neutral atoms by

V(f) =
Ze 2

(4ne0)r
X [7.73]

Table 7.4 Values of the function \(x) for neutral atoms

X *(*) X *(*)

0.00 1.000 0.9 0.453

0.02 0.972 1.0 0.425

0.04 0.947 1.2 C.375

0.06 0.924 1.4 0.333

0.08 0.902 1.6 0.298

0.1 0.882 1.8 0.268

0.2 0.793 2.0 0.242

0.3 0.721 2.2 0.220

0.4 0.660 2.4 0.201

0.5 0.607 2.6 0.185

0.6 0.561 2.8 0.171

0.7 0.521 3.0 0.158

0.8 0.485 3.2 0.146

X *0) X *(*)

3.4 0.135 9.0 0.0295

3.6 0.125 9.5 0.0268

3.8 0.116 10 0.0244

4.0 0.108 11 0.0204

4.5 0.0918 12 0.0172

5.0 0.0787 13 0.0147

5.5 0.0679 14 0.0126

6.0 0.0592 15 0.0109

6.5 0.0521 20 0.0058

7.0 0.0461 25 0.0035

7.5 0.0409 30 0.0023

8.0 0.0365 40 0.0011

8.5 0.0327 50 0.00063
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As r -> 0, we have V(r) -* -Ze2
/(4TTE0)r. More precisely, we deduce from

[7.63], [7.72] and [7.73] that for small r

V(r) - 1.794-
Z^\
a0

or, using atomic units

V(r) « -— + 1.794 Z4/3 + • • '

r

[7.74]

[7.75]

The first term is the nuclear attraction while the second one, which is repulsive,

arises from the contribution of the electrons. When r * 00
, we see from [7.71]

and [7.73] that rV(r) -* 0, so that the Thomas-Fermi potential [7.73] falls off

more rapidly than 1/r for larger r. This behaviour is at variance with the result

[7.9c] which we obtained in our discussion of the central field approximation.

The reason is that the potential V discussed in Section 7.1 is the one felt by an

atomic electron, while the Thomas-Fermi potential [7.73] is that experienced

by an infinitesimal test charge. The difference between the two potentials is due

to the statistical and semi-classical approximations made in the Thomas-Fermi

model, the Thomas-Fermi result becoming exact in the limit when h and e tend

to zero, while the number N(=Z) of electrons becomes infinite.

Turning now to the electron density p(r), we see from [7.65a] that it is similar

for all atoms, except for a different length scale, which is determined by the

quantity b (see [7.64]) and is proportional to Z'
1/3

. As a result, the radial scale

of p(r) contracts according to Z_1/3 when Z increases. We remark that for fixed

Z the Thomas-Fermi method is inaccurate at both small r(r < a0/Z) and large

r(r > a0), where it overestimates the electron density. Indeed, the Thomas-

Fermi electron density [7.65a] diverges at the origin (as r
3/2

) and falls off like

r~
6
as r —> °c

, while the correct electron density should remain finite at r = 0,

and decrease exponentially for large r. Thus the application of the Thomas-

Fermi method is limited to ‘intermediate’ distances r between a 0/Z and

a few times a 0 . It is worth noting, however, that in complex atoms

most of the electrons are to be found precisely in this spatial region. Thus we

expect the Thomas-Fermi method to be useful in calculating quantities which

depend on the ‘average electron’, such as the total energy of the atom. On the

other hand, quantities which rely on the properties of the ‘outer’ electrons (such

as the ionisation potential) are poorly given in the Thomas-Fermi model.

We have shown above that a neutral atom has no ‘boundary’ in the

Thomas-Fermi model. Nevertheless, it is possible to define in this case an

atomic ‘radius’ R(a) as the radius of a sphere centred at the origin and

containing a given fraction (1 — a) of the Z electrons. We then have (see [7.62])

477

-R(a)

0

Making the change of variable

p(r) r
2 dr = (1 - a)Z [7.76]



R(a) = bX(a) [7.77J

and taking into account [7.63], [7.65] and [7.66], we find for X the equation

*(X) - XxXX) = a [7.78]

which must be solved numerically. If the same value of a is adopted for all

atoms, [7.78] becomes a ‘universal’ equation and X is the same for all atoms.

Using [7.64] and [7.77] we see that the atomic radius R(a) is then proportional

to Z~ 1/3
. On the other hand, if we set a - Z_1

, then /?(Z
_1

)
= bX(Z ') is the

radius of a sphere containing all the atomic electrons except one. The quan-

tity R{Z
~

l

) is found to be a slowly increasing function of Z, such that 4a0 <
R(Z~ l

) < 6a0 . Thus in both cases the atomic radius is nearly independent of Z.

Similarly, the energy of the ‘outer’ electrons — and hence the ionisation

potential of the atom - is almost independent of Z. As a consequence, the

Thomas-Fermi model cannot account for the periodic properties of atoms as a

function of Z, discussed in Section 7.2.

Let us now briefly discuss the two other categories of solutions (see Fig. 7.4)

mentioned in our discussion of the Thomas-Fermi equation [7.66]. Returning

to [7.69]-[7.70] we remark that solutions x(x) which vanish at a finite value

x = x0 (that is, which belong to the second category) are such that N ^ Z, and

hence correspond to ions of radius r0 = bx0 - Moreover, since the slope of \ is

negative at x0 (see Fig. 7.4) the equation [7.70] implies that these ions must be

positive ions, such thatZ > N [6]. Setting z = Z - N, so that ze is the net charge

of the ion, we note from [7.70] that the quantity z/Z is readily obtained from the

tangent to the curve \ at x = x0 , as shown in Fig. 7.4. Since *(x0) = 0, the

electron density p(r) vanishes at r = r0 = bx0 , as seen from [7.65]. On the other

hand, looking at [7.55], [7.56] and [7.63], and remembering that <p0 > 0 for an

ion, we see that the potential V(r) remains finite at r = r0 .

The solutions of the Thomas-Fermi equation belonging to the third category

(that is those which have no zero and diverge for large x) are more difficult to

interpret. First of all, the electron density p(r) does not vanish in this case, and

one may consider that these solutions correspond to negative values of <f>0 • As

seen from Fig. 7.4, such solutions lie above the ‘universal’ curve of the neutral

atom. Now the total charge inside a sphere of radius r = bx is just

Ze — 4ve
j

p(r')r'
2
dr' = Ze[x(x) - x*'(x)] [7.79]

Thus, at the point r x
= 6x 1 ,

where

*(*i) ~ *i*'(xi) = 0 [7.80]

the total charge inside the sphere r = rt vanishes, and we note that the tangent

to *(x) at x = X! passes through the origin (see Fig. 7.4). For x« xb the curve

x(x) therefore corresponds to a neutral atom having a finite boundary at r — ri

,

|6| Negative ions cannot be handled by the Thomas-Fermi theory.
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where the density p(r) does not vanish. This may be interpreted as a representa-

tion of a neutral atom under pressure [7].

7.4 THE HARTREE-FOCK METHOD AND
THE SELF-CONSISTENT FIELD

We shall now study a more elaborate approximation for complex atoms (ions),

known as the Hartree—Fock or self-consistent field method. The starting point of

this approach, formulated by Hartree in 1928, is the independent particle model,

discussed in Section 7.1, according to which each electron moves in an effective

potential which takes into account the attraction of the nucleus and the average

effect of the repulsive interactions due to the other electrons. Each electron in a

multielectron system is then described by its own wave function. By using

intuitive arguments, Hartree was able to write down equations for the individual

electron wave functions. He also proposed an original iterative procedure, based

on the requirement of self-consistency, to solve his equations. We shall return

shortly to this self-consistent procedure, which is a key feature of the theory of

many-electron atoms discussed in this section.

As we shall show at the end of this section, the Hartree total wave function for

the atom (ion) is not antisymmetric in the electron coordinates. The generalisa-

tion of the Hartree method which takes into account this antisymmetry

requirement - imposed by the Pauli exclusion principle - was carried out in

1930 by Fock and Slater. It is this generalisation of Hartree’s theory, known as

the Hartree-Fock method, which we now discuss.

The Hartree-Fock equations

In the Hartree-Fock approach, it is assumed, in accordance with the inde-

pendent particle approximation and the Pauli exclusion principle, that the

A-electron wave function is a Slater determinant d>, or in other words an

antisymmetric product of individual electron spin-orbitals. The optimum

Slater determinant is then obtained by using the variational method to determine

the ‘best’ individual electron spin-orbitals. The Hartree-Fock method is

therefore a particular case of the variational method, in- which the trial function

for the W-electron atom is a Slater determinant whose individual spin-orbitals

are optimised. It should be noted that the iV-electron atom wave function

T(?i , q2 , qN), solution of the Schrodinger equation [7.3], can only be

represented by an infinite sum of Slater determinants, so that the Hartree-Fock

method may be considered as a first step in the determination of atomic wave

functions and energies. We also remark that the application of the Hartree-

FockInethod is not confined to atoms (ions), but can also be made to other

systems such as the electrons in a molecule or a solid.

[7] We are not considering ions under pressure, since in dealing with an ensemble of such ions,

difficulties due to the presence of the Coulomb forces between ions would arise.
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In what follows we shall limit our discussion to the ground state of an atom or

ion havingN electrons [8]. We start from the non-relativistic Hamiltonian [7.2],

which we write (in a.u.) as

H = H\ + H2 [7.81]

where

ll [7.82]

u V Z
h'~~~2 lr ~7 [7.83]

and

h2 =
N

}

2 —
> rv

=
l

r
;
~ t

j\

»'<>“! r
‘>

[7.84]

The first term of [7.81], is the sum of theN identical one-body Hamiltonians

h
{ , each individual Hamiltonian A, containing the kinetic energy operator of an

electron and its potential energy due to the attraction of the nucleus. The
second term, H2 , is the sum of N(N - l)/2 identical terms 1 / ri}

which

represent the two-body interactions between each pair of electrons.

Let us denote by E0 the ground state energy of the system. According to the

variational method (see Section 2.8) we have

E0^Em = (<t>\H\<t>) [7.85]

where is a trial function which we assume to be normalised to unity,

<0>!<D> = 1 [7.86]

In the Hartree-Fock method the trial function <J> is a Slater determinant, so that

(see [7.22])

i)

$(?!> <72 , • • • <7a0

1 ua{q2) up(q2)
’ ’

’ uv(q2)

jNl

u<Mn) u
f3 (4n)

’ ’

’ K(4n)

where we recall that each of the symbols a, /3 . . . v represent

four quantum numbers (n, /, rrii, m 5 ). We require that all spin-i

[7.87J

[8] The derivation of the Hartree-Fock equations given here follows the treatment of Messiah

( 1968 ).
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orthonormal, namely

7.4

u*(q)ux (q) dq = [7.88]

where the symbol / implies an integration over the space coordinates and a

summation over the spin coordinate. Since spin—orbitals corresponding to spin

up’ (ms
— + 1/2) are automatically orthogonal to those corresponding to ‘spin

down’ (m
s
= -1/2), the requirement [7.88] reduces to the condition that the

space orbitals corresponding to the same spin function be orthonormal. We note

that [7.88] ensures that the Slater determinant [7.87] satisfies the normalisation

condition [7.86].

It is convenient to rewrite the Slater determinant [7.87] in the more compact

form [7.23]. That is

4>(«1, ?2, • • • On) = -=f 2 (-1 )

/J

/X(?iM3(?2)
• •

• K(.9n)

= [7-89]

where <f>H is the simple product of spin-orbitals

q2 , • • <fev)
= ua{q{)up{q2)

• • ' u v (qN ) [7.90]

which will be referred to as a Hartree wave function. The operator which

appears in [7.89] is the antisymmetrisation operator

= [7,91]

It is a simple matter to show that the operator sA is Hermitian and that it is also a

projection operator, namely

= si [7-92]

A further remark, which will be useful shortly, is that both operators H\ and Hi

are invariant under permutations of the electron coordinates, and hence

commute with si,

[Hu s/] = [H2,s/]
= 0 [7.93]

Let us now calculate the functional £['!>] . Using [7.81] and [7.85], we have

£[<p] = (cpj/Llcp) + (<h|//2|<I>) [7-94]

The first expectation value is readily evaluated as follows. We first have

(<D|/7,|<I>) = N!<<I>h|.^i^|<I>h>

= [7-95]

where we have used [7.89], [7.92] and [7.93]. Taking into account the fact that

H\ is the sum of one-body operators (see [7.82]) together with [7.88], [7.90] and
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[7.91] we then find that

= 22 (-1)P<4»hM*h>

= 2 (^hI^i^h)
1=1

= 2 <“a(9.)|4I«a(«,)>. A = a, P, ... V [7.96]
A

where the sum on A runs over the N individual quantum states (i.e. the N
spin orbitals) occupied by the electrons.

Defining

h =
<Ma(9.)I^I“a(«i)) [7.97]

to be the average value of the individual Hamiltonian A, relative to the

spin orbital uA , we have

(<f>|//i|d>) = 2 A [7-98]
A

The second expectation value <d>|//2 |d>) can be calculated in a similar way.

From [7.89], [7.92] and [7.93], we have

<<b|//2 |d>) = N\(Qh \s/A»</\<I>h)

= N\(<t>H\H2 -
r/2

\^H)

= jV!<a>H |/V/|<l>H> [7-99]

Using [7.91] and the fact that H2 is the sum [7.84] of two-body operators, wc

obtain

(<j>|//2
|

<f) ) = 2S(- 1 )

P
(

<I)//

i<j P

1

Ip dr

= 2{4>h
•<j

-(l - Pa) <pH [7.100]

where P
y

is an operator that interchanges the coordinates (spatial and spin) of

the electrons i and). Hence, taking into account [7.88] and [7.90], we find that

(d>[H2 |d>) 2
A,

M

(all pairs)

|7 l

(«a(q,)uMj)
rv

7" «,x0

uk(qi)utx(qJ)

[7.101]
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where the sum over A and /x runs over the N(N — l)/2 pairs of orbitals. We

may also write [7.101] as

|<i>> = T 2 2
a m L

Ka(qdu^qj) uxiqdu^qj)

-(
\

Uxiqdu^iq,) u^qMiqj))

H = a, P, ... v [7.102]

Let us define the direct term

f A/x U^qdu^qj) u^u^qj) [7.103]

which is the average value of the interaction l/r
y

- relative to the state U\(qi)u^(qj)

such that electron i is in the spin orbital wA and electron j in the spin orbital uM .

We also introduce the exchange term

K\fj,
—

)w/x(#>) Ufi(qi)u\(qj) [7.104]

which is the matrix element of the interaction l/rtj
between the two states

UxfqduMi) and uMi)u^9j) obtained by interchanging the electrons i and j. We

note that both J and are real; they are also symmetric in A and

7am =7ma = [7.105]

In terms of and AAfi , [7.102] reads

<<D|i72 |0) = ^22 - AaJ [7.106]

^ A fx

Using [7.94], [7.98] and [7.106], the total energy E[d>] is seen to be given by

E^] = 2 h + 7 2 2 - K^] [7-107]

A X A M

Having obtained the functional £[<&], we now proceed to the second step of

the calculation, which consists in expressing thatEm is stationary with respect

to variations of the spin orbitals ma (A = a, P, v), subject to the N
conditions [7.88] imposed by the orthonormality requirement on the ka

’

s. To

satisfy these conditions we introduce N2 Lagrange multipliers which we denote

by eA#x (A, /I = a, p, . . . v). The variational equation then reads

SB- 22 «<«>*) = 0 [7 - 108]
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7.4 The Hartrtt-Fock method and self-amtistent field

It is readily seen from [7.108J that eAfi = e*A , so that the N Lagrange

multipliers may be considered as the elements of a Hermitian matrix.

It is convenient at this point to make a unitary transformation on the

spin-orbitals uA ,
namely

ai = 2l/MaMm [7-109]

M

where t/MA are the elements of a N x N unitary matrix. The new Slater

determinant <t>' formed with the spin-orbitals ma differs from the previous one

only by a phase factor, since

<t>' = (det £/)<& [7.110]

and |det U\ = 1 because U is unitary. Moreover, the functional £[<!*] =

is clearly unaffected by this unitary transformation. Since any

Hermitian matrix can be diagonalised by a unitary transformation, we may

always choose U in such a way that the matrix eAM of Lagrange multipliers will

become a diagonal matrix having elements EA 8AfX . In what follows we shall

assume that this diagonalisation has already been made from the outset, so that

the variational equation [7.108] then reads

8E - 2 Ea 5(ua |ma )
= 0 [7.111]

A

Let us now vary with respect to the spin-orbitals wA . Proceeding as in Section

2.8, and using the expression [7. 107] of £[4)
] together with the relations [7.83J,

[7.97], [7.103] and [7.104], we find for the N spin-orbitals ua ,up , ... u„ the

system of integro-differential equations

2
r

' r,

Ma (ft) + «£(?,)
— M„($) dqj

M j

Mxiq,)

2
M LJ

— MA («>) dq, uJq{)
= EAux(qi)

A , n = a, P, ... v [7.112J

where the summation over fx extends over the N occupied spin-orbitals. We
recall that the symbol f dq

;
implies an integration over the spatial coordinates r,

and a summation over the spin-coordinate of electron j. The equations [7.112]

are known as the Hartree-Fock equations. Writing the spin-orbitals m a (q,) as

ka (?,0
= ux (ri)xl/2 ,m» [7-H3J

and using the orthonormality property of the spin functions, namely

(xi/2,m*\x\/2 ,mi;)
= [7-114]

we can also write the Hartree-Fock equations in a form that involves only the
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spatial part of the spin-orbitals. That is,

2
r

' r,

«a0.) + E <(r;)7“A') dr
;
«a0,)

~ E «J(r>) — MA (r,) dr,- -M#t (ri) = £A«A(r.)

A, /.t = a, (3, . . . v [7.115]

A more compact form of the Hartree-Fock equations may be written down in

the following way. We define the direct operator

V dM) =
[
<(?,) f ^(qj) dQj

J
r
v

=
(

— MM(ry) dr, = FjiCr,-) [7.116]

J
r
>>

which is just the electrostatic repulsion potential due to electron j ,
when the

position of this electron is averaged over the orbital u
fJL

. We also define the

exchange (non-local) operator V^{qt ) such that

nx
(?, )/(?,)

= u*(qj) --f(qj) dq,
[7.117]

where /(?,) is an arbitrary function. In particular, when acting on a spin-orbital

uA (qt ), we see that the exchange operator V™ yields

V eM ma (q t ) =

= <5

u*(q
} )
— uK (qf) dq

} uSqd

rrtj ,ra$*
<(r,0 — u\(rj) dr,- W,u(fi)

= 5mj >m
MF^x(r,)MA(rI )A'i/2,m? [7.118]

where the exchange operator F^x(rJ only acts on the spatial coordinates, and is

defined by

nx
(r,)/(r,)

= <(ry) — /(ry) dr, MuCr,) [7.119]

/(r,) being an arbitrary function. Using [7.116] and [7.117], the Hartree Fock

equations become

~ Vjf - - + 2 V-(r,0 - E “a (<?,)
= £a «a (?,) [7.120!
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or

-Wr-- +
2 ' r.

Ka($.) = EkuM) [7 . 121 ]

where we have introduced the direct and exchange potentials

T d
(r,) = 2 V%r

t) [7.122a].

M

and

rex
«z.) = 2 L7122b]

M

It is also interesting to write the Hartree-Fock equations in terms of the

density matrix

Qj) = 2 u^9i>*(3/) [7.123]

or the corresponding spinless density matrix

p(r,> r
;)
= 2) (ri) u*(Tj) [7.124]

The diagonal elements p(&, qt)
and p(r,, r,) of these density matrices will be

denoted by p(q,) and p(r,), respectively. We note that

p(r) = 2 k(r)l

2
[7.125]

gives the probability density of finding an electron at the point r. In terms of the

density matrices, we have

=
I
p(iy) — dr, [7.126]

and

°^ex
(?X(?<) =

I P(ft> 9j)
—

«a(«>) d?>

p(r,, r,) — wA (r,) dr,
r
v

X\/2,mf [7.127]

Finally, if we define the full Hartree-Fock potential as

Z
r.

r(qd = + 2 - 2 .)

* M

= -- + Td
(r,.) - Y ex

(?i)

the Hartree-Fock equations take the (deceptively) simple form

1

-y V* + Vfo) «a(?<) = E\Ux (q{ )

[7.128]

[7.129]
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Physical interpretation of the Hartree-Fock equations.

Self-consistent field. Koopman's theorem

A striking feature of the Hartree-Fock equations [7.129] is that they look

similar to individual Schrodinger eigenvalue equations for each of the spin

orbitals ux . They are not genuine eigenvalue equations, however, since the

Hartree-Fock potential V depends on the spin-orbitals themselves through the

operators V* and Vf. In fact, to solve the system of Hartree-Fock integro-

differential equations, one proceeds by iteration. Starting from approximate

individual spin-orbitals [9] up', u (

p ', . . . u[P, one first calculates the corres-

ponding approximate expression V (1) of the Hartree-Fock potential. The

Hartree-Fock equations are then solved with this potential Y to obtain new

spin-orbitals m®, uf, . . which in turn yield a new potential T . This

procedure is then repeated until the final spin-orbitals give a potential

which is identical (within the desired approximation) to the potential T ”

obtained from the preceding cycle. The Hartree-Fock potential determined in

this way is known as the self-consistent field of the atom (ion).

Despite the fact that the Hartree-Fock equations [7.129] are not true eigen-

value equations, we shall now show that, when acting on the spin-orbital uA , the

individual Hartree-Fock Hamiltonian

*hf= -i^.+ Vto) [7-130]

may be interpreted as the energy operator of an electron in the state wA . To

obtain this result, which is in accord with our basic independent-particle

approximation, we first note from [7.116] and [7.117] that

Vi(,qt
)ux(qd = VT(qi)uM) [7-131]

Upon returning to the Hartree-Fock equations [7.120], we see that there is no

self-energy (ji = A) contribution to the potential. It is therefore convenient to

introduce the modified density matrix

Pa(<7:, ?,) = 2 uMK((lP V-132]

and the corresponding modified spinless density matrix

Px(rt ,
r,) = 2 [7.133]

a

whose diagonal elements will be denoted as pA (<7,) and pfji), respectively. We

remark that

ft(r) - 2 k(r)l
2

I7 - 134]
A

is^the probability density of finding an electron at r in one of the (N - 1)

occupied states other than uA . We also define the modified direct and exchange

[91 Simple approximate spin-orbitals may be obtained by using screening arguments such as those

L J

discussed in Section 7. 1 . We shall also see below that the solutions of the Hartree equations can

be used to provide a set of functions uf, u]
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potentials
<

V?(r
1) = 2 V^(r,)

= fpA(ry
)-dr,- [7.135]

J
r,
J

and

TTfo) = 2 Kx
(<h)

with

‘VfCftKC?>) = Pa(ft, $) — ma(«>) d^

[7.136]

= 6, Pato, r,) — «A (fy) dr, Xl/2,mf [7.137]

so that the Hartree-Fock equations [7.121] now read

^HF MA (tfi) 4 V" - - + ^(r,) - rr(«i)
Z T;

u,(q
t)
= EA (qt) [7.138]

In addition to the kinetic energy term -Vjr/2 and the nuclear attraction term

-Z/r, ,
we see that the individual Hamiltonian /zHF contains a termTA (r,) which

represents the average potential due to the presence of the (N - 1) other

electrons, and a (non-local) exchange term T A
x
(g,) which takes into account the

exchange effects between the state wA and the (N — 1) other states occupied by

the electrons. We may therefore interpret hHF in [7.138] as the energy operator

of the electron in the state wA .

According to this interpretation, the quantity EA has the meaning of a

one-electron eigenvalue. To give a more precise significance to EA , we first

remark that upon taking the scalar product of [7. 1 12] with uA and using [7.97],

[7.103] and [7.104] we find that

Ex = /A + 2 [JV - KXfl \ [7.139]

Summing over A, we then have

2 = 2 h + 2 2 tf* - kXia
A A A fx

= + 2(<F|//2 |<t>) [7.140]

where we have used [7.98] and [7.106]. We may also rewrite [7.140] as

F[<t>] = 2 FA - (0|H2 |d>) [7.141|
a

and we see that the total energy is not the sum of the individual energies. This is

because in summing the individual electron energies, each kinetic energy and

each interaction energy with the nucleus is counted once, while the mutual
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interaction energy, which has the average value (<h |//2 O) is counted twice. The

total energy must therefore be obtained by subtracting (d>|H2 |<l>) from the sum

of individual energies as expressed in [7.141].

Let us now imagine that the electron A is removed from the Af-electron

system. For example, if the original system was a neutral atom, we now have a

positive ion with (N - 1) electrons. If we assume that the orbitals of the

(N — l)-electron system are the same as these of the N-electron system, we see

from [7.107] that the difference between the total energy of the two systems is

Ex — Ex- 1
= 7\ + X ix

~ K-kfi\

= EX
^ [7.H2]

Thus the quantity Ex represents approximatively the energy required to remove

an electron from the spin-orbital ux ,
or in other words the ionisation energy of

electron A. This result is known as Koopman’s theorem. It is worth stressing that

the identification of Ex with the ionisation energy of the electron A is not

rigorous, since the readjustment of the orbitals of the (N ~
1) electron system,

which occurs after the removal of an electron, has been ignored. We also remark

that although EN and En-i are upper bounds to the true ground state energy of

the Af-electron and the (N - l)-electron systems (see [7.85]), the quantity EA is

not an upper bound for the ionisation energy, since we have taken the difference

of two upper bounds.

Properties of the Hartree— Fock potentials and spin-orbitals

Let us return to the Hartree-Fock equations [7.129]. We see that for a given

state of the atom or ion (here the ground state), characterised by the occupied

spin-orbitals, all the electrons move in the same Hartree-Fock potential.

Moreover, for a given potential, two spin-orbitals uK and uA - corresponding to

different individual energies Ek i= Ek > are easily shown to be orthogonal. Indeed,

if we take the scalar product of [7.112] with uyfa), we t *iat

_i V2-£
2

r
' n

U\(.qi) )
+ X (“A

X (
Uy{qduMr>

u^q^Ukiqd)

= Ex (uy(qi)\ux (Qi)) [7.143]

Similarly, from the Hartree-Fock equation satisfied by uy{qt) and the fact that

the Hamiltonian [7.2] is Hermitian, we deduce that

Ukiqd) + X /«A'(fcM$) 7"
2

r
' r,

«A'(?i)

- x (“AiqduMj)

Ma
I

«^(?,)«A (?;))
= Ea'<«a'(?.)I“a(?;)> [7.144]
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Hence, upon subtracting [7.144] from [7.143], we have

(Ex - £a 0<«a'(4,)|«a(?,)> = 0 [7.143]

so that

<Ua-|«a> = 0, Ex fiEy [7.146]

We shall now show that for atoms or ions with closed subshells (such as He,

Li
+

, Be, B
+

, C
2+

, Ne, etc.) the Hartree-Fock potential is spherically symmetric,

so that the electron spatial orbitals are solutions of a centralfield problem. To see

this we first note that in the case of closed subshells theN spin-orbitals (with N
even) are obtained from N' = N/2 spatial orbitals. Each of these N' spatial

orbitals occurs twice in the Slater determinant [7.87], once with spin ‘up’ (o)

and once with spin ‘down’ (/3). The simplest example is that of helium, where

there is only one spatial orbital Uioo = m 1s (see [7.26]).

In order to prove the above statement, we shall assume that the AT spatial

orbitals are of the form

unlm(r) = r~
lPnl(r)Ylm{8, fi) [7.147]

where we have set

P„,(.r) = rRnl(r) [7.148]

and we shall then show that the resulting Hartree-Fock potential V is

spherically symmetric. Remembering that T contains the (central) nuclear

attraction term -Z/r, ,
the ‘direct’ potentialTd and the ‘exchange’ potential

(see [7.128]) we first look at the direct potential T d
. Using [7.116], [7.122a],

[7.147] and [7.148], the part of T d coming from a complete subshell («'/') is

seen to be

rd
„r = 2 2

m'=-V
k'/'m'(«)')|

2 — dr,

1
+/•

= 2 I \Pnr(rj)\
2 — 2 k m’Cfy, <t>j)\

2
dr, dO, [7.149J

J
r
i, m' = —l'

where the factor of 2 arises from the two spin orientations, and

dfl). « sin $j d Oj d<f>
7

. Using the addition theorem of the spherical harmonics

(see equation [A4.23] of Appendix 4) we have

+‘‘ 21' + 1

2 d»

;)]

2 =
m' = —r 4tt

[7.150]

so that

Vt-r = ^

j
\Pn;(r,)\

2

^
dr, d% [7.151]

The integrals on the angular variables (0, , 4>,) can readily be performed by

expanding the quantity l/r,y in spherical harmonics and using the fact that the

331



Many-electron atoms 7.4

function Pn -r(rj) does not depend on the angles. Writing (see [A4.25])

1
oo +/

2 2
47t (rj

i
21 + 1 (r>y

+1 YUOt, <t>dYlm(e,, <h)
[7.152]

where r< is the smaller and r> the larger of r, and ry , and proceeding as in

Section 6.5, we find that

= 2(2/' + 1) [
\P„'r(rj)\

2 ~~ dr, [7-153]

Jo r>

This expression is clearly independent of the angles (0,, 4>,) of r, so that is

central. For an atom or ion with closed subshells the direct potential Y is just

the sum of spherically symmetric contributions of the form [7.153], coming

from each subshell, so that T d
itself is spherically symmetric.

Let us now turn to the exchange potential T ex
. Using [7.118] and [7.122b],

we see that when acting upon a spin orbital u^q-) whose spatial orbital is of the

form [7.147], the part of Ve* coming from a closed subshell (n'V) gives

'V%v\rT
1PJrdYlJ.ei , </>,)] Pi-r<Tj)Y$M> <fc)

x Pnl{rj)Ylm{6j

,

</>;) d tj dfl
;

^.0 [7 - 154^

The expression on the right-hand side can now be evaluated by expanding 1 Ay-

in spherical harmonics (see [7.152]) and using the formulae [A4.25] and [A4.40]

of Appendix 4, together with the orthogonality relation [A4.32] for the

Clebsch-Gordan coefficients. The result is (Problem 7.8)

rZtlrr'PJrdYJiei, <t>i)] = (21' + 1)

i+r
1

lSc\2L + 1
r |(//'00|LO)|

:

P*r(rj) 1 pm(p) dr,
[

fi

1
F„-/<r

I
-)F/m (0,- , </>,-) [7.155]

Looking only at the angular dependence, we see that when acting on the

spherical harmonic Ylm(0t , </>,), the exchange operator Y eJr gives back some-

thing proportional to Ylm(dt , &), the proportionality factor being independent

of the angles (0, , </>,). The angular dependence of the exchange potential 1
ex

(which is a sum of contributions of the form [7.155] arising from each subshell)

is therefore such that it is equivalent to a central potential.

The above discussion shows that for atoms (ions) with closed subshells the

central field approximation is exact within the framework of the Hartree-Fock

method. The radial equations then read

_l__d^ /(/ + 1)

2 dr*
+

2rj

— + Yd

r,

ye
Pni(rt)

= EnlP„,(r.) [7.156]
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where

r d = 2 v*.e
nT

l

= 2 2(2V + 1) \P„r (.rj)\
2 — dr

y

nT JO r>
[7.157*3

and

= 2 V?r P„i(r.)

n'V

-22 ^i|(«'oo|/.o>l 2 PMrj)

x JW do JVrfc) [7.157b]

where

r> = max(r, , r,)

r< = min(r,, r,)

|Z- Z'| «L*£ Z + Z' [7.157c]

For atoms (ions) having incomplete subshells, the Hartree-Fock potential V
is no longer spherically symmetric. However, this departure from spherical

symmetry is often small, since in many cases (in particular for the ground state)

it arises from only one incomplete subshell. An approximate Hartree-Fock

central field T is then obtained by averaging V over spin directions and angles.

An example: the Be ground state

We shall illustrate the Hartree-Fock method by considering the ground state

1s
2
2s

2
‘S of beryllium. In this case the Slater determinant [7.87] reads

1

\ 5 92 5 ?3 3 94)
-

Misf(?l) «lsi(?l) «2st(?l) M2si(?l)

Mist (02) Mis i (?2) M2s T (92) M2s|(92)

Mi sT (g3) M, si (g3) m2sT (?3 ) M2si (? 3)

Mis 1 (94) M lsi (g4) W2s I (94) M2si (?4)

[7.158]

and the Hartree-Fock potential is given by (see [7.128])

<v = + Vtsj + Vfs i
+ V 2s 1

+ vu
-

(Vis t + Vfsi + V2s T + V2s|) [2.159]

where the notation is self-explanatory. Because we have complete (sub) shells,

the spatial parts of u ls f
and U\, 1

are the same, as are those of u2l j
and u2 ,

1

. We

333



Many-electron atoms
7.4

[7.160]

may thus write

«lsf (?)
= Mls(f)«; «lsl(?)

= «uW0

M2st(?)
= “2sW«; «2si(?)

= “2s(f)/3

From the foregoing discussion, the Hartree-Fock equations for the functions

Mls(r) and u2s(r) are the two coupled integro-differential equations

V? - - Fi(r) + 2Vl(r) - Vg(r)

and

where

V? - - + Fl(r) + 2Vi(r).- V\%r)

u ls(r)= Euu ls(r) [7.161a]

u2s(r) = E2su2s(r) [7.161b]

VUr) =

vmm =

1

l

r r

1

77
dr'

r-r
7l/(r') dr' «lsW

[7.162a]

[7.162b]

with similar definitions for Vd
2s(r) and V%(r) (see [7.116] and [7.119]). The

individual electron energies E ls and E 2s introduced in [7.161] are such that

EU = Fist = £lsi £2s = ^2sT = £ 2sl [7.i63]

The spatial orbital « ls(r) is a solution corresponding to the lowest eigenvalue of

[7 161a], whereas u2s(r) corresponds to the lowest eigenvalue of [7.161b], with

the condition (uu\u2s ) = 0. Writing the orbitals in the form [7.147], namely

u2s(r)
= r~

!P2s(r)T0o [7.164]
Mi s(r)

= r
lPis(r)Too;

with Too = (4rr)-
1/2

,
the two coupled Hartree-Fock equations [7.161] become

1^1
"

2 dr
2 ^ - - + Vl,(r) + 2Vl.(r) - Vg(r)

2r
2

r

Pn(r) = E lsP is(r)

[7.165a]

and

1^1
2 dr

2

7(2+ 1)

2r
2

- - + Fl(r) + 2Fl(r) - V^r)
r

P2s(r)
= P2sP2s(r)

[7.165b]

It is worth stressing that the Hartree-Fock potential corresponding to an

excited state of the atom is different from the ground state potential [7.159], so

that the Hartree-Fock equations for the orbitals of the excited atom will be

different from [7.161] or [7.165]. As a result, the excited state solutions of the
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coupled equations [7.161] or [7.165] do not represent orbitals corresponding to

low-lying excited states of the atom.

Solution of the Hartree-Fock equations

We have already indicated above that the solution of the Hartree-Fock

equations proceeds by iteration, starting from approximate individual spin-

orbitals, and subject to the requirement of self-consistency. At each step of the

iteration the coupled equations must be solved numerically, the final result of

the computations being numerical values of the radial Hartree-Fock orbitals.

For practical purposes, however, analytical fits to the (numerical) solutions of

the Hartree-Fock equations are very useful. For example, we already encoun-

tered in Chapter 6 a simple analytical fit to the Hartree-Fock ground state

orbital for helium (see [6.85]). More generally, a convenient basis set for

analytic fits to Hartree-Fock spatial orbitals is provided by Slater orbitals , the

general form of which is

XnUr) = Nrn- l

t~
arYlm (.e, <j>) [7.166]

where n is a positive integer, a is the ‘orbital exponent’, and N is a

normalisation constant, given by

w (2«r
i/2

N ~
[(2n)!]

1/2
[7.167]

Looking back at [3.48] and [3.53], and remembering that L2/
+,‘ is a polynomial

of degree n - l
-

1, we see that the Slater orbitals [7.166] behave in the same

way as hydrogenic wave functions for large r. However, in contrast to the

hydrogenic radial functions [3.53], the Slater orbitals do not possess radial

nodes. In terms of Slater orbitals *,<r), a Hartree-Fock spatial orbital u(r) is

then given by

N
u(r) = X ciXi(r)

t=i

[7.168)

where the quantities c, are given coefficients. For example, the Hartree-Fock

spa tl orbitals of the neon ground state are [10]

Mis = r~-
l

Pu(r)Yoo(0, <t>) = 0.93717 Xl + 0.04899 *2 + 0.00058 Xi

- 0.00064 *4 + 0.005 51 *5 + 0.01999 *6

u2s = r
lP2s(r)Yoo(e, <*>)=- 0.23093 Xl

- 0.00635 *2 + 0.18620

+ 0.66899 *4 + 0.30910 *5 - 0.13871 Xe

m2p = r-'P2p(r)Yi0(e, 4>) = 0.21799 Xi + 0.53338 *8

+ 0.32933 X9 + 0.01872 * 10 [7.169]

[10J Sec Clementi and Roetti (1974).
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where

Xi = N l exp(—9.48486 r)y0o(9> d>);

Xz = N2 exp(- 15.56590 r)Y00(d, d>)

X2 = N3 r exp(— 1.96184 r")Ym(0, <$>)',

X4 = jV4 r exp(— 2.86423 r)YOo(0, <t>)

X$ = Ns r exp(—4.82530 r)yoo(0> $)»

X6 = N6 r exp(—7.79242 r)YOo(0> <W

Xt = N7 r exp(— 1.45208 r)yio(#> </>)j

= Ns r exp(— 2.381 68 r)Yio(8> 4>)

X9 = Afg r exp(—4.48489 r)yio(#> 4>)j

*10 = JV 10 r exp(-9. 13464 r)Y10(6, f) [7-170]

and the normalisation constants are given by [7.167].

The radial functions P ls ,
P2s an(l P

2

P l°r neon are Plottcc* in ^?1®' ' ' e

radial density function D(r), defined as the probability per unit length of finding

an electron at a distance r from the nucleus, is given by

r

D(r)
= r

2
p(r) dfl

= 2 qJPnlft [7.171]

where qnt is the number of equivalent electrons in a subshell (nl). Thus, for the

case of neon considered here we have

D(r) = 2|P ls(r)[
2 + 2|P2s(r)|

2 + 6|P2p(r)|
2 [7.172]

This function is shown in Fig. 7.6.
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The Hartree equations

Let us return to the Hartree-Fock equations [7.138]. If the exchange potential

is neglected in [7.138], one obtains the system of integro-differential

equations

«a (?.) = ExU\(qi)

A = a, /3, . . . v [7 . 173 ]

or, nore explicitly

«£(*)) T u^ dr
;

2 f'i fj.j=A J
ra J

A = a, 13, ... v

EaWaO,) [7 . 174 ]

where we have used [7.113], [7.116] and [7.135]. These equations were

originally obtained by Hartree from the independent particle approximation and

the assumption that there is a charge density associated with each electron,

which is equal to -e times its position probability density. By making the

central field approximation, which consists in replacing T^r,-) by its average

yd(
r .) taken over the angles of r,, one obtains for the radial functions /^(r^the
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radial Hartree equations

]_
1(1 + 1 )

2 dr-
+

2r?
Pni(rl) = EnlPnl{ri) [7.175]

From the derivation of the Hartree-Fock equations given above, it is

apparent that the Hartree equations [7.173] can be obtained from the variational

method by using as trial function the simple (non-antisymmetrised) product of

spin-orbitals <J>H given by [7.90] instead of the antisymmetrised product d> given

by the Slater determinant [7.87]. Thus the Hartree trial function 4>H does not

satisfy the requirement of antisymmetry imposed by the Pauli exclusion principle,

so that the Hartree equations [7.173] lack the exchange potential T'x
. Never-

theless, the weaker condition of the exclusion principle, according to which ‘no

two electrons in an atom may have the same set of quantum numbers’ can be

satisfied in Hartree’s method by requiring that only one electron populates each

quantum state. It is also worth noting that in contrast with the Hartree-Fock

equations, where all the electrons move in the same Hartree-Fock potential for

a given state of the system, the effective potential in the Hartree equations

depends on the particular orbital uk considered. It follows that in general the

Hartree orbitals are not mutually orthogonal.

As in the case of the Hartree-Fock equations discussed above, the system of

Hartree equations can be solved by iteration, subject to the self-consistency

requirement. Because of the absence of exchange terms, the Hartree equations

are in fact much simpler to solve than the corresponding Hartree-Fock

equations, so that the Hartree spin-orbitals can be used as a first approximation

to start the iterative solution of the Hartree-Fock equations.

Correlation effects

We have seen above that the Hartree-Fock approach is a variational method

in which the trial function for the N-electron atom (ion) is a Slater determinant,

whose individual spin-orbitals are optimised. Let us call EUF the Hartree-Fock

energy of a given state, and Thf the corresponding Hartree-Fock wave

function. It is clear that both EHf and THf are only approximations to the exact

energy Eexact and the exact wave function Tex of the Hamiltonian [7.2]. The

difference

ECorr
= ^exact

~ ^HF [7.176]

is known as the correlation energy. We emphasise that the quantity Eexact which

appears in [7.176] is the exact energy of the non-relativistic Hamiltonian [7.2],

and hence is not quite the same as the experimental energy. It should also be

noted that a certain amount of correlation is already included in the Hartree-

Fock wave function because of the fact that it is totally antisymmetric. One

usually denotes by correlation effects the remaining electron correlations, not

included in the Hartree-Fock wave function, which are responsible for the

correlation energy [7.176].
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Tabic 7.5 Values of£Hf, £„«, , £corr (in a.u.) and of the ratio Eco„/Ema for the ground itata at
ji several atomic systems

Atomic system Eexact
P
*-*corr uwi

He -2.862 -2.904 -0.042

Be -14.573 -14.667 -0.094

B 4 -24.238 -24.349 -0.111 0.003

Ne -128.55 -128.93 -0.38

Since the Hartree-Fock method is a variational one, the energy EHF must lie

above Eexact for the ground state, so that Ecorr is always negative in this case. As

an example, we give in Table 7.5 the values of EHF , Eexact , Econ and the

relative error Ecorr/EexaiCt for the ground state of a few atomic systems. We see

from this table that the error in the Hartree-Fock energy of an atom (ion) is

only about 1 per cent. However, in particular regions of configuration space -

which do not play an important role in the variational integral - the Hartree-

Fock wave functions may be quite inaccurate. As a consequence, various matrix

elements, such as those required to calculate transition rates or hyperfine

structure effects, may sometimes be in serious error when evaluated with the

Hartree-Fock wave functions.

Correlation effects can be studied by using perturbation theory, starting with the

Hartree-Fock energies and wave functions as the ‘zero-order’ approximation.

In particular, the variation-perturbation method has been applied successfully to

obtain correlation energies for various atoms and ions. Alternatively, the

variational method can be used with a trial function <I> which is a linear

combination of Slater determinants,

<^2^, [7.177]
i

where the coefficients c, are variational parameters. The various Slater determi-

nants <h, differ in the choice of the spin-orbitals occupied by the electrons, and

corn. >ond therefore to different electronic configurations. This approach is

known as the configuration-interaction method. It is clear that the configuration-

interaction approach reduces to the Hartree-Fock method when only one Slater

determinant is used in [7.177].

7.5 CORRECTIONS TO THE CENTRAL FIELD APPROXIMATION.
L-S COUPLING AND j-j COUPLING

In the central field approximation, the non-relativistic Hamiltonian [7.2] of the

N-electron atom (ion) is replaced by the Hamiltonian

Hc = 2 ^ [7.178a]
i=

i

where A, is the individual Hamiltonian of electron i in the central field V(r,) (aee
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[7.11]). For example, if we choose the Hartree—Fock potential T (that is, the

Hartree—Fock potential "V" ,
averaged for the case of atoms or ions with

incomplete subshells) as our central field, then

^ = -jV* + f [7.178b]

Let us now consider the main corrections to the central field approximation.

The first important correction to the central field Hamiltonian Hc is the term

Hu given by [7.12], which represents the difference between the actual Coulomb

interactions of the electrons and the average electron repulsion contained in the

central field V. In particular, if F is a (central) Hartree-Fock potential, the

term H i
leads to the correlation effects discussed at the end of the previous

section. In this section, however, we shall also consider the corrections due to

the spin-orbit interactions of the electrons. Working within the framework of the

independent particle model, we write the spin-orbit correction term in a form

which is an extension of (5. 16)—(5 . 17). That is

H2 = 2 mu S, [7.179]

i

where L, = r, X p, is the orbital angular momentum operator of electron i, S, is

its spin angular momentum, and the function &rf) is given by

m =
1 1 dV(r,-)

2mV r, dr,

[7.180]

It can be shown that the contribution to the sum [7.179] coming from closed

subshells vanishes, so that the summation in [7.179] is only over electrons

outside closed subshells.

Adding the corrections H i
and H2 to the central field Hamiltonian, we obtain

the total Hamiltonian

W = Hc + Hi + H2
[7.181]

Because this Hamiltonian describes an isolated atom, the total parity and the

total angular momentum are constants of the motion. In the present case the total

angular momentum is given by

J = L + S = £ J,
[7-182]

>= i

where L = S,L, is the total orbital angular momentum of the electrons,

S = 2,S, is their total spin angular momentum, and

J,
= L, +S, [7-183]

In order to discuss the effects of the terms H i
and H2 ,

we shall use

perturbation theory, starting from the eigenfunctions and eigenenergies ofHc as

our zero-order approximation. As we have seen in Section 7.1, these unper-

turbed eigenfunctions and eigenenergies correspond to given electron configura-

tions. In what follows we shall assume that the matrix elements of the



7.5 Corrections to the central field approximation

perturbation between two different electron configurations is small with respect

to the energy intervals between unperturbed configuration energies. We can

then study the effect of the perturbation on atomic states corresponding to a

single configuration of the electrons.

The manner in which the perturbation calculation is to be carried out depends

on the relative magnitude of the two perturbing terms Hi and H2 . The case for

which both perturbations Hi and H2 are of the same order of magnitude is

difficult to handle because both terms must be treated on the same footing. This

situation, which is known as intermediate coupling, will not be examined here

[11]. Instead, we shall consider the two extreme situations for which \H\
|

8> I//2 I

and \H2
\

> |//i[. The first one is the most frequently encountered; it occurs for

atoms (ions) with small and intermediate values of Z, and is called the L-S (or

Russell-Saunders) coupling case. The second situation, which arises for atoms

(ions) with large Z is known as the j-j coupling case. We shall first discuss L-S
coupling, and then turn to j-j coupling.

L-S coupling

Since in this case the electrostatic energy correction H\ is large in comparison

with the spin-orbit termH2 , the first step of the perturbation calculation consists

in neglectingH2 and obtaining approximate eigenfunctions and eigenenergies of

the Hamiltonian

H = Hc + Hi [7.184]

In general, there are a number of degenerate states belonging to the same
configuration, which differ by the values of the quantum numbers m, and m

s
of

the individual electrons. The perturbation Hi has the effect of removing - at

least partly - this degeneracy. The energy levels ofH = Hc + H
x
arising from

a given unperturbed energy level Ec ofHc will thus be obtained by diagonalising

the perturbation H\ within the subspace of the degenerate states belonging to

the eigenvalue Ec .

This diagonalisation is greatly simplified by taking into account the symmetry
prop . nes of the Hamiltonian H - Hc + H Y

. Since the Hamiltonian docs not

contain spin-orbit energy terms, it commutes not only with the total angular

momentum J, but also separately with the total orbital angular momentum L
(see Problem 7.9) and the total spin angular momentum S [12], As a result, the

eigenvalues of H can be characterised by the total orbital angular momentum
quantum number L and the total spin quantum number S. Moreover, these

energy eigenvalues are independent of the quantum numbers M

,

and Ms , so

[llj The intermediate coupling case is treated for example in Condon and Shortley (1951) and
Sobelman (1979) where a detailed account of the theory of atomic spectra can be found.

[12] It is worth noting that the use of antisymmetric wave functions (Slater determinants) couples

the electron spins to the electrostatic energy (as we have seen in Section 6.6 in discussing the

excited states of helium) despite the fact that [H, S] = 0.
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that each energy level of H labelled by a pair (LS) is (2L + 1)(25 + 1) times

degenerate with respect to M

f

2nd . As we already saw in Section 6.3,

energy levels corresponding to definite values ofL and 5 are called terms and are

denoted as
2S+1L, with the capital letters S, P, D, F, . . . corresponding to the

values L = 0, 1, 2, 3, ... We also recall that the number 25 + 1 is called the

multiplicity of the term. If the multiplicity 25 + 1 equals 1 (that is, if 5 = 0) the

term is called a singlet. If 25 + 1 = 2, 3, 4, . . . we have respectively a doublet,

a triplet, a quartet, and so on. The parity of the term may be indicated by the

addition of the superscripts e (even) or o (odd), for example 2P ,
D ,

etc.

Using the Dirac notation, the wave functions corresponding to a term will be

denoted by
|

yLSMLMs >, where y refers to the configuration ofHc to which

the level belongs.

Determination of the possible terms of a multielectron

configuration in L-S coupling

In order to determine all the possible terms corresponding to a given configura-

tion (that is, the possible values ofL and 5), the rules for the addition of angular

momenta must be used. However, in combining the individual electron orbital

angular momenta L, to obtain L and the individual electron spin angular

momenta S, to obtain S, one must not forget to reject the values of L and 5

corresponding to states forbidden by the Pauli exclusion principle.

We first note that for a filled subshell, that is a configuration containing the

maximum number 2(2/ + 1) of equivalent electrons (having the same values of n

and /), there is only one possible term, namely the 'S term. This is a direct

consequence of the fact thatML = l.m,, = 0 (since m, runs over all the possible

values 0, ±1, ±2, . . . ±1) and similarlyMs = l,ms
= 0. As a result, we have

L = 5 = 0 for a filled subshell.

Let us now consider the case of atoms (ions) with incomplete subshells. Since

L = s = 0 for filled subshells, we only need to consider the electrons outside

filled subshells (‘optically active’ electrons) to determine the possible values ofL

and 5. Three cases must be considered:

Electrons belonging to different subshells (non-equivalent electrons)

In this case no two ‘optically active’ electrons can have the same set of quantum

numbers, so that the Pauli exclusion principle is automatically satisfied. The

allowed values of the quantum numbers L and 5 are therefore obtained by

adding the individual orbital angular momenta L, of the ‘optically active’

electrons to form L and the spin angular momenta S, of these electrons to form

S. We recall that on adding two orbital angular momenta Li and L 2 ,
with

corresponding orbital angular quantum numbers f and l2 (such that Iff + \)h

is the eigenvalue of L 2 and l2{l 2 + 1)h
2
the eigenvalue of L 2

) the allowed values

of the total orbital angular momentum quantum number L are

L = \h - /2 I, |/.
- h\ + h h + h [7.185]
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Similarly, upon adding two spins Sj and S2 , with spin quantum numbers i| and
s2 , the aljpwed values of the total spin quantum number S are

S =
|si - s2 |,

|sj - s2 |

+ 1, . • • Ji + s2 [7.186]

Let us now consider two non-equivalent electrons, having orbital angular

momentum quantum numbers l{ and l2 , respectively. The allowed values of L
are then given by [7.185], Moreover, since S] = s2 = 1/2, we have S = 0, 1.

We illustrate these considerations by two examples:

control fiotd approximation

Configuration np n'p

We have l\ = l2 - \ and $i = s2 = 1/2, so that L = 0, 1, 2 and 5 = 0, 1.

The possible terms are therefore

% *P, ’D, 3
S,

3
P,

3D [7.187]

Configuration np n'd

Here Zj = 1, l2 = 2 and Si = s2 = 1/2. Thus L = 1, 2, 3 and 5 = 0, 1. The
possible terms are thus given by

3
P, ‘D, *F,

3
P,

3D, 3F [7.188]

If there are more than two electrons, the addition of orbital angular momenta
and spins is first performed for two electrons; the rules [7.185] and [7.186] are

then used successively to add the orbital angular momentum and the spin of the

third electron, the fourth electron, and so on. As an example, let us consider the

configuration np n'p n"d. Adding first the orbital angular momenta and spins of

the two electrons np and n'p, we find the terms listed in [7.187J. Now the third

electron n"d has 1 = 2 and s = 1/2. Using [7.185] and [7.186] we see that the

addition of ‘he electron n"d to the term !

S of [7.187] gives a term with L - 2 and

S = 1/2 .amely
2
D. In the same way, adding the n"d electron

to the term *P yields the terms 2
P,

2D, 2F

to the term ‘D yields the terms 2
S,

2
P,

2D, 2
F,

2G
to the term 3

S yields the terms
2D, 4D

to the term 3P yields the terms 2
P,

2D, 2
F,

4
P,

4D, 4F

to the term 3D yields the terms 2
S,

2
P,

2D, 2
F,

2G, 4
S,

4
P,

4D, 4
F,

4G

These results may be summarised by writing that the terms we have obtained

are

2
S,

2
P,

2D, 2
F,

2G, 4
S,

4
P,

4D, 4
F,

4G [7. 189J24642 232
where the number under the term symbol indicates the number of identical

terms.
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Electrons belonging to the same subshell (equivalent electrons)

The determination of the possible terms for equivalent

trons is more. difficult. Indeed, in this case certain values of L and 5 are ruled

out because of the Pauli exclusion principle.

The simplest case is that of two equivalent s electrons, corresponding to the

configuration ns
2

. As we have seen above in discussing closed subshells, we must

have Ml = Ms = 0, which implies that the only possible term

that if the Pauli principle were ignored, an additional term S wou appear.

Let us now consider the case of two equivalent p ciectrons, corresponding

to the configuration np2
. We have seen in Section 7.1 that the degeneracy (or

statistical weight) of a configuration np2
is g = 15. The

^ ^
associated with the configuration np2 can be inferred direcdy

where the possible quantum numbers m /|5
m

Si , m t , mH

are given. In obtaining this table, we note that the states for which the two

electrons have the same values of m, and ms
(for example m, - mh -U

m = m. =1/2) must be excluded because of the exclusion principle. Mo

over, since the two electrons are indistinguishable, two pairs of values (m, m )

and (m, m )
which differ only by the electron label (1 or 2) only give one state,

and (wt;
2

,
m

Sl )
wmcr

_ , /2 m , = 0 m = - 1/2 yields the same state as
For example, m< - 1, m

$l
- t/z, m,

2
u, mS2 / j

m, = 0,m, = -1/2, mh = 1, mS2 = 1/2. We have also listed in Table 7.6 the

values of the quantum numbers ML and Ms ,
namely

Ml = m/, + mh ,
Ms = mh + m h

[7.190]

We shall now identify the possible terms corresponding to the 15 states listed

in Table 7.6. We recall that in the case of the configuration np n P (non-

eauivalent electrons) we had obtained the six possible terms given in L7.18/J.

For the present np2 configuration, however, the pairs (ML ,^ aPPeanng in

the two last columns of Table 7.6 are only compatible with a restricted num

Table 7.6 Possible quantum numbers for the configuration tip*

Number m,. TO,, mh
M, TO, + TO,, Me TO,, + TO,.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

1

0

0

-1

1

1

0

0

1

1

0

1

1

1

4
1

0

0
-1
-1

0

0
-1
-1

0
-1
-1
-1
-1
-1

2

-i
-4

2

1

0

-1
-2

1

1

-1
-1

1

0

-1

0

0

0

0

0

0

0

0

1

-1

1

-1

0

0

0

1

-1

0



7.5 Corrections to the control field approximation

of terms. Indeed, we first note that the pair (ML = 2,Ms = 1) is missing so that

the term 3D is not present. On the other hand, the occurrence of the pain

(Ml = 2, Ms = 0) and (ML
= -2,Ms = 0) indicates that a term with L - 2

must exist. Since the term 3D has just been ruled out, the term with L = 2 must

be
1D ; it may be constructed with the states corresponding to the first five

entries in Table 7.6. The states corresponding to the entries 6 to 14 are easily

seen to correspond to a term 3
P. Finally, the last entry in the table, with

Ml = Ms ^ 0, corresponds to a term 'S. Hence, for the configuration tip
2

,

there are only three possible terms, namely

'S, ‘D,
3P [7.191]

instead of the six terms [7.187] we found for the configuration npn'p.

A similar analysis can be carried out for other configurations containing

equivalent electrons. In Table 7.7 are given the possible terms for configure*

tions (nl)
k

, with l = 0, 1, 2. We note in particular from this table that the

configurations (nl)
k and (ni)

2(2 ‘ ll>~ k
lead to the same possible terms. In other

words, the possible terms corresponding to a configuration in which there are k

electrons in a subshell are the same as those in which k electrons are missing

(that is, there are k ‘holes’) in this subshell.

Equivalent and non-equivalent electrons

If a configuration contains a group of equivalent electrons together with a

number of non-equivalent electrons, the possible terms of the group of equiva-

lent electrons must first be determined. The overall possible terms arc then

obtained by using the ordinary rules of addition of angular momenta to add the

Table 7.7 Th. possible terms for electron configurations (nl)
k

,
with 1 = 0, 1,2

Configuration

ns
2s

ns
2

‘S

np np5 2P
2 4np np ’S, ‘D JP

np ! 2
P,

2D 4
S

«P
6

‘S

nd wd 9 2D
nd 2 nd8

'S, ‘D, ‘G
3
P,

3F
rtd

3 nd7 2
P,

2D, 2
F,

2G, 2H 4p 4p

2

nd4 nd6 'S, ‘D, ‘F, ‘G, ‘I
3
P,

3D, 3F,
3
G,

3H '0

2 2 2 4 2

*d 5 2
S,

2P, 2D, 2F, 2G,
2H, 2

I
4
P,

4 D, 4
F,

4G "S

3 2 2

nd
10

‘S
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non-equivalent electrons. Similarly, if a configuration contains two or more

groups of equivalent electrons, the possible terms of each group must first e

obtained, and the overall possible terms are then determined by using the

ordinary rules for the addition of angular momenta.

Hund's rules

Before leaving the subject of the effect of the electrostatic interaction H x
we

mention the so-called Hand’s rules, which have been established empirically for

the ground state configuration and for configurations containing equiva en

electrons. According to these rules:

1 The term with the largest possible value of 5 for a given configuration has

the lowest energy; the energy of the other terms increases with decreasing 5 .

2. For a given value of 5, the term having the maximum possible value of L

has the lowest energy.

Fine structure of terms in L-S coupling. Multiplet splitting and

the Lande interval rule

Having obtained the energy levels of the Hamiltonian [7.184], we now proceed

to the second step of the perturbation calculation, which consists m taking into

account the spin-orbit termHz given by [7 . 179]. We shall first examine how t e

additional perturbation H2 further removes degeneracies. The total Hamilto-

nian W = Hc + H x
+ H2 does not commute with L and S, but it does com-

mute with J = L + S. On the other hand, the energy of an isolated atom

cannot depend on the orientation of the total angular momentum J. As a result,

the (2

L

+ D (25 + 1) degeneracy associated with a term “ L corresponding

to given values of L and 5 is partly removed by the perturbation H2 . The term

25+ iL splits int0 a number offine structure components, characterised by the value

of J, the total angular momentum quantum number, and written in the Russe

Saunders notation as
2S+XLJ . Because |ff2 |

« \H,\ in L-S coupling, ^energy

separation between the fine structure components Lj of a term l.

small with respect to the energy separation between terms. The various ne

structure components are said to form a multiplet. Each fine structure term

2S+lLJ is still (2J + l)-fold degenerate with respect to Mj (where Mjh are tiie

eigenvalues ofJz ), the possible values of Mj for a given J being

[7.192]

The degeneracy in Mj can only be removed if a preferred direction in space is

introduced, for example if an external magnetic field is applied as in the Zeeman

Using the rules of addition of angular momenta, the possible values of J

corresponding to given values of L and 5 are

IL-5I, IL-5I + 1, • • L + 5 [7-193]
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j

It is clear that the number of possible values ofJ is equal to the multiplicity
|

25 + 1 if L 3= 5, and to 2L + 1 if L < S. It is worth noting that the woi4 (i'l

‘multiplicity’ always denotes the number 25+1, even in the case L < S,

where the term 2S+iL can only split into 2L + 1 fine structure components. We
also note that

L+S

2 (27 + 1)

jHi-sl
(2L + 1)(25 + 1) [7.194]

so that by counting all the fine structure states (including their multiplicity) we

retrieve the (2L + 1) (25 + 1) degeneracy attached to the term
2Sfl

L.

As a first example, we show in Fig. 7.7 the partial removal of degeneracies,

due successively to the perturbations H\ and H2 , for a configuration containing

two non-equivalent optically active electrons np n'p. In this case the possible

values of L, 5, and J are given by

L = 0, 1, 2

5 = 0, 1

J = 0, 1, 2, 3

L = 0,5 = 0, S 7 = 0, ‘S„

/

/ L- 1,5 = 0, 'P 7=U 'P.

/

! / L = 2,5 = 0, ‘D 7 = 2, 'D,

npn'p
t

!//
///
///

/'

\

\\^\Z. = 0,S = 1,
3

S 7= 1,
3
S,

\\ 7 — 2,
3
P,

\ \L = 1,S=1,
3P 7= l.’P,

\ 7 = 0,
3
P0

\

\

\

\ J = 3,
3
D,

\l = 2,S=1,
3D^-"^ 7 = 2,

3

d,

7 = 1>
3
D,

Solution of:

Hc + H ,
Hc + W. + H,

7.7 The splitting of the configuration np n'p by the electrostatic perturbationH i and the ipin-orblt

perturbation Hi-
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In the absence of the spin-orbit perturbation H2 the possible terms
+ L are

given by [7.187]. When the effect ofH2 is included, the fine structure terms

2S+lLj are seen to be

‘So, *D2 ,

3
S l5

3P0 ,

3
Pi,

3P2 ,

3D,, 3D2 ,

3D3 [7.195]

A second example is given in Fig. 7.8, where the case of a configuration

containing two equivalent electrons np2
is considered. This case is relevant in

particular for the study of the ground state of the carbon atom, which has the

configuration ls
2
2s

2
2p

2
, the two ‘optically active’ electrons being the two 2p

electrons. When the perturbation H2 is taken into account the three terms

obtained in [7.191] give rise to the five fine structure terms

‘So,
1D 2 ,

3
Po,

3
P,,

3P2 [7- 196]

which are shown in Fig. 7.8. Both examples in Fig 7.7 and 7.8 also illustrate

Hund’s rules. Looking at Fig. 7.8 we also see that the ‘true’ ground state of the

carbon atom is ls
2
2s

2
2p

2 3P0 .

In order to obtain the fine structure energy shifts due to the spin-orbit

interaction, the perturbation H2 must be diagonalised in the subspace of the

wave functions lyLSM^M^) which correspond to a given term, that is to a given

energy level (yLS). By using the Wigner-Eckart theorem (see Appendix 4) it

may be shown that the matrix elements ofH2 in that subspace are the same as

those of the operator AL • S, where A is a constant, characteristic of the

unperturbed level (yLS). Thus

(yLSMLMs \H2 \yLSM'LM's )
= A(yLSMLMs \L • S|yL5MiM^> [7.197]

L = 0,5 = 0, ‘S

l

I

J=o, %
20649 cm

Is
2
2s

2
2p

2

I

I

I i
I /

I /

I /

II

II

J
\

\
\

L = 2,5 = 0, D

L = 1,5= 1,
3
P

7 = 2, 'D,
10 195 cm

7 = 2.'P:

7=1, 3
P,

7 = o/P„

43 cm

16 cm
'

Ground state

E = 0

Solution of: Hc
Hc + H, H

q + H,+ H2

7.8 The splitting of the ground state configuration of carbon.
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The perturbation H2 is not diagonal in the subspace of the wave function! ?

\yLSMLMs). However, by proceeding as in Section 5.1, we can form lini#
"
J!

’

!

|||

combinations of the functions \yLSMLMs) to obtain new ‘unperturbed’ func-

tions \yLSJMj) which are eigenstates of L2
, S

2
, J

2 and J, in that subspace.

Since J
2 = L 2 + 2L • S + S 2

, we then have (with A = Ah 2
)

(yLSJMj\H2\yLSJMj > = $A{yLSJMy\]2 - L2 - SfyLSJMj)

= jA[J(J + 1) - L(L + 1) - 5(5 + 1)] [7.198]

so that the unperturbed level (yLS) splits into 25 + 1 (if L 3= 5) or 2L + 1 (if

L < S), fine structure levels labelled byJ, as we have seen above. Moreover, we

see from [7.198] that the energy separation between adjacent levels E(J) and

E(J - 1) of a given multiplet (L and 5 fixed) is

E(J) - E{J -
1) = \A[J{J + 1) - L(JL + 1) - 5(5 + 1)] - \A[{J -

1 )J

- L(L + 1) - 5(5 + 1)]

= AJ [7.199]

and is therefore proportional to J, the larger of the twoJ values characterising

the pair of fine structure levels.

The result [7.199] is known as the Latide interval rule. It is well satisfied

experimentally if the atom is well described by the L-S coupling case

(|//2
|

« |//i|) and if in addition the perturbationH2 only contains the spin-orbit

interactions [13] as we have assumed here (see [7.199]). In that case the

multiplets are called regular multiplets. When A > 0, we see from [7.198] that

the multiplet component having the smallest possible value of J (that is,

J = \L — 5|) has the lowest energy value; these multiplets are called normal. On

the other hand, if A < 0, the multiplet component having the largest possible

value ofJ (namely J = L + 5) has the lowest energy value; in this case one

speaks of an inverted multiplet. The multiplets shown in Fig. 7.7 and 7.8 are

regular, normal multiplets. It has been established empirically that normal

multiplets occur if there is a single open subshell that is less than half-filled, while

inverted multiplets arise if that subshell is more than half-filled. When the

subshell is just half-filled, there is no multiplet splitting.

j-j Coupling

Let us now consider the case for which the spin-orbit energy H2 is large with

respect to the electrostatic energy correction H x
. In Section 5 . 1 we showed that

the energy of the spin-orbit interaction is proportional to Z4
(see [5.26]) while in

Section 6.5 the first-order electrostatic correction (1 /r^) was shown to be

1 13J In some cases the fine structure of the levels may be very different because of the presence ol

other interactions, such as the spin-spin interactions between the electrons, mentioned at th*

beginning of Section 7.1.
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proportional to Z. We therefore expect that the importance of the spin-orbit
term H2 relative to the electrostatic correction term will increase as Z is

increased, so that;-;' coupling could occur for atoms (ions) with large Z. In fact,

;-; coupling is rarely found in pure form, although the atomic spectra of heavy
atoms exhibit a structure which is close to that predicted by the coupling
scheme. The best examples of j—j coupling are provided by multiply charged
ions the nuclei of which have high values of Z, since in these cases the relative
importance of the electrostatic correction term H x is reduced because of the
reduction in the number of electrons.

Since \H2 \
> \H X \

in the;-;' coupling case, the first step of the perturbation
calculation consists in neglecting H x and solving, approximately, the problem
associated with the Hamiltonian

H = Hc + H2 [7.200]

Now, from [7.11] and [7.179], we see that H is just the sum of individual
Hamiltonians. That is

N
H s= 2 k [7.201]

i=i

where

K ~ K + £(r,)L,- • S,

=
~J % + V{r,) + £(r,)L, • S, [7.202]

The spin-orbit term £(r,)L, • S, has the effect of partly removing the
degeneracy of the individual electron energy levels Enl (corresponding to the
Hamiltonian h

{) by splitting each level Enl with l 0 into two components Enl,

having the total (individual) angular momentum quantum number; = l ± 1/2.
The corresponding individual wave functions are spin orbitals unljm labelled by
the quantum numbers (nljm,) where m, is the magnetic quantum number
associated with the 0 component of the total angular momentum operator of an
electron. Since m

;
can take on the values

m
j
= ~j’ ~j + ,j [7.203]

and the energy levels En!j do not depend on ntj, we see that each individual
electron energy level Enij is (2; + l)-fold degenerate. When j = l + 1/2, this
degeneracy is_equal to 21 + 2, and when ;' = 1/2, it is equal to 21. The
energy levels E associated with the HamiltonianH are obtained by summing the

^individual electron energies

N
E = S [7.204]

i— 1

and the corresponding wave functions are antisymmetrised products (Slater
determinants) formed from the spin-orbitals u n l j m /

Each configuration ofHc

mm
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1

7.5

therefore yields a certain number of configurations of H, characterised by th%

values of the quantum numbers of the electrons.

In the second step of the perturbation calculation, the effect of the electrostatic

correction term Hi is taken into account. Each of the levels E of ft,

j

characterised by a set of quantum numbers (n,/j,) of the electrons, will now be
split by the additional perturbation Hi into a certain number of levels labelled

by the values of the total angular momentum quantum numberJ of the system.

Of course, as in the case ofL-S coupling, each of these levels is still (2J + l)-fold

degenerate with respect to Mj. A typical example of the splitting of levels in j-j
coupling is shown in Fig. 7.9.

In the case ofj-j coupling the notation for the spectral terms must specify the

quantum numbers («,/,/,) of each electron and the total angular momentum
quantum number/. The values of the individualj/s are usually written between
parentheses, andJ as a subscript. For example, one of the energy levels of the

ground state configuration 6p
2
of Pb, corresponding to the values j x

= 1/2,

ji
- 3/2 and J = 2 is written as 6p

2
(1/2, 3/2)2 .

The possible values ofJ can be obtained by using methods similar to those

we discussed above in order to obtain the possible terms in L-S coupling. In the

case of non-equivalent electrons, it is sufficient to use the rule for addition of

angular momenta. Let us consider for example the configuration nsn'p. For an s

electron one has/ = 1/2; while for a p electron j = 1/2, 3/2. Now, if = 1/2
and j2 = 1/2, the possible values of J are J = 0,1, while for j {

= 1/2 and

)i
= 3/2 the allowed values of J are J = 1,2. Thus the possible terms are

(1/2, l/2)0 , (1/2, 1/2),, (1/2, 3/2), , (1/2, 3/2), [7.205]

In the case of equivalent electrons, it is necessary to take into account the effect

of the Pauli exclusion principle, just as in the case of L-S coupling. The
possible terms for a configuration (j)

k
, with j = 1/2, 3/2 and 5/2 are given in

I able 7.8. It is worth noting that the total number of levels having a given value

of J for a given electron configuration must be the same in L-S and j-j
coupling.

Finally, we recall that the two cases of L-S and j-j coupling which we have
discussed here are extreme cases. Many atoms are not described accurately by

ns n'p

Solution of:

Hc

/
/

/
/

/
/

hJi
1/2, 3/2

1/2, 1/2

7=i
-(1/2, 3/2),

7 = 2
-(1/2, 3/2),

( 1 /2 , 1 /2 ),

(1/2, I/2)„

Hl +Hi //„ + //. + Hi

7.9 The splitting of levels in j-j coupling.
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Problems

Table 7.8 The possible terms for configurations (/)*, with / = 1/2, 3/2, 5/2

Configuration J

(1/2)
1 1/2

(1/2)
2 0

(3/2)
1

(3/2)
3 3/2

(3/2)
2 0,2

(5/2)
1

(5/2)
5 5/2

{5/lf (5/2)
4

0, 2, 4

(5/2)
3 3/2, 5/2, 9/2

either of these schemes, and some form of intermediate coupling scheme must be

devised. This is illustrated in Fig. 7.10 where we see that the energy levels of

the configurations 2p3s ofC and 3p4s of Si are well described by L-S coupling,

and the levels 6p7s of Pb by j-j coupling, while the 4p5s levels of Ge and 5p6s

levels of Sn are intermediate in character.

L-

S

coupling
/-/coupling

C Si Ge Sn Pb (jJz) j
(Z = 6) (Z = 14) (Z = 32) (Z = 56) (Z = 82)

Configuration 2p 3s 3p 4s 4p 5s

of first excited

'P and !P terms

(3/2, 1/2),

z (3/2, 1/2);

//

5p 6s 6p 7s

-(1/2, 1/2),

-(1/2, 1/2),

7.10 The splitting of levels in the first excited 'P and 3P terms of the carbon sequence.

PROBLEMS

7.1 Prove that the central field Hamiltonian Hc given by [7.11] commutes

with the total orbital angular momentum L of the electrons.

7.2 Consider the wave functions of the 2
3
S level of helium, which are given in

the central field approximation by

^ c(2
3
S) = <Mrt,r2)

r«(l)«(2)

1

~j= [«(D/?(2) + /3(l)a(2)],

mm2)

Ms = 1

Ms = 0

Ms = -1
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7.3

<t>
(r,, r2 )

= —j= [Mi s(ri)«2,(r2)
~ u^CrOuufo)]

Write the three functions yc(2
3
S) in the form of Slater determinants (or

a sum of Slater determinants) constructed with the spin-orbitals

Mist = «ls(r)«j “is |
- “is(O0

«2st
= u2s(r)a, u2$ i

= u2s(r)/3

(a) Show that the total energy of a neutral Thomas-Fermi atom can be

written in terms of the electronic density p(r) as

E = k
J

[p(r)]
5/3 dr -

1 *
2

Ze 2

2 47T£o

47T£0

P(r)p(r')

p(r)
dr

dr dr' [1]

with k = 3
5/3

7r
4/3

/(10 m). The first term on the right of [1] is the

total kinetic energy of the electrons, the second term is the potential

energy of their interaction with the nucleus, and the third term is

the potential energy of their mutual interaction.

(b) Obtain the Thomas-Fermi equation [7.66] by minimising the

expression [1], subject to the normalisation condition

p(r)r
2 dr = Z

7.4 Using the Thomas-Fermi model, obtain an estimate of the following

quantities:

(a) average distance of an electron from the nucleus;

(b) average kinetic energy of an electron;

(c) total ionisation energy of the atom.

7.5 Obtain the two coupled equations [7.161] for the spatial orbitals Ui*(r)

and u2s(r) of the beryllium ground state.

7.6 Show that the Hartree-Fock and Hartree equations for the ground state

orbital «u(r) of helium are identical and given by

jHlsWl
2 Euu is(r)

Using the Hartree-Fock orbital [6.85b], evaluate the Hartree-Fock

potential

_ Y(r) = -- +
I

|«is(r)|
2

dr'
r

J
|r — r

|
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Problems

Plot T(r) and interpret your results in terms of screening.

7.7 Obtain a pair of Hartree-Fock coupled equations for the spatial orbitals

«i s(r) and u2s(r) corresponding to the 2
3
S (M = 1) wave function of

helium. Prove that the orbitals Ui s(r) and u2s(r) are orthogonal.

7.8 Prove equation [7.155].

7.9 Prove that [H , L] = 0, where H is the Hamiltonian [7.2] and L = 2,L,- is

the total orbital angular momentum of the electrons.

7.10 Assuming that L-S coupling holds:

(a) List the possible spectral terms
2S+lL which result from the follow-

ing electronic configurations

(i) ns n's

(ii) ns n'p

(iii) ws n'd

(iv) Md2

(v) np n'p n"p

(vi) np3

(b) List the corresponding fine structure terms
2S ^ l

Lj.

7.11 Assuming that;-) coupling holds, list the possible terms (j\,j2)j of the

following electronic configurations

(a) np nd

(b) (nl 3/2)
2

.



8
The interaction of many-electron atoms with

electromagnetic fields

In the previous two chapters, we discussed the energy levels of atoms with more

than one electron and now we describe some features of the spectra that result

from transitions between these levels, and also how the levels are perturbed by

external static electric and magnetic fields. For the most part, this is a

straightforward generalisation of the material in Chapters 4 and 5, where the

interaction of one-electron atoms with radiation and with static fields wa»

discussed. The selection rules for electric dipole radiative transitions will be

obtained and then we shall describe the simple spectra of the alkali metals and

of the alkaline earths, which contain one and two optically active electrons

respectively. We shall go on to discuss some general features of multiplets, the

group of spectral lines arising from transitions between two terms and we then

consider the interaction of atoms with static magnetic fields (the Zeeman effect)

and with electric fields (the Stark effect). We conclude the chapter with an

account of X-ray spectra.

8.1 SELECTION RULES

The selection rules for radiative transitions in a one-electron atom were obtained

in Chapter 4. These will now be generalised for atoms containing any number of

electrons. We shall consider only transitions in which a single photon is emitted

or absorbed because, as explained earlier, in allowed transitions higher order

processes make a negligible contribution. The photon field can be described by

a vector potential A(r, t) and the interaction energy between the radiation field

and a number of atomic electrons, 1, 2, . . . N, with position vectors r, is

where N = Z for a neutral atom and N ^ Z for an ion.

This is the generalisation of the linear term in [4. 19]. The quadratic term in A
can again be omitted since it contributes to two-photon and higher order

processes. The treatment of Chapter 4 can be followed step-by-step. Making the

electric dipole approximation, the transition probability is found to depend on a

matrix dement tiTha which can be expressed as a sum of contributions from each
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electron (see [4.62])

i r V mwba ~ ^Mba = I 6 ‘
(ri)ia

j= 1 «

where (rj) fca
is the matrix element of the position vector r,- between the two

atomic states concerned.

Each atomic state is an eigenstate of J
2 and where J

= 'S.jL i Jy is the total

angular momentum operator, with quantum numbers J and My . It is also an

eigenstate of the parity 2P, but not necessarily of the total orbital angular

momentum or the total spin angular momentum. The states can be further

specified by a (non-angular momentum) label y. The quantum numbers of the

states a and b will be written

a -> (y, J, My)

b (Y, J', Mj)

and Mba can be written as

Mba = ~X —T— « ' (V’ T, My\tj
I

y,J,Mj) [8.2]

j= 1 n

We notice in passing that, since the electrons in the atom (ion) are indis-

tinguishable,

Mba = ~N e </, J', My\ri\y,J,My) [8.3]

It is convenient to introduce the total dipole moment operator of the atom as

D = ex
i [

8 -4]

j= i

so that

Mba =
m
f

ba
E </, y, My\D\y, J , My) [8.5]

lie

The transition rates for photon emission or absorption can be written in terms

of D, and for spontaneous emission of a photon of polarisation i into a solid

angle dfl in the direction (6 , d>), we have (see [4.70])

Wl„ dfl = -
11 -wl\e <y, y, Af>|D| 7, J, My)

I

2
dfi [8.6]

27rnc 47re 0

The dipole moment D is a vector operator (see Appendix 4) because, as can

be verified easily, it obeys the following commutation relations with the total
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angular momentum J:

*> [Jx, Dx\ = [Jy , Dy\ = [Jz , Dz] = 0

[Jx, D ]
= ifiDz ; [Jy , Dz\ = ihDx

and

[Jz-. Dx] = ihDy [8.7]

The spherical components D
q (q

— 0, ±1) of D are defined so that

1

Dx = —j= (.Dx + iDy) = |D| f—
)

K,.,(a,/3)

' 477
Ai = D. =

I D
1 1

— 1/2

1/2

Yi,o(a,j8) [8 . 8]

1/2

d~
1
=
72

(D*~ iDy) = y>’- i(a ’^8)

where (a, /3) are the polar angles of D.

Similarly the spherical components of the polarisation vector i are *•
, where

(see [4.81])

1
„ „ 1 r ,

fi
~j=^

\SX i£y)) e0 ^5 i
“ tey ) [8.9j

The scalar product i D can be expressed in spherical components as

e • D = 2 e*D
q

q= 0,±1
18.10]

Now the Wigner-Eckart theorem (Appendix 4) states that the matrix

elements of a vector operator with respect to eigenstates of J
2
and Jz only

depends on Mj, Mj and q through the Clebsch-Gordan coefficient

(J\Myq\J'Mj). We have

(Y,T, Mj\D
q \ y, J , Mj) =

y2
-7-;-

1

(J\Mjq\rM'j)(y'rmyJ) [8.11]

where the reduced matrix element {yj'^ji[\yj) is independent of q, Mj, Mj

.

The Clebsch-Gordan coefficient {J\Mjq\J'Mj) vanishes unless:

(a) Mj + q = M'j

(b) \J
-

1| + 1 [8.12]

(c) 7+J'H
The selection rules for electric dipole transitions are thus:

AAfr = 0, ±1 [8,13a]
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and

AJ = 0, ±1, [8.13b]

but

j = o **y = o [8.13c]

is not allowed.

In addition, since under the parity operation D changes sign, and because the

atomic states are eigenstates of parity, we see that 'the dipole matrix element

vanishes unless the states a and b have opposite parity. This is known as

Laporte’s Rule.

It can be shown, by extending these arguments, that all matrix elements for

multipole transitions, either electric or magnetic, are proportional to the

Clebsch-Gordan coefficient (J\Mjq\J'M'j), where A = 1 for dipole transitions,

X = 2 for quadrupole transitions and so on. For electric multipole transitions,

the parity changes if A is odd and does not change if A is even, while for

magnetic multipoles the parity changes for even A and does not change for odd

A. Combining this parity rule with the properties of the Clebsch-Gordan

coefficient the selection rules can be obtained (Problem 8.1) for any multipole.

L-S coupling

When the spin-orbit interaction is weak then, as we saw in the previous chapter,

the Russell-Saunders, or L-S coupling, approximation is accurate, in which

both the total orbital angular momentum and the total spin angular momentum

are conserved. Since the operator D is independent of spin, we have

{J', L', S', M'j\V\J, L, S, My) = 8ss (y, L' , S', M'3 \D\J, L, S, My)

[8.14]

The selection rules which hold in addition to those of [8.13] for electric dipole

transitions are then:

AL = 0, ±1 (L = 0 <h> L' = 0 is not allowed) [8.15a]

AS = 0 [8.15b]

The most usual case is one in which the orbital of only one electron in the

atom changes. If the orbital concerned has an angular momentum quantum

number then our discussion of the one-electron atom shows that

A/y = ±1 [8.15c]

The case A/y = 0 is not allowed because the parity of the atom must change. If

two or more configurations are strongly mixed in a particular state, then more

than one electron can make a transition simultaneously even though only one

photon is being emitted or absorbed, but this is a rather uncommon circum-

stance and we shall not deal with it.



8.2 Tht spectra of the alkalis

8.2 THE SPECTRA OF THE ALKALIS

As we have seen in Chapter 7, the structure of the ground states of the alkali

nfetals (Li, Na, K, Rb, Cs, Fr) is that of a single valence electron moving in an

orbital outside a core consisting of a closed (sub)shell system. In lithium, the

configuration of the core is (Is)
2

, in sodium (ls)
2
(2s)

2
(2p)

6
, in potassium (Is)

2

(2s)
2
(2p)

6
(3s)

2
(3p)

6
, and in each case the total orbital angular momentum and

the total spin angular momentum of the core are zero, designated as ‘S0 . The

cores of rubidium, caesium and francium are also ’S0 . Because the core is

spherically symmetric, the valence electron of a neutral alkali atom (

N

= Z)

moves in an effective central potential V(r), which at large distances approaches

the Coulomb potential

(47T£0)r
[8.16]

since the nuclear charge Ze is screened by the core which contains (Z - 1)

electrons. The lowest state of the valence electron has zero orbital angular

momentum (Z = 0) and the corresponding orbital is designated (n0s), where, to

satisfy the Pauli principle, n0 = 2 for Li, 3 for Na, 4 for K and so on. For small r

the potential V(r) is always more attractive than — e
2/(4Tre0)r, so that the binding

energy of the orbital (n0s) is always greater than that of the (n 0s) level of

hydrogen. The excited states of the valence electron, moving with respect to the

unexcited core, are designated (nl ) with n S? n () . The binding energy of the

orbital (nl) is again greater than that of the (nl) level of hydrogen. For highly

excited states, for which the charge density of the orbital is almost entirely

outside the region of the core, the orbitals approximate closely to true

hydrogenic wave functions, and the energy levels are very close to those of

hydrogen.

As V(r) is not Coulombic at short distances, the energy levels are not

degenerate in Z, for a given n. Thus the (2s) level in lithium lies well below the

(2p) level, and for sodium the (3s) level is below the (3p) level, which in turn is

below the (3d) level (see Fig. 8.1). As the excitation increases and the levels

become more hydrogenic in character, there is near degeneracy in Z, for a given

n. The valence electron is bound weakly compared with the core electrons. For

each of the alkalis it requires about 5 eV to detach the valence electron,

compared with over 20 eV for the least bound of the core electrons, and it

follows that the optical spectrum is due to transitions involving the valence

electron only, the core remaining inert. The term symbol of the ground state of

an alkali can be written, omitting the core, as (n 0s)
2
Si/ 2 where the superscript

denotes the multiplicity of the spin state (2s + 1), in this case with s = 1/2, and

the subscript is the total angular momentum quantum number. Excited states

are of the form (ns)
2
Si /2 , (np)

2P 1/2 ,3/2 > (nd)
2D 3 /2j5 /2

and so on.

The gross structure of the alkali spectra can be obtained by combining the

selection rules for a one-electron atom (see Chapter 4) with a knowledge of the

energies of the levels (nl) of the valence electron. The energy levels can be
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Configuration: (ls)
2
n/

(a)

8.1 Grotrian diagrams of energy levels and transitions in (a) lithium and (b) sodium. Energies are

shown relative to the ground state, with the horizontal line at the top of each diagram showing the

ionisation potential of the ground state. The column headed EH shows the corresponding positions

of the levels of atomic hydrogen.

represented by the empirical formula

E„i
1 1

2 (n - finl)
2

[8.17]

The quantities !J.ni are known as quantum defects. To a good approximation fxn!

is (for a particular alkali) a function of / only; /.

i

nt — «(/). Thus we can write the

effective principal quantum number, in a form due to Rydberg, as

n* = n — a(l ) [8.18]
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Configuration: (Is)
2
(2s)

2
(2p)

6
nl

E (cm" 1

) E(eV) “II

Fig. 8.1(Cow.)

for lithium, sodium and potassium. A small correction to this formula was made
by Ritz, who wrote [1]

n* = n — a(l ) — f3(l)/n
2

[8.19J

For example, in the case of the p levels of lithium one has a(l) = 0.040 and

>3(1) = 0.024. Some parameters of the energy levels of the alkalis are given in

Table 8.1.

[1] Complete tables of the quantities n

*

can be found in Kuhn (1970).
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Table 8.1 Parameters of the energy levels of the alkalis

(a) quantum defects a(l)

Atom l = 0 1 2 3

Li 0.40 0.04 0.00 0.00

Na 1.35 0.85 0.01 0.00

K 2.19 1.71 0.25 0.00

Rb 3.13 2.66 1.34 0.01

Cs 4.06 3.59 2.46 0.02

(b) Effective principal quantum numbers n* for the (n0s) and (n0p) levels

Level Li(n0 = 2) Na(«o = 3) K(no = 4) Rb(n0 = 5) Cs(n0 = 6)

(n0s)
2
Si /2 1.588 1.626 1.771 1.805 1.869

(n0p)
2
Pi /2 1.966 2.116 2.232 2.280 2.392

(«oP)
2P3/2

1.966 2.117 2.235 2.293 2.362

(c) Ionisation potentials of the alkalis

Li Na K Rb Cs

Ip(eV) 5.39 5.14 4.34 4.18 3.89

Absorption spectra

The absorption spectra can be obtained by passing light through the vapour of

the alkali metal. Except at very high temperatures, most atoms will be in the

ground state, and the series of absorption lines correspond to transitions from

the (n0s) ground state to the (np) levels, with frequencies

[8 . 20]

whereR is the Rydberg constant. This series of lines is called the principal series.

Emission spectra

The principal series can be observed in emission as well as in absorption. By far

the strongest line is that corresponding to the transition n 0p —» n0s and is called

a resonance line. Because of spin-orbit coupling, which we shall discuss below,

the resonance lines are doublets. The wavelengths of these lines are given in

Table 8.2. Several other series of emission lines can be observed (see Fig. 8.1),

including the sharp series, corresponding to ns —> nop transitions, the diffuse

series, which correspond to nd —

*

noP and the fundamental senes, which corres-

pond to nf —* n0d.

The emission spectra of positive ions with one valence electron outside an

inert core can also be observed in a spark discharge. For instance the sequence

of ions iso-electronic with lithium consists of Lil, Bell, Bill, CIV . . . where I

stands for the neutral atom, II for a singly ionised atom and so forth. The energy
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Table 8.2 The resonance lines of the alkali metals: Li, Na, K, Rb, Cs. The most proaittMR
emission lines in the .alkali spectra are the resonance lines corresponding to the tnuuM4|||i lii|!{i!i

(»oP) - (n0 s)

Atom Frequency (cm *) Wavelength (A)

Li 14904 6708

Naf (16956 5896

(16973 5890

K (12985 7699

(13043 7665

Rb (12582 7946

(12817 7800

Cs (11179 8943

(11733 8521

f The yellow lines in this doublet are known as the Fraunhofer D-lines

which occur in the spectrum of sunlight.

levels of such a sequence can be written as

1

Enl = ~
2 [» - «(/)]

a.u. [8 .21 ]

where Z = Z - N + 1 ,_Z being the nuclear charge and N the number of

electrons. The quantity Z is therefore the net charge of the nucleus and the core

electrons, and is equal to the Roman numeral in the symbols Bell, Bill, CIV,

and so on. The quantum defect «(/) decreases smoothly during such a

sequence so that for large Z the spectrum becomes hydrogenic.

Fine structure

All the energy levels of the valence electron in an alkali (except for those with

/ = 0) are split into two; one level corresponding to a total angular momentum
quantum number; — l + 1/2 and the other to j = l

— 1/2. The interaction

causing this splitting is the spin-orbit interaction, which was discussed in

Chapter 5 in connection with the hydrogen atom. The shift in energy due to this

effect is given by (see Section 5.1)

AE = ±AAKj + 1) - /(/ + 1) - *] [8-22]

The constant \nt is proportional to the expectation value of r
1

dV{r)/dr, V(r)

being the effective central potential in which the valence electron moves:

h2 /IdV(r)\

nl
2

m

2
c
2

\ r dr /

fi
2{m [8 .23]
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Table 8.3 Spin-orbit splitting of the («op) levels of the alkalis

8.3

Atom Li Na K Rb Cs

«o 2 3 4 5 6

AE 0.337 17.2 57.7 238 554 cm
0.42 21 72 295 687 x 10~

The magnitude of An/ can be estimated by using V(r) as calculated by the

Hartree-Fock method. It turns out to be much larger than for atomic hydrogen

(about 50 times larger for the 3p level of sodium than for the 2p level of

hydrogen), and the other relativistic corrections which are important for

hydrogen are negligible. The observed splitting of the (n0p) levels of the neutral

alkali atoms are shown in Table 8.3. For a given atom the splitting decreases

with increasing n and Z, while along an iso-electronic sequence of positive ions

the splitting increases with the charge Ze on the (nucleus + core), behaving like

Z4
for large Z.

Using the Hartree-Fock potential \n! is found to be positive, and the level

with; = 3/2 has greater energy than that with j
= 1/2. This is found to be true

for all terms of lithium, and for the lower lying states of the other alkalis,

although quantitative agreement with the observed magnitude of the splitting is

not good. For the
2D terms of sodium and potassium and for many other higher

terms, the normal order is inverted, this effect being due to exchange

interactions between the valence and core electrons and other small interactions

with the core.

The one-electron selection rules (see Chapter 4) require AZ = ±1 and

A/ = 0, ±1 with; = 0 <->y = 0 forbidden. Thus the principal and sharp series

of lines corresponding to
2P3/2 ,i /2

2
Si /2 transitions are doublets, while the

diffuse series
2D 5 /23/2 —»

2P3/2 ,i /2 and the fundamental series
2F7/2 ,5/2

2D5 / 2 ,3/2 are triplets. The frequencies and wavelengths of the split resonance

lines are given in Table 8.2.

8.3 HELIUM AND THE ALKALINE EARTHS

The energy levels of helium and two-electron ions were discussed in Chapter 6.

In the absence of spin-orbit and other spin-dependent interactions, which are in

fact exceedingly small, the total spin is a good quantum number, and the energy

levels can be divided into singlet levels with 5 = 0 and triplet levels with5=1.
The electric dipole operator cannot change the spin of an electron, and in the

absence of spin-dependent forces, the selection rule A5 = 0 must hold. For

helium and for helium-like ions with small nuclear charge Ze, the spin-orbit

and spin- spin interactions are a small perturbation on the triplet states, but are

not large enough to mix the triplet states with the singlet states to a detectable

extent. Both the total orbital angular momentum L and the total spin 5 remain

conserved to a very good approximation, and the system is a good example of
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Configuration: (Is)
2
(2s)

2
(2p)“ (3s)

2
(3p)

6
4s nl (Is)

2
(2s)

2
(2p)

6
(3s)

2 (3p)*4s nl

(b)

8.2 Simplified Grotrian diagrams showing transitions in (a) helium (b) calcium. Wavelengths in
angstom units are shown against the lines representing the transitions. For multiplets with
substantial splitting the extreme wavelengths are shown against the lines. Energies in cm ’ or eV (re
given relative to the ground state and the horizontal line indicates the ionisation potential. Notice the
intercombination line shown Jjur calcium. Only a few of the transitions which have been identified

are shown, for clarity.
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L-S or Russell-Saunders coupling. For helium-like ions with large Z, L-S
coupling becomes a less accurate approximation and lines corresponding to

singlet to triplet transitions can be observed. These are called intercombination

lines and are usually weak. A term diagram for helium is shown in Fig. 8.2. The

terms of the singlet and triplet states can be written (lsns)
1

S0 ,
(lswp)'P]

,

(lsnd)
1D2 . . . and (lsns)

3
Si, (lsnp)

3
Pjr, (lsnd)

3D7 . ... In the triplet states,

the possible values of J for a given L j* 0 are J = L and J = L ± 1 while

J = 1 when L = 0. Spin-orbit coupling, which removes the degeneracy

in J , splits each level with L 0 into three components.

Helium can also be found in states in which both electrons are excited, for

example (2s2p)
1

Pi. Such states can decay by dipole radiation, for example

^p)^ (2sls)
1
S0

but a competing process is energetically possible in which an electron is ejected

He(2s2p) —» He+
(ls) + e

This process is called autoionisation and was discussed at the end of

Chapter 6. It is generally a very rapid process, with the result that doubly

excited levels have a very short lifetime and the corresponding spectral lines are

very broad and weak.

The fine structure of helium and two-electron ions

The spin-orbit coupling is of the form A(L • S). The magnitude of the coupling

A depends on the nuclear charge, and for helium it is so small that the magnetic

interaction between the spins of the two electrons is comparable in magnitude,

and in this case the Lande interval rule breaks down. The spin magnetic dipole

moment of each electron is — 2/u. B S,/ft (t = 1, 2) and the interaction energy

between them, when separated by a distance r / 0, is

- 3
(Sl • F)

f [8.24]
r r J

The energy shift due to this interaction can be calculated by first-order

perturbation theory. It clearly vanishes for singlet states. There is one further

interaction of significance in helium, namely the interaction between the spin of

one electron and the orbital motion of another, called the spin-other orbit

interaction. This interaction is of the form A'(L S) and so obeys the interval

rule (for given L and S)

T f / \ Mo 4/r BVs (r) = ry-
477 h

E(J) ~ E{J - 1)

J
= constant [8.25]

(although the sign of A' may be different from that of A). The constant A' does

not increase as fast as A does with Z and the spin-other orbit interaction is small

compared with the spin-own orbit interaction in the heavier atoms.
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To bring out of these points it is interesting to compute the

structure of helium and two-electron ions approximately, following the

ment of Bethe and Salpeter (1957). We are concerned with triplet state! ofl

configuration (Isnl) with l i= 0. Since the charge distribution of the elect

the (til) orbit (with / > 0) is at greater distances from the nucleus than i

the (Is) electron, exchange can be neglected and the (nl) electron (lit)

can be considered to be moving in a Coulomb potential V due to the nu

charge Ze) fully screened by the inner electron

V(r2) = -(Z - l)/r2

Here and in what follows we use atomic units. Since the average vail

much larger than the average value of rl5 we can replace the int

distance r in [8.24] by r2 . Then the energy due to the spin-spin inter

be shown to be

AEss = <n/|V5(r2)|n/> = 2<*Vb

X = 1/(21 + 3)

X = -1

X = (/ + 1)/(2Z -1)

- a 2(Z - 1)( — (L 2 -S 2)

The two interactions [8.27] and [8.28] together provide an energy shift

A£ls = ((^ ^
a2

(Z - 3)[J(J + 1) - 1(1 + 1) - S(S + 1)J [8.29]

where 5 = 1 for the triplet levels.

The level shift A£LS obeys the Lande rule. If only the spin-orbit interaction

had been considered (Z - 3) would have been replaced by (Z - 1). For neu-

tral helium with Z = 2, the multiplet is inverted by the spin-other orbit

interaction, but the addition of the spin-spin interaction completely altera the

ratio of the level shifts (see Fig. 8.3). This is true for two-electron ions with

small Z. We have in a
3P multiplet, E(J = 0) > E(J = 1) > E(J = 2) for

helium; E(J = 0) > E(J = 2) > E(J = 1) for Li
+

; while forZ > 8,E(J - 2)

> E(J = 1) > E(J - 0). For large Z the spin-orbit interaction dominates and

the order of the levels is normal.
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7 = 0-

0.9% cm-

0.07jl cm

(a) He I

2 = 2

7 = 0-

3.13 cm-'

-V-
2.27 cm

i_
(b) Li II

2 = 3

7 = 2-

1
-

0 -

950 cm

160 cm
i

(c) F VIII

2 = 9

8.4

8.3 Diagram (not to scale) of the splitting of the 2
}Pj level in two-electron atoms. The experimental

splitting is shown for He I and Li II and for F VIII.

The alkaline earths (Be, Mg, Ca, Sr, Ba, Zn, Cd, Hg)

Just as the spectra of the alkalis have a close connection with those of

one-electron atoms, the spectra of the alkaline earths can be compared with

those of helium and the two-electron ions. The alkaline earths have two valence

electrons moving outside an inert closed (sub)shell core, with L - 0 and 5 = 0.

For example the ground state of Be is (ls)
2
(2s)

2 1
S0 ,

and that of Mg is

(ls)
2
(2s)

2
(2p)

6
(3s)

2
'S0 . The energy required to ionise a valence electron is

9.3 eV for Be and 7.6 eV for Mg. As these electrons are more easily excited than

core electrons, the optical spectrum is formed by transitions involving the

valence electrons alone. As for helium, the energy levels are either singlet (total

spin 5 = 0) or triplet (total spin 5=1) and the most prominent lines are the

resonance lines between the lowest singlet states (nosnop)'P] -* (n0s)
2 1

So. The
spin-orbit interaction splits the triplet series into three levels, except for 5
terms. A term diagram for Ca is shown in Fig. 8.2; the triplet splitting is too

small to be indicated.

8.4 ATOMS WITH SEVERAL OPTICALLY ACTIVE ELECTRONS.
MULTIPLET STRUCTURE

The spectra of atoms with one and two valence electrons consist, as we have

seen, of simple series and the same is largely true of the trivalent elements such

as B and Al. Such simple series can be readily identified and analysed, but in the

complex spectra of more complicated systems, series are much more difficult,

and often impossible, to identify. To identify the terms involved in a given

region of the spectrum, the multiplets of lines which arise from transitions

between the members of two terms must be analysed. In Chapter 7 we have seen

how single configurations are split by the electrostatic energy into a number of

terms
2S+1Lj, which are degenerate in the total angular momentum J, for a

given L and 5. In L-S coupling the degeneracy in J is removed by the

spin-orbit interaction, but L and 5 remain good quantum numbers. The
relative spacing of the levels within a multiplet is given by the Lande interval

rule [7.199]

E(L, S,J) - E(L, S,J ~\) = AJ [8.30]
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Another aid to analysis of the observed spectra is the total splitting of the t*

which is

E(L, S, J = L + S)~ E(L, S , J \L —
5|) = AS(2L + 1), L »

= AL(2S +1), L <
[*

For example, consider the triplet of lines which arise from the transi

in Mg between the (3s4s) 4
3
S

L
level and the (3s3p) 3

3P2 ,i,o levels. The obi«

frequencies are 19286, 19326 and 19346 cm We see that

[E(J = 2) - E(J = 1)] = 20 cm" 1 and \E(J = 1) - E(J = 0)] = 20

which is consistent with the Lande rule [8.30] with A = 20. For heavy ato

the other hand, L-S coupling breaks down and the Lande rule is not satl«

An example is the corresponding transition in Hg, that is between the 7
J
Sjj

6
3P2 i o levels. The observed frequencies are 18307, 22938, 24705 cm' *.

these data, (1/2) [E(J = 2) - E{J = 1)] = 2315.5 cm” 1 and [E(J - ]

E(J = 0)] = 1767 cm-1
. This time the two differences, which should be I

equal to A, if L-S coupling were satisfied accurately, are far from equal.

In general, the heavy elements have spectra which do not conform to thfl

interval rule, because of the mixing of states with different S. As we have MM0

the interval rule can be violated in other circumstances, notably in heliuill|

where the spin-orbit coupling is not large compared with the spin-spill

interaction.

The number of spectral lines arising from transitions between two terms Is

determined by the selection rules. Consider the group of lines arising from

transitions between members of two triplet terms, for example 3D I-2j3 and
3F2 , 3 ,4 terms. The selection rules AS = 0, AL = ± 1 are satisfied, and the rule

AJ = 0, ±1 allows the following six transitions:

3
Di

3F2 ;

3D 2
«-»•

3F2 ;

3D2
«->

3F3 ;

3D 3
<->

3F2 ;

3D 3

3F3 ;

3D 3
3F4

A particular example of a
3D -> 3P transition in strontium is shown in Fig. 8.4

(5
3D -»• 5

3
P).

Intensities

The radial integrals in the matrix element of the electric dipole moment [8.5) arc

the same for each transition between members of two terms, so the relative

intensity of the lines forming the multiplet depend only on angular momentum

factors. These have been tabulated and may be consulted in Kuhn (1970) or

Condon and Shortley (1951). It is found that in each multiplet the strongest

lines are those for which AJ = AL, and if several lines satisfy this relation, the

strength among these lines increases with J

.

Under normal conditions of

excitation, the number of atoms in each level of a term is proportioned to the

statistical weight (27 + 1) of that level. This leads to the sum rule of Ornstein,

Burger and Dorgelo, valid for L-S coupling, that the sum of the intensities of all
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E (cm
-1

) J = 3 2 1 0

the transitions from (or to) a given level of total angular momentum J in a

multiplet is proportional to (2J + 1). In some cases, this rule is sufficient to

determine the relative strengths of the lines in a multiplet completely. For

example in a
fP7 to

3
Si multiplet, the intensities of the three lines are in the ratio

5:3:1. In other cases, where both terms are split this is not so. An example is

the
!Dy —» 3Fy multiplet for which the sum rules provide only four equations,

so the relative intensities between the six lines cannot be completely deter-

mined. On the other hand in a doublet system such as
2D3 /2 ,5/2

<-> 2F5 /2;7/2 , the

relative intensities for the three lines can be found as follows. Let a, b, c be the

intensities of the lines
2D3/2

<-> 2F5/2 ,

2D5/2
<-* 2F5/2 ,

2D5/2 <h>
2F7/2 . Ap-

plying the sum rule to each of the
2D levels, we find

a = 4A

b + c = 6A

Similarly applying the rule to the
2F levels we find

a + b — 6/jl

c = 8/x
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1
—

ii,ii

Atoms with several opticalb> active eUeamu
+J.

I, Where A and n are constants

14 : 1 : 20 .

of proportionality. Solving we find that a\ b‘.c la

Displaced terms

For the most part, we have considered situations in which only one electron in

an atom is excited, the remaining electrons being in the ground state of the

positive ion. In practice, lines can be observed which correspond to situations in

which more than one electron is in an excited state, and we have already shown

how some of these excited states are subject to autoionisation. Frequently,

regular series of lines can be observed which are associated with a particular

state of the excited ion. For example in Be, there is a doubly excited

configuration (ls)
2
(2p)

2
,
which gives rise to singlet and triplet series of lines

corresponding to transitions (ls)
22pns —» (ls)

2
(2p)

2
. The series limit (n —

*

°°)> is

at a higher energy than the series limit for the regular series (ls)
22snp —*

(1s)
2
(2s)

2
, so the terms are said to be displaced. Transitions between the regular

and displaced terms are possible. For example in Be, there is a line at

14320 cm -1
,
corresponding to the transition

(ls)
2
(2p)

2 'D2 -> (ls)
2
(2s2p) 'P,

and another at 28 944 cm' 1 corresponding to

(ls)
2
(2p)

2
'S0

—* (ls)
2
(2s2p)

1

Pi

Similarly, triplet transitions can be observed forming a multiplct of lines

between the (2p)
2 3D

7
and the (2s2p)

3P7 terms (see Fig. 8.5).

Hyperfine structure

We saw in Chapter 5, in the case of a one-electron atom, that the magnetic

interaction between the nucleus and an electron splits an atomic term specified

by the total electronic angular momentum J into a number of hyperfine levels

characterised by the value of the quantum number of the total angular

momentum of the whole atom, including the nucleus. The many-electron case is

similar. The total angular momentum F of the atom is the sum of J and the

angular momentum of the nucleus I,

F = I + J L8.32J

Each atomic level is an eigenstate of F 2 and of Fz with quantum numbers

F and MF respectively. The eigenfunctions \F,My) satisfy

F 2
\F, My) = F(F + l)h

2
\F, My)

FZ \F, My) = Myh\F, My)

By examining the equations [5.142] and [5.143], we see that in the one-electron

atom, the magnetic dipole interaction between the nucleus and the atom can be
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Configuration: (Is)
2 2s nl (ls)

2 2pn/

8.5 Grotrian diagram for transitions in beryllium (a) singlet (b) triplet energies are shown relative

to the (Is)
2
(2s)

2
'S ground state. Only a selection of transitions are shown, for sake of clarity. The

numbers against the lines show the wavelength in angstroms. The ‘displaced terms’ are shown on

the right-hand side of each diagram.

taken to be proportioned to (I • J), where the constant of proportionality

depends only on the quantum numbers J, L and S . We shall assume this to be

true for the many-electron case as well, so that the energy shift of each term will

be determined by an interaction of the form

H' = C(I • J) [8.34]

where C depends onJ , L and 5, and is known as the hyperfine structure constant.

Since

I • J = i (F 2 - I
2 - J

2
) [8.35]

the energy shift of a particular term is (with C = Ch 2
)

A£ = j [F(F + 1) - /(/ + 1) - KJ + D] [8.36]
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Configuration: (ls)'
I 2sn/ (ls)

J
2prtf i

(b)

Fig. 8.5(Cont.)

The possible values of F are from
j

I — J |

to (/ + J), so the number of levels

differing in F is {21 + 1) if / *£ J, or (2J + 1) ifJ < I. For example, if = 2

and I = 3/2, the term will be split into four components with F - 1/2, 3/2,

5/2, 7/2. The energy difference between levels is given by the interval rule

l±E{F + 1) - AE(F) = C{F + 1) [8-37]

Some values of the hyperfine splitting for a number of levels are given in

Table 8.4. Transitions between different hyperfine levels corresponding to the

same term can be measured by radio-frequency methods. The measurements

can be made to great precision and for this reason can be used as time standards.

In SI units the fundamental unit of time, the second, is defined in terms of the

frequency of the transition between the levels with F = 4, Mh
- - 0 and F ~ i,
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Table 8.4 Hyperfine structure of selected levels

8.5

Atom / Term F [A£(F + 1) - A£(F)]+ C+

H 1/2 (1s)
2
S 1/2

0 1420.4057518 1420.406

3He 1/2 (1s2s)
1

Si/2 1/2 6739.70 4212.31

67Zn 5/2 (4s4p)
3P2 1/2 7810.865 521.24

133Cs 7/2 (6s)
2
Sj/2 3 9192.631770 2298.2

+ Energy splittings and C are given in MHz.

MP = 0 of the ground state of
133

Cs. The frequency is assigned the value

9192.631770 MHz.
The selection rules for electric dipole transitions between different terms

must be supplemented by the rules AF = 0, ±1 with the transition

p = 0 <-» F' = 0 forbidden. The analysis of the hyperfine structure of parti-

cular transitions offers a method of determining the spin of the nucleus, and

historically this has been of great importance.

Since the level shifts are small, of the order of 1(T
5
of the energy difference

between the ground and first excited states of the atom, other effects may be

of comparable magnitude. For example, the value of the constant C is different

for different isotopes of the same element. For a given isotope, there is a further

small interaction, which depends on F, and which is of experimental impor-

tance. This arises because the nucleus is not a point charge and so has a charge

distribution which can be specified in terms of multipole moments (see

Chapter 5). Being in a parity eigenstate, the nucleus can have no permanent

electric dipole moment, but can possess an electric quadrupole moment. The

interaction between this quadrupole moment and the electronic charge distribu-

tion leads to a further very small F -dependent shift, which can be detected by

departures from the interval rule [8.37]. This was discussed in Chapter 5 for

one-electron atoms. For the generalisation to the many-electron atom case,

reference may be made to Kuhn (1970).

8.5 INTERACTION WITH MAGNETIC FIELDS.

THE ZEEMAN EFFECT

In the absence of external fields, there is no preferred direction in space and the

energy of an isolated system, such as an atom, cannot depend on which direction

we choose as the Z axis. As a consequence, the energy of an atom does not

depend on Mjh, the eigenvalues of Jz , and the atomic energy levels are

(27 + l)-fold degenerate. This degeneracy is removed by external magnetic

fields which destroy the isotropy of the situation. In Chapter 5 we studied the

interaction of a one-electron atom with a static magnetic field of magnitude Sft

and we shall now extend the treatment to a multielectron atom. The interac-

tion energy between each electron and the field will be of the same form as
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before (see [5.49]) and la, for the ith electron,

H\ = » • (L, + 2S.) [8.38]

where L, and S, are the orbital and spin angular momenta of the electron, and

MB is the Bohr magneton. The total interaction energy between the field and an

atom containing N electrons is obtained by summing over t:

H' = Y H\ = a • (L + 2S) [8.39]
1

A

where L is the total orbital angular momentum of the atom, L = S.L, , and S is

the total spin angular momentum, S = S,S, . This interaction is of exactly the

same form as for the on,e-electron atom, and the matrix elements we worked out

in Chapter 5 can be used here, provided the atom is described by the L-S
(Russell-Saunders) coupling scheme.

As before, there are three cases, depending on whether the perturbation H' is

much greater than the spin-orbit interaction, A(L • S), comparable with it, or

(the most usual case) much less than it. In the strong field case, the spin-orbit

energy can be ignored so that the atomic wave function becomes a simultaneous

eigenfunction of L2
, L z , S

2 and Sz . As a result, one has (with 9# =

AE = mb(Ml + 2MS)®Z [8.40]

In the intermediate case (the Paschen-Back effect), the spin-orbit interac-

tion is now introduced as a perturbation, and we have (with A = Ah 2
)

<L, 5, Ml , M5 |AL- S|L, S, Ml,Ms) = AMLMS [8.41]

The level shift is the sum of [8.40] and [8.41], namely

AE = fjiB(ML + 2Af v)3L + AMLMS L8.42J

Finally, in the weak field case (the anomalous Zeeman effect), we first take

into account the spin-orbit interaction and subsequently treat the interaction

with the external field as a perturbation. The degeneracy inj is removed by the

interaction A (L • S) and the atom is in an eigenstate of J
2

, L
2

, S
2 and . The

magnetic interaction is treated as a small perturbation and

AE=^- ®z{JLSMj\Lz + 2SJJLSMj) [8.43]

This matrix element was evaluated in Section 5.2 for one-electron atoms, with

the result [5 . 79]—[5 . 80]. In an identical way, one has in the present case

AE = [8.44]

where g7 is the Lande factor

,
7C7 + 1) + S(S + 1) - L(L + 1)

Sj = 1 +
mj + 1 )

[8 .45 ]
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The transition from the weak to the strong field limits is continuous, and an

example was shown in Fig. 5.12 for the 2pi/2 and 2p3/2 levels of hydrogen.

The Zeeman effect in hyperfine structure

The degeneracy of the hyperfine levels, corresponding to (2F + 1) values of

MF , can be removed by the application of a magnetic field. If a nucleus

possesses a magnetic moment Jl\- there is an additional interaction of the

form ~(Mn ' S). We write (see [5.116])

AIn = [8.46]

where I is the nuclear spin, (an is the nuclear magneton and gr is the nuclear g

factor. The total interaction of an atom with a magnetic field in the Z direction

of strength 2£2 ,
is

« = (^)a,<L, + 25.) - (x)9 -7- [8 '471

We shall take the case ofL-S coupling, and we can again identify a number of

limiting cases. The first of these is the weak field case in which H' is smaller

than the hyperfine interaction C(I • J). In this case, the atom is in an eigenstate of

F2
, J

2
, I

2 and Fz and the energy shift is

i±E = (F, J , /, Mp\H'\F, J, /, MF)
[8-48]

By methods similar to those given in Chapter 5, it can be shown that

AE = gFHB^MF [8-49]

where gF is a Lande factor given by

F(F + 1) + + 1) ~ /(/ + I)

gF ~ & 2F(F + 1)

(
F(F + 1) + /(/ + 1) - JO_ + 1)

2
2F(F + 1)

[8.50]

Here gy is the Lande factor in the absence of a nuclear magnetic moment [8.45]

and (see [5.120])

s',-— e, [8-51]
Mb

Since mn/mb = (m/Mp )
- 1/1836, g} is small and can be neglected

The second case arises when the magnetic interaction is larger than the

hyperfine interaction C(I • J). This is the Back-Goudsmit effect and the theory

can be developed in a similar way to that of the Paschen-Back effect. The

interaction C(I • J) is first omitted. In this case the atom is in an eigenstate of J ,

Jz and of I
2

, Iz which is (2J + 1) x (2/ + l)-fold degenerate in M3 and Af,.

The magnetic interaction causes a level shift

AE = (Afjgj
~ Af/g))MB®L [8-52]
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M7 M,

H.6 Behaviour of the hyperfine splitting as a function of ?/i z for / = 1/2, J = 1 (arbitrary scale). In

the weak field case to the left of the diagram the states are classified by F, I,J, Mh and in the strong

field case to the right by /, J, My and Af,, (see equations [8.49] and [8.53] respectively). To connect

the strong and weak field limits we must remember that MF - M, + My, always and levels with

the same MF or My never intersect each other. If the field strength increases even further, then the

spin-orbit coupling breaks down and the states are classified by L, S, /, Mr , Af, , Af v (this is the

extreme Paschen-Back effect).

Introducing now the hyperfine interaction C(I • J) as a perturbation, the

hyperfine interaction level shift becomes (with C = Ch 2
)

AE = (Mjgj - Mjg'j)^K + CM/M, L8-53J

As in the Zeeman effect, the energy of the hyperfine levels is a smooth

function of and a diagram of a particular case where J — 1 and I — 1/2 is

shown in Fig. 8.6.

8.6 THE QUADRATIC STARK EFFECT

In Chapter 5 we discussed the influence of a static electric field on the hydrogen

atom. Since the excited energy levels of hydrogen are degenerate in /, the

perturbation mixes states of opposite parity and produces level shifts linear in

the field strength. For other atoms, the linear effect vanishes and the level shifts

are quadratic in the field strength. The interaction energy between N electrons
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at positions (x, , y, , z,) and a uniform electric field of strength % directed parallel

to the Z axis is

N
H' = e 2 %z

i

;=i

= -%DZ [8.54]

where D is the electric dipole moment defined by [8.4] and Dz its component

along the Z axis.

The matrix elements of D with respect to atomic states of definite parity

vanishes, so that the first order level shift also vanishes

AE = -% (yLSJMj \

Dz \

yLSJMj) = 0 [8.55]

where y denotes the configuration, and we have assumed L-S coupling.

The second-order perturbation theory gives (see [2.319])

2 £' \{yLSJMj\Dz\y'L 'S’J'M'3)\

2

y'L'S'J'Mj EyLSJ ~ Ey'LSJ'
[8.56]

where the symbol S' means that the state
\

yLSJMj) is excluded from the sum.

The intermediate states
|

y'L'S'J'Mj) must have opposite parity from the state

|

yLSJMj). The matrix element of Dz is diagonal in Mj and also in S, so that

M'j = Mj and S' = S. The selection rules for the matrix element of a

component of the electric dipole operator require that J' - J ± 1 or J' - J.

The dependence of the matrix elements on Mj is then given by [8.11] (with

q
= 0). It is entirely contained in the Clebsh-Gordan coefficient (J \MjQ\JMj).

We have (see Table A4.1)

{J\MjQ\J + 1, Mj) = CJ + l )
2 -

(2J + 1KJ + 1 )

1/2

(JlMjO\J, Mj)
Mj 1/2

[7(7 + i).

[8.57]

(7lMjO\J -
1 ,
Mj) = - 7

2 -Mj
7(27 + i)

1/2

From these expressions, we see that AE is of the form

AE = %\A + BMj) [8.58]

where A and B depend on (y, L, S,7)- In contrast to the Zeeman effect, the

degeneracy in Mj is not completely removed, because levels with My
= ±\My \

have the same energy.

In the sum in [8.56], the most important contribution is from the nearest level

of opposite parity to the level y. For example, in sodium, the shift in the ground

state energy is very small because the nearest levels of opposite parity are the
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Perturbed

levels

M
j
= ± 3/2

Afj = ± 1/2

M
j
= ± 1/2

8.7 Schematic diagram of the splitting of the D lines of sodium due to an electric field (the Stark

effect).

2
2P 1/2 and 2

2P3/2 levels and the corresponding energy differences

EyISj
- Ey’L'sy are large. In fact the ground state energy is lowered and the

energy shift in cm-1
is 7.8 x 10

11 % 2 where % is given in kV/m. The energy

shifts of the 2
2
Pi/2 and 2

2P3/2 levels are about twice as large, since these are

perturbed both by the ground state and by the
2D levels which lie closer. The

two D lines are split into three by the field (see Fig. 8.7).

Apart from producing a level shift, the electric field has the effect of mixing

states of opposite parity. A perturbed
2
Py wave function, for example, now

contains a small admixture of the
2
T>y function. As a consequence, lines are

observed in the presence of an electric field that would normally be forbidden,

for example the series n
2
S —* n

' 2D and n
2
S —» n'

2
S.

8.7 X-RAY SPECTRA

The valence electrons in heavy neutral atoms move in an effective field, which at

large distances approaches the Coulomb field due to a unit charge (in units of e).

The binding energies of these electrons are always of the same order ofmagnitude

as the binding energy of atomic hydrogen - a few electron-volts. In contrast, the

electrons in the inner shells, K, L, M . . . with principal quantum numbers

n = 1 , 2, 3, ... ,
move in a potential field dominated by the charge of the

nucleus (Ze). The nuclear charge is screened to some extent by the other

electrons, and to a good approximation this can be represented by taking the

effective potential in which the inner electrons move as a Coulomb potential due

to a charge (Z - cr„)e, where a„ < Z. The energy levels in such a field are just
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those of a one-electron atom, and

En

1 (Z - O2

2 n
2

a.u. [8.59]

In contrast to the valence electrons, the binding energy of a K shell electron

increases smoothly with increasing Z. To a fair approximation, 04 = 2. Thus

for Fe with Z = 26, \E
X |

= 288 a.u. = 7.8 keV, for Cs with Z = 55

|£j| = 1404 a.u. = 38.2 keV and for Pb with Z = %2\E X \= 3200 a.u. =

87 keV. Similarly for the L shell, n = 2, an approximation for cr 2 is a 2 = 9.4,

and, for example, the binding energy of a L shell electron for Pb is 17.9 keV.

By bombarding a substance with fast electrons, some atoms become ionised

through the ejection of an inner shell electron. Suppose a vacancy is created in

the K shell in this way. Subsequently an electron from a higher shell,

L, M, . . . ,
will make a radiative transition filling the vacancy. The energy of

the photon emitted will be in the range from a few keV to a few hundred keV,

and so lies in the X-ray region [2] which may be taken to be in the range of

wavelengths from 0.1 to 10 A (see Fig. 1.9). The emission spectrum which

results is a line spectrum, forming a simple series. The lines originating from a

K shell vacancy are called the K„, K^, K y . . . lines and correspond to the

L^K, M -> K, N—>K... transitions. The K„ line is the strongest. The

early experiments of Moseley in 1913 and 1914 established that the square root

of the frequency of the Ka line is a linear function of atomic number (see

Fig. 1.20). Historically this was of considerable importance because it was

consistent with the energy formula [8.59], which had been predicted by Bohr s

model of a one-electron system, published in 1913. A similar series of lines,

labelled Lo; Lp in order of increasing frequency, arises from transitions which

fill a vacancy in the L shell.

The spin-orbit interaction splits the energy levels of the shells (other than the

K shell). In the L shell, the electrons with/ = 0 have the greatest binding energy,

those with / = 1, j = 1/2 come next, and then those with / = 1 and j =3/2.

The three levels are labelled ,
Ljj and Lm respectively . The energy splitting

between the sublevels is large, because spin-orbit coupling is proportional to

(Z - (j2)
4
(see [5.26]) and the doublet Kttl and Ka2 ,

which corresponds to the

transitions Lm —

*

K and Ln —

*

K. can be resolved. For example the

wavelengths of the Ka j
and Ka2 lines in

“6Fe are 1.9360 A and 1.9321 A

respectively. A typical X-ray term diagram (including the K, L and M shells) is

shown in Fig. 8.8.

X-rays can be absorbed by ionising atoms through the photoelectric effect (see

Chapter 4). The cross-section for this process decreases smoothly with increas-

ing frequency, until sufficient energy is reached to ionise an electron from the

Lm shell. At this point, the cross-section increases sharply. Similar ‘absorption

edges’ occur as successively sufficient energy is available to ionise electrons from

the Ln , U and finally the K shell. This is illustrated in Fig. 8.9 for absorption

in lead.

[2 J
The wavelength A, expressed in A, is given by A - \2A/E, where the energy E is in keV.
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Problems

PROBLEMS

8.1 Write down the selection rules for: (a) electric multipole transitions of

order A = 1, 2, 3 and 4; (b) magnetic multipole transitions of order

A = 1, 2, 3 and 4.

8.2 Using Table 8. 1 calculate the energies of the ten lowest levels of Li, Na, K
and Cs, expressing the results both in eV and in cm-1

. Find the

frequencies of the resonance line in each case and compare the answer with

the experimental values given in Table 8.2.

8.3 Use expression [3.73] together with [8.29] to estimate the energy splitting

of the 2
3
Py(ls2p), 3

3
Py(ls3p) and 3

3Dy(ls3d) levels of Hel, CV, and Na X
by the spin-orbit interactions, expressing the answer in cm-1

. Using the

selection rules discuss the splitting of the spectral lines in the transitions

from the 2
3P^ levels to the lowest triplet state and from the 3

3Dj levels to

the 2
3Pj levels.

(Hint: The effective charge to be used in [3.73] is equal to the Roman
numeral in the designation of the ions.)

8.4 Measurements made on the line spectrum of the neutral carbon atom show

that a certain excited term consists of three fine structure levels having

energies above the ground state given (in cm” 1

) by 60333, 60353 and

60393.

(a) With the help of the Lande interval rule, identify the values of L, S
and J for these fine structure levels.

(b) The ground state term of carbon, ls
2
2s

2
2p

2 3P is split into three fine

structure levels, withJ = 0, 1, 2 (see Fig. 7.8). The levels withJ = 1

and J = 2 are 16 and 43 cm” 1

,
respectively, above the level J = 0.

Discuss the multiplet structure of the lines arising from dipole

transitions between the excited term considered in (a) (which has

opposite parity to the ground state) and the ground state term. Write

down the corresponding wavelengths.

8.5 (a) Find how many separate lines occur in the multiplet arising from the
2P3/ 2

—* 2
Si /2 and 2

Pi /2
—* 2

S a / 2
transitions of an alkali placed in a

weak magnetic field.

(b) Find the relative intensities of the lines in transverse observation.



Molecular structure

Bound systems of electrons and more than one nucleus are known as molecules.

In this chapter, we shall discuss the structure of molecules, concentrating on the

simplest diatomic systems which contain just two nuclei. We shall start by dis-

cussing the general nature of molecular structure, showing how the rota-

tional, vibrational and electronic motions can be treated independently . Following

an analysis of the rotational and vibrational motions, we shall discuss the

electronic structure of diatomic molecules, showing how chemical bonding (or

binding) comes about. Finally, we shall indicate how the more complicated

polyatomic molecules can be treated.

9.1 GENERAL NATURE OF MOLECULAR STRUCTURE

The description of molecular structure is considerably more complicated than

that of isolated atoms, but fortunately the problem is greatly simplified because

the mass of the electrons is much smaller than that of the nuclei, while the forces to

which the electrons and the nuclei are submitted are of comparable intensity. As

a result, the motion of the nuclei is much slower than that of the electrons, and

the nuclei occupy nearly fixed positions within the molecule. This can be shown

quite directly by observing the diffraction pattern in neutron scattering by

molecules. The neutrons, having no charge, do not interact with the electrons,

but interact strongly, through the nuclear force, with each of the nuclei within

the molecule. For example, in the simplest neutral diatomic molecule H : ,

formed by the association of two hydrogen atoms, the equilibrium spacing of the

two protons is 0.74 A, while in the molecule 02 formed from two oxygen atoms,

the internuclear spacing is 1.21 A. In the methane molecule CH 4 ,
composed of

a single carbon atom and four hydrogen atoms, the carbon nucleus lies at the

centre of a regular tetrahedron, with the protons at the vertices (see Fig. 9.1).

Evidence from X-ray diffraction and molecular spectra shows that when

atoms associate to form molecules, the tightly bound inner shells of electrons arc

nearly undisturbed, and remain localised about each nucleus. The outer

electrons, on the other hand, are distributed throughout the molecule, and it is

the charge distribution of these valence electrons that provides the binding

force. The order of magnitude of the separation of energy levels for the
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1

9.1 The methane molecule CH4 . The carbon nucleus lies at the centre of a regular tetrahedron

inscribed in a cube with the protons at alternate vertices. The distance between the carbon nucleus

and a proton (the bond length) is 2.067 a.u. (1.094 A).

electronic motion of the valence electrons can be estimated by using the

following argument. Let a be a typical average distance of the nuclei in a

molecule. From the uncertainty principle, the magnitude of the momentum of

the valence electrons is of the order of h/a, so that a rough estimate of their

kinetic energy - and hence of the magnitude Ee of the electronic energies - is

given by

h
2

ma 2 [9.1]

where m is the mass of the electron. Since a — 1 A we see that Ee is of the order

of a few eV, which is similar to the binding energy of the outer electrons in

isolated atoms. The result [9.1] clearly gives also an estimate of the energy

separation between low-lying electronic energy levels of the molecule. The
corresponding line spectra are observed in the ultra-violet and visible regions.

Let us now consider the nuclear motions. These can be classified into

translations and rotations of the entire (quasi-rigid) equilibrium arrangement, and

internal vibrations of the nuclei about their equilibrium position. The trans-

lational motion can be separated by introducing the centre of mass, which

moves as a free particle in the absence of external fields. In what follows we shall

assume that the separation of the centre of mass has been performed, and we
shall only consider the vibrational and rotational motions of the nuclei. To
estimate the vibrational energy, we can use the following classical argument. If

the electrons are bound to the molecule by a force of magnitude F, the nuclei

must be bound by an equal and opposite force. Taking this force to be simple

harmonic, with a force constant k, the angular frequency of the electronic

motion will be coe = (k/tri)
l/z and that of the vibrational nuclear motion will be

= (k/M) 1 ' 2
,
where M is of the order of a typical nuclear mass. The ratio of

the energy of the vibrational motion to that of the electronic motion is thus

h(i}^/ha)e — (m/M) 1/

2

and the energy Ev associated with a low mode of
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vibration is given approximately by

Gttural naturt of mohcular itrumk

m 1/2

[9 .2]

The ratio m/M being in the range 10
3
to 10

5
,
we see from [9.2] that Ev il

roughly a hundred times smaller than Ee , so that typical vibrational transitions

lie in the infra-red (see Fig. 9.2). For example, the natural vibrational wave

number of the molecule HC1 is at approximately 3000 cm' 1

. The vibrational

motion of the nuclei also produces a ‘first-order’ splitting of the electronic lines.

To estimate the rotational energy Er ,
we consider the simple case of a

diatomic molecule, with each of the two nuclei having the same mass M and

being a distance a apart, as shown in Fig. 9.3. The moment of inertia of the

molecule is then I = Ma2
/2. Using the result [2.193] which we obtained in

Chapter 2 for the rigid rotator, we see that the order of magnitude of the energy

associated with a fairly low mode of rotation is

h
2 m_

E
Ma 2 M e [9.3]

where we have used [9.1]. Thus the rotational molecular energies are smaller

than electronic energies by a factor of the order of m/M, and smaller than

v = 2

3
- 4

3

- 2
- 1

0

t Transitions between different rotational levels

belonging to the same electronic and vibrational

level lie in the far infra-red and the microwave

regions (frequencies 1 to 10*’ cm 1

)

v = 1

v = 0

Transitions between different vibrational levels

corresponding to the same electronic level are

in the infra-red (frequencies 10
3
to 10

4 cm ')

I

4

3

2= 4

9.2 Schematic diagram of the energy levels of a diatomic molecule belonging to the same electronic

level. The vibrational levels are labelled by the quantum number v and the rotational levela by the

quantum number J

.
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9.3 Rotation of a diatomic molecule composed of two nuclei A and B, each of the same mass M, a

distance a apart. The rotation is of angular frequency w about an axis OZ through the centre ofmass.

The classical energy of rotation is E =
-JIui

2
, where the moment of inertia I is given by / = \Ma l

.

vibrational energies by a factor of the order of (m/M) 1 '2
. The rotational motion

leads to a ‘second-order’ splitting of the line spectrum, the spacing being of the

order of 0.001 eV, which is very small compared with the ‘first-order’ splitting

of ~0. 1 eV produced by the vibrational motion. Transitions between rotational

levels, belonging to the same electronic and vibrational level, are observed in the

far infra-red and the microwave regions at wave numbers of 1 to 10
2 cm-1

.

Because of the small ratio of the electronic mass to the nuclear mass

(m/M = 10
3-10 5

), and since the period of a motion is of the order of h

divided by its energy, we see from [9. 1 j—[9.3J that the nuclear periods are much
longer than the electronic periods. Thus the electronic and nuclear motions can

essentially be treated independently, and it is a good approximation to

determine the electronic states at each value of the internuclear separation by

treating the nuclei as fixed. The charge distribution of the electrons is then a

function of the nuclear positions and determines the nuclear motion. In the next

paragraphs we shall use these qualitative ideas to develop a mathematical

formalism for diatomic molecules.

9.2 THE BORN-OPPENHEIMER SEPARATION
FOR DIATOMIC MOLECULES

To see how the ideas of the previous paragraph translate into the language of

quantum mechanics, we shall consider a diatomic molecule composed of nuclei

A and B, of masses MA and MB , together with a number N of electrons. The
internuclear coordinate will be denoted by R and the position vectors of the

electrons with respect to O, the centre of mass ofA and B, by rj , r2 , . . . rN (see

Fig. 9.4). We shall also write the position vectors of A and B with respect to O
as Ra and RB , respectively, so that R = RB — RA • The time-independent

Schrodinger equation for the system (neglecting spin interactions) is

[7n + Te + F]<KR; r,, r2 , . . . rN) = £<KR; r l5 r2 , . . . rN) [9.4]
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9.4 Coordinate system for a diatomic molecule. The nuclei are at A and B. with position vectors Ra ,

Rb with respect to O the centre of mass. The position vectors of the electrons with respect to O are

denoted by r l5 r2 , r3 . . . .

where TN is the kinetic energy operator for the nuclei, Tc is the kinetic energy

operator for the electrons and V is the total potential energy of the system.

Explicitly TN and Te are given respectively by [1]

Tn = [9 . 5 ]

2fx

and

where

[
9 .6]

19.7]

is the reduced mass of A and B.

The potential energy V consists of the sum of the Coulomb interactions

between all pairs of particles, i.e. of the electrostatic interactions between the

electrons and the nuclei, between the electrons themselves, and between the two

nuclei. Denoting respectively by ZAe and ZBe the charges of the nuclei A and B,

we therefore have

V(R; ri, r 2 ,
. .

N
tn) — ~ 2

Za£
2 ZBc

2

(4 tteq) |r, - Ra |
,=i (47teq) |r,

+ y e
'

+
ZaZb£2

+
.-^l^Treo)

l

r
t
- r

>l
(47re0 ) R

0i>j)

L9.8J

[ 1] In obtaining the equation [9.4], we have assumed that the mass m of an electron can be neglected

compared with the reduced mass n of the two nuclei A and B, so that O (the centre of mail of A

and B) can be treated as being a fixed centre so far as the electrons are concerned.
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The time-independent Schrodinger equation for the electrons moving in the

field of nuclei fixed at the positions RA and Rb is

(Te + U)d>
?
(R; n, r2 , . . . rN)

= £,(R)d>,(R; r„ r2 , . . . rN) [9.9]

This is known as the electronic wave equation. The eigenvalues E
q{
R) and the

wave functions d>
tf

for each electronic state q depend parametrically on the

internuclear coordinate R, which is held fixed during the calculation. The wave

functions d>
?
form a complete set at each value of R and can be taken to be

orthonormal, i.e.

dri dr2 '
•

‘ dr^d^CR; r l5 r2 , . . . r^)d)p(R; ri, r2 , . . . tN ) 8qp [9.10]

Since the set of wave functions d>
?
is complete, the exact wave function for the

molecule, ip, can be expanded as

«A(R; rl3 r2 , . . . tN ) = 2 F&WJZi ri, r2 , . . . tN) [9.11]

The expansion coefficients F
q
(K) are wave functions representing the nuclear

motion when the electronic system is in the state q. Equations for F
g
(R) are

found by inserting ip into the Schrodinger equation [9.4] and projecting the

equation with the functions d>
s
(s = 1, 2, . . .). That is,

2 dri dr2
•

•
• drN d>*[TN + Tc + V - E]F

?
(R)d>

?
= 0,

s 1 , 2 , . . . [9.12]

Using the equation [9.9] satisfied by the functions d>
?
and the orthonormality

property [9.10], the coupled equations for F
?
(R) reduce to the form

drj dr2 • dr,vdJfTNd)
(/
F,

7
(R) + [Es (R) - E]F

S (R) = 0

s=l,2,... [9.13]

Since both d>
?
and Fq depend on R, the action of the operator TN on the product

d\F
q
gives

TN(d>
?
E

?)
= [F

q
(V|d>,) + 2(yRFq

v«d»
? ) + %(V2

RFq )] [9.14]

The Bom-Oppenheimer approximation consists of neglecting |TRd>
? |

with

respect to |VRF? ]

for values of R near the equilibrium value R0 . In this case the

equations [9.13] uncouple and E
S
(R) satisfies the nuclear wave equation

h
2

.~—V2
r + Es (R) - E

Z/Ji

Fs(R) = 0 * = 1 , 2 , • • • [9.15]
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The accuracy of this approximation can be checked in any particular case) once

the functions <t>„ are known. The omitted terms are not important for many f§

molecular structure problems, but they are responsible for inelastic transitions

between electronic states (s —

*

s') occurring in atom—atom collisions , which will

be studied in Chapter 13.

9.3 THE ROTATION AND VIBRATION OF DIATOMIC MOLECULES

The above equation [9.15] is of the form of a Schrodinger equation for a

particle of mass )x , in a potential well Es (R). If the electrons are in states of

zero total orbital angular momentum Es (R) is a function of the radial variable

R only, and throughout this section we shall assume that this is the case. As in

the case of the hydrogen atom, studied in Chapter 3, the wave function F,(R)

is the product of a radial function depending on the radial variable R, and an

angular function which depends on the polar angles © and (1> of the vector R.

This angular function must be an eigenfunction of J
2 and Jz , where J is the

orbital angular momentum operator of the molecule and Z is the direction of

quantisation. The simultaneous eigenfunctions of J
2 and Jz are the spherical

harmonics d>), with eigenvalues J(J + 1 )h
2 and Mjh, respectively.

For the particular case in which the electrons have zero total orbital angular

momentum the energy of the system cannot depend on the value of Mj, so

that each level is (2J + l)-fold degenerate. However, the energy does depend

on the rotational quantum number J, and also on an additional quantum

number v, which plays the role of the radial (or principal) quantum number,

and will be shown shortly to be associated with the vibrational motion of the

nuclei. For a given electronic state, the states labelled by the rotational

quantum number J and the vibrational quantum number v are called rovi-

bronic states. Thus, for a given value of the electronic quantum number s, we

write

F/R) = R- 1^j(R)YJM}(Q, 4>) [9.16]

Substituting [9.16] into [9.15], we find that the functions R) satisfy the

radial equation

2m dF 2

J(J + D
N

R 2
+ ES(R) - EStVj ®lj(R) = 0 [9.17]

The general form ofE
S
(R) for a bound state is shown in Fig. 9.5. As R —» 0,

ES(R) is dominated by the Coulomb repulsion between the nuclei A and B,

while as R —> =», EJ.R) tends to a constant energy FjC00
) which is the sum of the

energies of the two isolated atoms from which the molecule is composed. If

there is a stable bound state, ES
(R) will exhibit a minimum at some distance R0

For a given ‘potential’ ES(R) there is no difficulty in solving [9.17] numerically,

but since the nuclear motion is generally confined to a small region ofR close to

R0 it is often convenient to expand E£R) about R0 in order to obtain an analytic
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9.5 The general form of the electronic energy ES(R) for a bound state of a diatomic molecule.

approximation to the function 2F
s

vj(R ). That is,

ES
(R) = ES

(R0) + (R - R0)

dEs

R=K„
+

1
,,

*J (R Ro) w +
R=R„

[9.18]

Since E
S
(R) has a minimum at R = R0 , the second term on the right of [9.18]

vanishes. Neglecting terms of third and higher order in (R - R 0), we may
represent the potential well E

S
(R) approximately by the parabolic approxima-

tion

E
S
(R) - £

S
(R0) + iKR - R0)

2
[9.19]

where

k =
d
2ES

dR 2
R=R0

[9.20]

At the same time, we can approximate the rotational energy Er by evaluating it

at the equilibrium distance R0 - That is

Er
=

2/xRq

-A
2

'
2/0

= BJ{J + 1)

KJ + 1 )

KJ + 1 )

J = o, 1, 2, . . .

[9.21]
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where /0 = /xRq is the moment of inertia for the reduced mass /x and the

equilibrium distance R0 , and B = h
2
/2I0 is called the rotational constant of thf

molecule.

Using [9. 17]—[9.21] we see that the total energy E s>v>j is the sum of the

electronic energy Es(Ro)> the rotational energy Er and a vibrational energy Evt

Es ,vj - Ew = Es(Ro) + Ev + E r [9 . 22]

where Ev is an eigenvalue of the equation

2/i dR
~ + \k(R Ro)

2 ~ Ev 'Pv
= 0 [9.23]

corresponding to simple harmonic motion, with a force constant k. From

Section 2.4 the eigenvalues Ev are given by

Ev = hco0(v + i) = hv0(v + i), v = 0 , 1 , 2, . . . [9 .24]

with w0 = (k/fi)'
/2 and v0 = id0/2tt. The corresponding eigenfunctions (//„ are

the harmonic oscillator wave functions which we studied in Section 2.4.

In real systems, the function ES
(R) is only represented accurately by the

parabolic approximation [9.19] for small values of (R — Ro), so that the

vibrational energy Ev is only well represented by [9.24] for small values of

the vibrational quantum number v. In general, for large values of v, the levels

tend to become more closely spaced, as shown in Fig. 9.6. When the energy

exceeds the depth of the well, the molecule dissociates, so that there are only a

finite number of vibrational levels associated with each electronic level.

A better representation of the potential well ES
(R) than the parabolic

approximation [9.19] is given by ES (R) = E$ {*>) + V(R), V(R) being an

empirical potential due to P. M. Morse, which has the form

V(R) = De[e~
2a(R ~ Ro) ~ 2e

alK Ro)
] 19.25.)

where R 0 ,
De and a are constants for a given molecule. Table 9.1 gives the

values of R0 , De and a for a few molecules. We see from [9.25] that the Morse

potential is attractive at large distances and has a minimum equal to -l)c at the

equilibrium distance R0 ,
so that we must have

De = E,{oo) - E,(R 0 ) [9.26]

At short distances, where the nuclei come close together, the potential [9.25]

exhibits a strong repulsion. The constant a appearing in the Morse potential can

be related to the ‘force constant’ k introduced above (see [9. 19J—[9.20J) by

expanding V(R) in powers of (R - Rq). That is

V(R) = £>e[-l + a2(R - R0)
2 + •«•] [9.27]

so that, by comparing with [9.19] and using [9.26], we have

Dea
2 = jk [9.28]
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9.6 Vibrational energy levels of a diatomic molecule. The dashed line shows the parabolic

approximation to the potential well, which is accurate in the region close to R0 ,
the equilibrium

separation.

The lower energy levels in the potential D e + V(R'), where V(R') is the Morse

potential [9.25] are given quite accurately by the expression,

Ev = hco0 [(v + i) - P(v + i)
2
] [9.29]

where (3 is a small number (/3 < 1). The quantity /3w0 is known as the

anharmonicity constant and is found to be given by

It is interesting to note that because of the zero-point energy (

v

= 0) of

~h(iy0/2, the dissociation energy of the molecule in the electronic state s is not

exactly E,(*0 - ES(R0), but is given by Es(
x

)
- Es(Rq) - hw0/2 (see Fig. 9.6).

Table 9.1 Values of the constants R0 , De and a for a few typical molecules

Molecule «o(A) Dc(eV) aR0

H, 0.742 4.75 1.44

h 2.66 1.56 4.95

HC1 1.27 4.62 2.38
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The rotation and vibration of diatomic moUartib

In terms of Dc and w0 , the dissociation energy is therefore given by

A) = De
- ho)q/2 [9 .31]

In Table 9.2 we list the equilibrium distance R0 , the dissociation energy Dot

the fundamental vibrational frequency i>0 = (Oq/2tt and the fundamental rota-

tional constant h
2
/(2/j.Ro) for a few typical diatomic molecules.

Centrifugal distortion

So far we have approximated the rotational energy E r by the simple ‘rigid

rotator’ expression [9.21] evaluated at the equilibrium distance R0 , so that there

is no coupling between the rotational and vibrational motions. In a more

accurate treatment, we should solve the radial equation [9.17] directly. Adopt-

ing the Morse potential [9.23] for ES(R )
- Es(»), this equation reads

2M dR 2
+ Feff (R) E”v’3

= 0

where E
StVyJ = EStVj - Es (°°) and the effective interaction

A
2
7(7 + 1)

VeS(R) = V(R) + r2
'

, J = 0, 1 , 2 , . .

[9.32]

[9.33]

is the sum of the Morse potential [9.25] and the centrifugal distortion term

A
2

7(7 + 1 )/(2/j.R
2
). It is clear that if we set R = R0 in this centrifugal term we

retrieve our earlier results. We also remark that for values ofJ which are not too

large, the shape of Veg(R) is similar to that of V(R). If we are interested in the

lower energy levels we may expand Teff (/?) about its minimum V
( ,
at R = R\.

Keeping terms up to order (R - Rif, we have

TeffCR) = To + WR - Ri)
2 + Cl(R - Rif + C2(R - Rif [9.34]

Table 9.2 The equilibrium distance R 0 ,
dissociation energy D0 = Dc - fuo 0 /2, fundamental

vibrational frequency v0 = fundamental rotational constants = ti
2
/2fxRl, = A

2
/2/» and

magnitude \D\ of the electric dipole moment for some diatomic molecules

Molecule *o(A) Do(eV) »'o(cm ‘)f B (cm' ')+ 10
JO

|D| (Cm)

H7 1.06 2.65 2297 29.8

Hr 0.742 4.48 4395 60.8 —
O, 1.21 5.08 1580 1.45 —
Cl 2

1.99 2.48 565 0.244 —
Nr 1.09 9.75 2360 2.01 —
CO 1.13 9.60 2170 1.93 0.40

NO 1.15 5.3 1904 1.70 0.50

I.iH 1.60 2.5 1406 7.51 19.4

HC1 1.28 4.43 2990 10.6 3.53

NaCl 2.36 4.22 365 0.190 28.1-

f Note that for both quantities P0 and B the values have been converted in unit* of cm” 1

;

i'o = v„/c\ B = B/hc.
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where the new force constant k and the coefficients c
\
and C2 can be expressed in

terms of the rotational quantum numberJ and of the constants De , a and R0 of

the Morse potential [9.25].

It is important to notice that the value R\ for which Ven(R) has its minimum

only coincides with R0 if J = 0. A simple approximation for R }
may be

obtained by setting Ci = C2 = 0 and k = k in [9.34], and solving the equation

dVef[(R')/dR = 0 by iteration. Using [9.28], we then have (Problem 9.4)

o +
*1MLLHR'- Ro+
2m a^oDt

[9.35]

which shows that the molecule ‘stretches’ because of the rotational motion.

Returning to the effective potential [9.34] and treating the C\ and C2 terms as

perturbations it may be shown that the energy eigenvalues of [9.32] are given to

second order in (v + 1/2) and JO + 1) by

—£)e + hcj0 v + P\ v + J 2/j.Ro
JO + 1)

- a(v + i)JO + 1) - 0 20 + l)
2 [9.36]

where

3fe
3
^o / 1 \

a
4fiaRlDcX aR0 )

h
A

b ~
4fx

2a2RoDe

[9.37]

and we recall that De — Es(
x

)
~ E

S
(R o)- f^he first three terms on the right of

[9.36] are identical to those discussed above in the absence of centrifugal

distortion; they are respectively the potential depth (— Z3e), the harmonic and

anharmonic vibration terms, and the rigid rotator energy. The two additional

terms are respectively a rotation-vibration coupling term (which is negative

because for higher values of v the average internuclear distance is larger than R 0

due to the anharmonicity) and a correction to the rigid rotator energy [9.21], which

is also negative since larger values ofJ lead to an increase in the average distance

between the nuclei, as seen from [9.35].

9.4 ELECTRONIC STRUCTURE OF DIATOMIC MOLECULES

In this section we shall discuss the electronic wave functions of the simplest

diatomic molecules. Our discussion will be based on the electronic wave

equation [9.9], where we recall that all but the Coulomb interactions are

neglected in the electronic Hamiltonian H = Te + V. As a preliminary, we

first consider some important symmetry properties possessed by diatomic

molecules.
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Symmetry properties

Let us return to the Hamiltonian [7.2] which approximately describes

jV-electron atom by taking into account all the Coulomb interactions, but

neglecting spin-orbit and other corrections such as spin-spin and hyperfine

structure effects. The three components of the total electronic orbital angular

momentum L commute with the Hamiltonian [7.2] and so does L2
. Taking the

Z axis in an arbitrary direction, the atomic eigenfunctions of [7.2] can be

constructed to be simultaneous eigenfunctions ofH, L2 and Lz . Thus, both the

total electronic orbital quantum number L and the quantum number Mt are

conserved when the atom is described by the (approximate) Hamiltonian [7.2].

As we have seen in Chapter 7, the fact that L is (approximately) a 'good

quantum number’ plays a central role in the classification of atomic energy levels

(or terms).

In contrast, the internuclear axis of a diatomic molecule picks out a particular

direction in space. If this direction is taken as the Z axis, then Lc commutes with

the electronic molecular Hamiltonian H — Tc + V of equation [9.9] (in which

spin-dependent interactions have been neglected), but Lx , Ly and L2 do not.

This is due to the fact that the electronic Hamiltonian H = Tc + V of a

diatomic molecule is invariant under rotations about the internuclear line (the Z
axis), but not under rotations about theX or Y axes. The same result can also be

obtained by examining the commutators [H , Lx], [H , Ly ] and [H, L,j directly

(Problem 9.5).

The electronic eigenfunctions <I>S of a diatomic molecule can thus be

constructed to be simultaneous eigenfunctions of H and Lz . That is,

where

L& = MLh<Ps , Ml = 0, ±1, ±2, ...

= ±Ah<t>
s , A = 0, 1, 2, . . .

A = \Ml \

[9.38]

[9.39]

is the absolute value (in a.u.) of the projection of the total electronic angular

momentum on the internuclear axis. The azimuthal part of the wave functions

<h
s

is therefore of the form (2tt)
_ 1/2

exp(±iA</>). By analogy with the spectro-

scopic notation S, P, D, F, ... used for atoms, it is customary to associate code

letters with the values of A according to the correspondence:

Value of A 0 1 2 3till
Code letter 1 II A d> , . . .

If we are dealing with individual electrons, we shall use the notation A = |mj

and the correspondence:

Value of A 0 1 2 3

t l l l

Code letter cr 77 S <t> >
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The electronic Hamiltonian for a diatomic molecule is also invariant under

reflections in all planes containing the internuclear line. The (XZ) plane is such

a plane, and reflection of the coordinates of the electrons in this plane

corresponds to the operation y, —y
{

. IfAv is the operator that performs this

reflection, then

[Ay, H] = 0 [9.40]

In addition, since Lz = —ih{xd/dy — yd/dx), we have

AyLz
= -LzAy [9.41]

It follows immediately that if A ^ 0 the action of the operator Av on a wave

function corresponding to the eigenvalue Ah of Lz converts this wave function

into another one corresponding to the eigenvalue —Ah, and that both eigenfunc-

tions have the same energy. The electronic terms such that A ^ 0 (that is, the

n, A, <E>, . . . terms) are thus doubly degenerate, each value of the energy

corresponding to two states which differ by the direction of the projection of the

orbital angular momentum along the molecular axis. In fact, this twofold

degeneracy is only approximate and it is possible to show that the interaction

between the electronic and rotational motions leads to a splitting of the terms

with A f 0 into two nearby levels, which is called A-doubling.

Let us now return to the relations [9.40]—[9.41] and consider the case A = 0

corresponding to the X states. These states are non-degenerate, so that the wave

function of a X term can only be multiplied by a constant in a reflection through

a plane containing the molecular axis. We also note that when A = 0 simul-

taneous eigenfunctions of //, Lz and A v can be constructed. Since A* = 1 the

eigenfunctions of A v have eigenvalues ±1. To completely specify X states of

diatomic molecules, one therefore distinguishes X +
states, for which the wave

function is left unchanged upon reflection in a plane containing the nuclei, from

X
-

states, for which it changes sign in performing that operation.

In the special case of a homonuclear diatomic molecule, namely a diatomic

molecule containing identical nuclei (such as H 2 , N 2 , 02 , . . .) there is an extra

symmetry since in addition to the axis of symmetry provided by the internuclear

axis, there is a centre ofsymmetry at the midpoint of the distance between the two

nuclei [2]. Choosing this point as the origin of the coordinates, the Hamiltonian

is invariant under an inversion of the coordinates of all electrons with respect to

that origin, namely in the operation r, —* — r,
. Since the operator which effects

this transformation also commutes with Lz , we may then classify electronic

terms having a given value of A according to their parity. The electronic wave

functions therefore split into two sets: those that are even, i.e. remain unaltered

by the operation r, —

*

— r,, and those that are odd, i.e. change sign in that

[2] The symmetry discussed in this paragraph only depends on the two nuclear charges being the

same. The two nuclei can therefore have different mass, that is they can be two isotopes of the

same species such as the proton and the deuteron, or 160 and lsO, and so on.
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operation. The former are denoted by a subscript g and are called gtradc ttattti

while the latter are denoted by a subscript u and are called ungeradt state*. The
subscripts g or u are added to the term symbol, so that for homonuclear

diatomic molecules we have 2g , 2U > ng ,
nu , . . . states. We note that a

homonuclear diatomic molecule has four non-degenerate X states: 2g , Xu , X, ,

a-
The two transformations we have considered (y,

—> —y, and r, —* — r,) are

carried out keeping the internuclear coordinate R fixed. We now turn to the

question of the behaviour of the electronic wave function of a homonuclear

diatomic molecule if the two identical nuclei are interchanged, so that R —* —R
and

d>
s
(R; r 1? r2 , . . . rN)

-> d>
s
(-R; r„ r2 , . . . tN) [9.42]

This operation can be achieved by first rotating the molecule as a whole through

180° about the Y axis, followed by a reflection in the (XZ) plane (y,
—* —y,) and

then the inversion r, —> — r, about the centre of symmetry. The first rotation

cannot alter the electronic part of the wave function because this is only a

function of the relative position of the electrons and the nuclei. The net effect of

the two reflections is to change the sign of the wave function for the

levels and to leave the sign of the lg and 5U wave functions unaltered.

Spin

Let us denote by S the resultant of the individual electron spins, and as usual

5(5 + \)h
2
are the eigenvalues of S 2

. As in the case of atoms, each electronic

term of the molecule is also characterised by the value of 5. Provided fine

structure effects (spin-orbit coupling) are neglected, there is a degeneracy of

order 25 4- 1 associated with 5. Just as for atoms, the quantity 25 d 1 is called

the multiplicity of the term and.is written as a (left) superscript, so that the term

symbol is written
22> + 1

A, with the code letters for A = 0, 1, 2, . . . discussed

above. For example, the symbol 3A denotes a term such that A - 2 and 5 1

.

It is worth noting that the ground state (often labelled by the symbol X) ol

most diatomic molecules is such that 5 = 0 and exhibits maximum symmetry.

Thus, in most cases it is a *2" state (written as X*2') for a heteronuclear

molecule and a state (written as X‘2g ) for a homonuclear molecule
[ 3 ).

So far we have not taken into account the spin of the nuclei. Hyperfine

structure interactions due to the coupling between the nuclear spins and the

orbital motion and spin of the electrons have very little effect on the molecular

energies. However, symmetry effects related to the spin of the nuclei have an

important influence on the structure of homonuclear molecules, as wc shall see

in detail in Section 10.5.

[ 3] Exceptions occur for the molecules 0 2 and NO, for which the ground states X 3I, and X'll,

respectively.
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Intersection of potential curves and the von Neumann-Wigner
non-crossing rule

The electronic terms or potential curves ES(R) of a diatomic molecule depend
only on the internuclear distance R, and it is important to investigate the
behaviour of these potential curves as R varies. We shall analyse below a few
low-lying potential curves of simple molecular systems such as and H 2 .

Before we do this, however, we shall consider the important question of the
intersection of two potential curves.

Let us denote by E 2(R) and E2(R) two different electronic potential curves,
and suppose that at the internuclear distance Rc the values E 2(RC) and E2(R C)

are close, but distinct (see Fig. 9.7). The energies E'f = E X(RC) and Ef> =
E2(Rc) are eigenvalues of the HamiltonianH0 = H(R C) describing the motion of
the electrons in the field of the two nuclei located a distance Rc apart. The
corresponding orthonormal electronic eigenfunctions will be denoted by
and <1>

2

° ; and are assumed to be real.

Let us see if the two potential curves E
y
(R) and E2(R) can be made to

intersect by modifying the internuclear distance from Rc to R c + AR. The
Hamiltonian now becomes H = H(RC + AR) = H0+ //', where H' =
ARdH0/dR c is a small perturbation. Setting

=

(T>;
0;
|//'|d>

i;0)

), i,j= 1,2, and
referring to the equation [2.329] we deduce that in order for e[(R) and E 2 (R) to

be equal at the point R = R c + AR we must require that the two equations

£ (

,

0) - Ef + H’u -H’22 = 0 [9.43a]

H'n = 0 [9.43b]

are simultaneously satisfied. Remembering that we only have one parameter
(AR) at our disposal, we must distinguish two cases:

L The matrix element H\ 2 vanishes identically. It is then possible for the

9.7 The non-crossing role of von Neumann and Wigner. Two potential curves E
t
(R) and E2(R)

cannot cross if the states 1 and 2 have the same symmetry.
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crossing to occur if, for a certain value of AR (i.e. ofR ) the equation [9.43a]

is satisfied. Remembering that the operator H' (or H) commutes with tha

symmetry operators of the molecule, we see that this case will happen if tha

two functions ' and have different symmetries (for example if they

correspond to two electronic terms having different values of A, different

parities g and u, different multiplicities, or to terms 2 +
and X).

2. If and <J>
2

0) have the same symmetry , then H[ 2 will in general be non-zero.

Except for accidental crossing which would occur if, by coincidence, the two

equations [9.43] were satisfied at the same value of R, it is in general

impossible to find a single value of AR (i.e. of R) for which the two

conditions are satisfied simultaneously. Thus we conclude that in general two

electronic curves belonging to the same symmetry species cannot cross. This result

is known as the non-crossing rule of von Neumann and Wigner and is

illustrated in Fig. 9.7 [4].

The hydrogen molecular ion

The simplest of all molecules is the hydrogen molecular ion, H 2 , which is

composed of two protons and one electron. The Schrodinger equation for the

electronic motion is in this case

*2 „2 „2 2

V2

2m r
+

(4t7-£o>a (47re0>B (47re 0)/?

- E, <P, = 0 [9.44]

where R is the internuclear separation, and rA , rB and r are the position vectors

of the electron with respect to the protons A and B, and to the midpoint of the

internuclear line, respectively (see Fig. 9.8). The vectors rA , rB and r are not

independent since rA = r + R/2 and rB = r - R/2.

e

9.8 A coordinate system for the hydrogen molecular ion H 2 .

From this point, it is convenient to work in atomic units (sec Appendix 1 1)

and in these units the Schrodinger equation [9.44J reads

[4] It should be noted that the proof of the von Neumann-Wigner non-crossing rule assumes that

the Born-Oppcnheimcr approximation can be made. If this is not the case the non-crossing rule

may break down, the concept of potential energy curves becoming meanihgless.
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[9.45]

This Schrodinger electronic equation for the hydrogen molecular ion is

sufficiently simple so that it is possible to obtain numerical solutions to any

desired degree of accuracy, as we shall see below. This is important because it

provides a test of approximate methods, which have to be used for more

complicated systems. However, we will first develop the approximate method of

the linear combination of atomic orbitals (LCAO) because it gives considerable

physical insight into the nature of the solution.

When the two protons A and B are far apart, the electron must be attached to

one of them. If the system is in the ground state, and the electron is attached to

proton A we might expect the wave function to be (we drop the label s)

d>(R; r) = *„(rA) [9.46]

where ^(r) = tt
1/2exp(— r) is the normalised ground state wave function for

atomic hydrogen (written in atomic units). Clearly such a wave function does

not have the required symmetry about the midpoint of the internuclear line, but

we can construct the linear combinations

cfig(R; r) = y= [ipu(rA) + ^i s(rB)] [9.47a]

and

<t>u(R; r) = —= [(AisOa) - <Ais(rB)J [9.47b]

which are even and odd under reflection in the midpoint of AB, respectively.

The first one is therefore of crg character and the second one is a cru wave

function. Although these functions are only expected to be accurate in the

asymptotic region of large R, we can use them as trial functions in the

variational expression [2.361], namely

Eg>u(R) =
d>* u//d>g;U dr

l^g.uj
2
dr

[9.48]

Let us first work out the denominator of this expression:

D =
l^g.ul dr

= yj[|</'i s(rA )|

2 + I</'is('b)|
2 ± 2i/'i s(rA)i/'is('B)] dr [9.49]

Since R is fixed, f dr = / drA = / drB and, as i/>ls(r) is normalised to unity, we
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9.4 Electronic structure of diatomic moleculit

have

D = 1 ± I(R) [9 - 50]

where I(R) is the overlap integral

I(R) =
|

<A,s(rA)«Ais(fB) dr [9.51]

This expression can be evaluated by using the integrals given in Appendix 9,

with the result

I(R) = |l + R + y
.R

2je~* [9.52]

The numerator of [9.48] is equal to

N = //aa — 77ab [9-53]

where

HAA

77ab

t/<ls(rA)//i/'is(fA) drA

drB [9.54]

Using the Schrodinger equation satisfied by ipu(r)> which is

~ V 2 - — - E is
)
1A1 s(r)

= 0
2 r

[9.55]

where E ls
= -0.5 a. u. is the ground state of atomic hydrogen, and making use

of the integrals of Appendix 9, we find that

Haa — E\ % + — (1 + 7?)e
2/<

and

//ab =
I
fit.

+ ^ )/(«)- (» + *)e [9 . 56]

Putting the various terms together, the expression [9.48] for the energies

EJR) and EU(R) becomes

Eg ,u(R) = E ls +
1 (1 + R)e~ 2K ± (1 - 1?7?

2
)e

R 1 ± (1 + R + ]R 2
)e

[
9 . 57 ]

The functions Ee(R)
- E u and E U(R) - E ls are plotted in Fig. 9.9. The

function Eg(R) corresponding to the symmetrical (gerade) wave function

exhibits a minimum at R0 = 2.49 a.u. (1.32 A) and it is found that

De = Eu - Eg
(R0 )

= 0.065 a.u. = 1.77 eV. As a result, this curve represent*
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Molecular structure 9.4

9.9 The lowest electronic potential energy curves of Hj . The dashed lines labelled A, show
(,Eg (R) - E i s ) and (Ea(R) - Eu) calculated using the simple LCAO wave functions of [9.47],

while the solid curves labelled B show the exact values of the same quantities calculated from
equations [9.61] to [9.64],

an attraction leading to the formation of a stable molecular ion. The correspond-

ing molecular orbital <Fg given by [9.47a] is said to be a bonding molecular

orbital. In the present case it is an approximation to the ground state (that is, the

lowest <7g state) and is designated cr
g ls.

In contrast, we see from Fig. 9.9 that the function EJJR) has no minimum
and is repulsive at all distances; a molecule in this state will immediately

dissociate into a proton and a hydrogen atom in the Is state. The corresponding

molecular orbital Tu (see (9.47b)) is called an antibonding orbital, and is denoted

in the present case by o-Jls, where the superscript (*) indicates that we are

dealing with an antibonding orbital.

It is worth noting that the term ffAB , in which the matrix element of the

Hamiltonian H between atomic orbitals centred on the protons A and B is

evaluated, plays a vital role in obtaining bonding for the <rg ls state. If this term
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I

!

I

were ignored, the two functions Et(R) and EU(R) would coincide, the resultln||

curve being repulsive at all distances.
1 ^

The electron probability density in the states <J>g
and 4>u is given by |<t>g |

2 and

|d>u |

2
,
respectively, so that the corresponding charge densities are pg = — #|*®**|

a

and pu = -e|<t>u
|

2
(or pg = -|4>

g |

2 and pu = -|<1>U |

2
in atomic units). If the

charge density pg is evaluated at points between A and B along the intemuclear

line, it is found to be greater (in absolute value) than the sum of the densities

due to two isolated H atoms with their protons placed at A and B, normalised

so that half an electron is associated with each proton. It is this excess of

negative charge between the protons which causes the binding (or bonding).

On the other hand, if the charge density pu corresponding to the antibonding

case is evaluated, a deficiency of negative charge is found between the

protons. This is clearly seen in Fig. 9.10 where the wave functions d>g
and 4>u

as well as the absolute value of the charge densities pg and pu are plotted

along the internuclear line.

The exact binding energy of is a little greater than the result obtained

above, with De = E ls - Eg(R0) = 0.103 a.u. = 2.79 eV, and the true equilib-

rium distance is Ro — 1.06 A. The principal failing of the approximate wave

function <bg(R; r) given by [9.47a] is that at small separations <t>
g
should

approach the wave function of He’ (Is), the ground state of the positive

helium ion with nuclear charge Z = 2, and in the approximation [9.47a] it

does not. This defect can be remedied by using orbitals of variable charge,

\%\
!

9.10 Wave functions 4>, and <t>u and charge densities |<t>J
2
, |4>u |

2
for the hydrogen molecular ion

H2', plotted along the internuclear line to an arbitrary scale. The points A and B represent the

positions of the two protons.
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with Z* a function of R, and by determining Z* at each R with the help of the

Rayleigh-Ritz variational method (see Chapter 2). We also note that at large R a

dipole moment is induced in a hydrogen atom by the electrostatic field of a

proton. This interaction gives rise to a potential proportional to R ~ 4
. With the

approximate wave functions discussed so far this effect is not taken into account,

and the energy Eg>u(R)
— £ ls decreases exponentially (see [9.57]). This feature

is not important for bound-state calculations, but as we shall see in Chapter 13 it

plays an important role in elastic ion-atom scattering.

The exact solution

As we pointed out above, it is also possible to obtain accurate numerical

solutions of the Schrodinger electronic equation [9.45] for the hydrogen

molecular ion. The equation is first written in terms of confocal elliptic

coordinates (£, r/, 4>), where

€ = ^ (fA + rB), 1 « g-

[9.59]

V =
-jj

(rA - rB ), - 1 « rj +

1

and (/) is the azimuthal angle with respect to the internuclear line, chosen as

the Z-axis. Using the fact that in these new coordinates the Laplacian operator

V 2
is

£[«*-v ~R\e-v2
) ter

+ jL)
(£

2 - 1)(1 - V
2
) d<t>

2

\

the Schrodinger equation [9.45] becomes

— (£
2 -

1)
—i + — (1 - V

2
) -r

2 +
d£ d£ J

drj
l

or]

n l
dv

(i - v
2
)
—

[9.60]

e -
1 1 - if dtfy

2Rl
j (
£- *)

<|J “ ^ + i s "’ = 0 [9.61]

An eigenfunction solution of this equation can be found in the form of the

product

d>/£, V , d>)
= F(i)G(Vymd>

, m = 0, ±1, ±2, . . . [9.62]

where the functions F(g) and G(tj) are the normalisable solutions of the

equations

A T(£2 - i)—
d£

;

df

r-R
2

1+ t(e-
Aj|2 + 2R€ --P— + Il F(i) = 0

[9.63]

\
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and

d

drj
(1 -

17
2
)

dG
dr]

R 2

~T
1

~R
1?

2 + + M G(V) = 0 [9 .64]

/u being a separation constant. Each electronic term is therefore characterised by
three quantum numbers, namely A = \m\ and the quantum numbers n£ and nv
giving respectively the number of zeros of the functions F(g) and G( 17).. As a

result of this complete separation of variables, it is worth noting that two

potential curves corresponding to the same A but different values of the couple

(n
f , nv ) are allowed to cross.

These equations [9.61]—[9.64] can be solved numerically for the ground state

and excited states. The accurate values of the quantities Eg - Eu and Eu — E\ t

obtained in this way for the states o-g Is and cr* Is are shown in Fig. 9.9. A
similar treatment can be applied to any one-electron diatomic molecular ion

(containing two nuclei A and B and one electron), whether homonuclear or

heteronuclear.

Molecular hydrogen H2

In much the same way as atomic wave functions are built in the Hartree-Fock

method from one-electron atomic orbitals, electronic wave functions for

molecular systems containing several electrons can be constructed from one-

electron molecular orbitals. This approach is known as the Hund-Mulliken or

molecular orbital (MO) method. It will be illustrated below for several diatomic

molecules, starting with the neutral hydrogen molecule H 2 , where the two-

electron wave function will be built by using the one-electron molecular orbitals

obtained for H^. As in the case of the helium atom discussed in Chapter 6, the

character of the two-electron wave function depends on the total electronic spin

quantum number S. In fact, as we shall see shortly, the spin plays a key role as

to whether bonding or antibonding takes place.

Molecular orbital treatment

Labelling the two electrons in H2 as 1 and 2 and using the coordinate system of

Fig. 9.11, we shall now build the lowest states of H 2 from the H 2 orbitals 4>
g

9.11 A coordinate system for the hydrogen molecule H 2 .
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and <I>U discussed above. As shown in Chapter 6 (see [6. 18]— [6. 19]) the spin

wave functions for the two-electron system must either be singlet (S = 0),

or triplet (S = 1),

To,o(l> 2) =

A'i.iCIj 2)

Xi.od, 2)

1

~2 [a(l)/3(2) - /3(l)a(2)] [9.65]

a(l)«(2)

-4 [«(D/3(2) /8(l)a(2)] [9.66]

Ai.-i(l) 2) = /3(l)/3(2)

Since the overall wave function must be antisymmetric in the electrons, the

spatial wave function corresponding to the singlet case must be symmetrical,

while the spatial wave function for the triplet case must be antisymmetrical.

Four combinations can be formed, namely

$a(1, 2) = <bg(l)<Dg(2)*0,o(l, 2) [9.67a]

[9.67b]

[9.67c]

<Fb(1, 2) = <J>u (1)<Fu (2)a'o,o(1j 2)

l

*cd, 2) = -y= [<5
g(l)<bu(2) + <I>g (2) <&„(!)] Ai'o.o ( 1 , 2)

d>g(2)<bu(l)ki.Ai s
(l, 2) Ms = 0, ±1 [9.67d]®d(1, 2)

=J=
[<t>g(l)<bu(2)

Both d>A and <1>K represent *2
g states, while <t>c corresponds to a 'Su term

and <hD to
3
2u states.

The wave function <bA describes two electrons having opposite spins each

occupying the bonding orbital d>g . By analogy with the He atom we expect this

wave function to yield the lowest energy of the four combinations, and to be

therefore an approximation to the ground state wave function of H2 . In order to

study this problem in more detail, we start from the electronic wave equation for

the two electrons in the field of the two (fixed) protons, namely

(H - EjP, = 0

where the electronic Hamiltonian H is given (in atomic units) by

1 7 1 7
1 1 1

H = -
T Vf - T Vi
2 2 rA1 rA2 rB i

and may be written as

H = H0(\) + H0(2) +
1

r\2

1

rB2

1

+
R

1

t*12

1

~R

with

1,1 1H0(i)
= ~ Vf i = 1,2

2 rA,
rBl

[9.68]

[9.69]

[9.70]

[9.71]
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The exact one-electron molecular orbitals satisfy the equation

1

Ho(iy&g,u
(
^g,u

and we shall normalise them to unity (for all. R), namely

i^ul
2
dr = 1

[9.72]

[9.73]

The lowest energy, obtained by using the wave function 4>A (given by [9.67a])

in the Rayleigh-Ritz variational expression [2.361] is then

£a <I>a 77d>A dri dr2

= 2Eg(R)
- ± +

!$g(l)3>8(2)|
2

dr! dr2
r12

[9.74]

The ‘exact’ molecular orbitals <bg (or elaborate variational forms) can be used

in this expression, but it is illuminating to use the simple LCAO form

[9.47a]. In this case the equilibrium distance for H2 can be computed to be

R0 = 1.5 a.u. (0.8 A), and the corresponding energy difference De =

2

E

u - Ea(R0) is found to be 0.098 a.u. (2.68 eV). The experimental values are

R0
= 1.4 a.u. (0.74 A) and De = 0.175 a.u. (4.75 eV).

Using [9.47a] and writing out the approximate wave function [9.67a] in full,

we have

= | [ (/'ls(rAl)>/'ls(rB2) + </'ls(>'A2)</'ls0
-

Bl)

+ </'ls(rAl) (/'ls(rA2) + l^ls(rBl)</, lsO'B2)];t'0 >
o(l> 2) [9.75]

or

d>A = d>A
OV + 4>r [9.76]

where

d)A
V =

J [ (/
, ls(rAl) t/'ls(rB2) + 4* ls(fA2) *Al s(t*B 1 )]/Vo,o( 1 > 2) [9.77]

and

&T =
Y [<Als(rAl) t/'ls(rA2) + l/'ls(rBl)</'ls(rB2)]AtO,o(l> 2) [9.78]

The function (Ija’
v
represents the situation in which one electron is associated

with each nucleus. In the separated atom limit, this function yields two isolated

neutral hydrogen atoms in the ground state: H(ls) + H(ls). The type of

bonding associated with this function is called covalent bonding and <1>A
UV

is said

to be the covalent part of <f>A- On the other hand, the function d>A
n corresponds

to the situation in which both electrons are attached to one nucleus. In the

separated atom limit, this function represents a proton and a negative hydrogen
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ion H . Functions like A
n which represent an unequal division of charge

between the nuclei are said to be of ionic character and the type of bonding

corresponding to such functions is called ionic bonding. It is worth noting that

each term of the function [9.78] yields a very poor representation of the bound
state ofH“ [5] and in any case the probability of this configuration of the system

is not large. For this reason, the wave function d>A given by [9.75] is expected to

be a poor approximation for large internuclear separations R.

A better approximation to the electronic ground state wave function ofH2 can

be obtained by using in the Rayleigh-Ritz variational principle a trial function

<Ft which is a mixture of <fiA (see [9.67a]) and <J>B (see [9.67b]), both of which

have the correct symmetry J
Sg . That is,

(pT = d>A + A4>b [9.79]

The parameter A can be determined by the variational method. We first obtain

the energy as a function of A (for a fixed value of R ):

dr! dr2

E(A) = [9.80]

I dr] dr2 *1’*Tj

and then require that dE/dA = 0. The equilibrium distance is found to be

R0 = 1.42 a.u. (0.749 A) and the quantity De = 2E ls - E(R0) is given by

0.147 a.u. (4.00 eV), a considerable improvement over our former result. It is

worth noting that the wave function <I>T can be written in the form of a linear

combination of covalent and ionic terms, namely

cFt = (1 - A)^ov + (1 + A)d>r [9.81]

The ratio of the ionic to the covalent part of the wave function is given by

q = (1 + A)/(l - A), and is displayed in Fig. 9.12 as a function of R. We see

from this figure that the maximum value of q is about 0.2 at R0 — 1.5 a.u.

(0.8 A) and that q
—

*

0 as R —* oc.

The Heitler-London or valence bond method

An alternative approach, due to Heitler and London, is to approximate the wave

function for H2 by using orbitals based on the separated atom wave functions,

just as we did for H7- In this approximation, the trial wave function to be used

in the Rayleigh-Ritz variational principle is <t> A
ov

(the covalent part of 4>A ) which

is given by [9.77]. The corresponding triplet function is

Ct>D
V =

y [•/'ls(rAl)</'ls(?B2)
—

l/'ls( rA2)</'ls( r'Bl)]A
/
l,Ar s 3 AfA = 0, ± 1 [9.82]

and this function has the symmetry 3
Lu

.

[5] See our discussion of H in Chapter 6, Section 6.5.
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Substituting <1>a
ov (which corresponds to the gerade state 'X, ) and (WtlW*

corresponds to the ungerade state
3
2u ) in the Rayleigh-Ritz variational principle

[2.361], we find that the corresponding gerade (g) and ungerade (u) exprmioni

of the energy are given by

Ee ,u
- 2E

i

s +
J K 1— ± H

1 ± I
2

1 ± I
2 R P.W]

where the upper signs are taken for g and the lower ones for u. The quantity / ll

the overlap integral defined by [9.51], namely

I =
I <Als(tAl)</'ls(tB l) drj =

j

l/'ls(rA2)‘/'ld>B2 ) di 2

while J and K are defined as

and

K =

7 = dr! dr2 |i/tls(rAi)|
2
|<Ai s^B2)|

;

drj dr2 (Ais(tAi)</'is(fB2)

(±. 1
. ±)

1/12 rA2 1*B1 J

[9.84]

19.851

1
_ M

\
r12 rA2 rmj

</'ls(rA2)</'ls(rB l) [9.86J

The expression J is known as the Coulomb integral and represents the

interaction between the charge densities |i/<i s(rA1 )|

2
and |i//i s

(tB2 )|

2
> while K is

called the exchange integral. It is found that K is negative, so that the 'XB
+
state is

lower than the state
3
2u • With the wave function used for the

lXg
' state,

the equilibrium distance is given by R0 = 1.6 a.u. (0.87 A) and one has

De = 2Eis ~ E(R0 )
= 0.115 a.u. (3.14 eV), which is better than the result

0.098 a.u. (2.68 eV) obtained above from the simple MO wave function 4>A . In

Fig. 9.13 we show the computed energy curves for the attractive ground state

X'Xg and the repulsive state
3
2u

.
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9.13 The lowest electronic potential energy curves of H2 . The curves A are in the Heitler and

London approximation, and the curves B show the accurate values for the ground state X 'Xg and

the repulsive state
3
Xu

If we add to the Heitler-London wave function [9.77] an extra term of the

form /u,d>a" to represent ionic bonding (where the parameter /jl is determined

from the variational principle), the resulting energy is identical with that

obtained from the improved MO wave function [9.79], When applied to more

complicated systems, it is generally true that the MO method, using ‘mixed’

wave functions of the type [9.79], provides similar results to the valence-bond

method, improved with additional variationally determined terms. When
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unimproved, the two approximations are distinct, and the MO
U, in general, the better one. This, however, is not true for the

•ince in this case the nuclear charges (ZA = ZB = 1) are not

dominate the electron-electron interaction.

To conclude our study of the electronic structure ofH2 end Hj

in Fig. 9.14 the relationship between the energy levels of these

From the examination of this figure it is clear that

7p(H2 ) + A>(H2
+

)
= /p(H) + D0(H2)

where 7P are ionisation potentials and D0 dissociation energies,

0„(Hi)

-p + H(l.)

O/HJ)

/p(H) i/p(H 2)

H(ls) + H(ls)

1

A>(H2)
,ZJ

c{H 2)

L T
= h 2(X'^) . I

9. 14 Relationships between the ground state energies of H2 ,
H7 and H. The chemical dissociation

energies and spectroscopic dissociation energies denoted by D„ and £), ,
respectively, differ by the

zero-point vibrational energy The ionisation potentials of the hydrogen atom and hydrogen

molecule are denoted by /|.(H) and fp(H 2 ).
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Homonuclear diatomic molecules

We shall now discuss the electronic structure of more complicated molecules,

and in particular their bonding properties. In general, to obtain a bound state o

a molecule the negative charge density between the nuclei must be in excess o

what would be expected if the charge distribution were due to two non-

interacting atoms. The charge density depends on the overlap of the atomic

wave functions centred on each nucleus, and only the wave functions of the

electrons in the outer shells of the atoms will contribute to the overlap

appreciably. The contributing electrons are known as valence electronsf.

We begin by considering homonuclear diatomic molecules. Using the Hun -

Mulliken molecular orbital approach, the full electronic wave function can e

built from one-electron MOs. These in turn can be constructed in the LCAO

approximation from atomic orbitals. For example, using one atomic orbital

centred on each atom, the MOs are given by

OgsU(i)
= A/g,u[«a(rA.) ± «b(rB,)] [9 - 88l

where AL U is a normalisation factor and ua ,
uh are atomic orbitals.

In order to analyse the nature of the MOs of a diatomic molecule, and in

particular their behaviour when the internuclear distance varies, it is useful to

draw a correlation diagram, which exhibits the qualitative features of the relative

energies of the orbitals as a function of R. In establishing correlation diagrams it

is convenient to subtract out the Coulomb repulsion between the nuclei. These

diagrams therefore give both the separated atom limit (R -» ») and the'.united

atom limit (R-> 0), with the intermediate region corresponding to R - R0 ,
the

equilibrium internuclear separation.

A simple example of a correlation diagram showing the lowest orbitals of a

homonuclear diatomic molecule is displayed in Fig. 9.15. We see that this

diagram represents a unique correspondence in going from the atomic orbitals

of the united atom to the MOs of the molecule, and finally to the atomic orbitals

of the separated atoms. The correspondence is based on the following features.

1 Molecular orbitals having a given value of A (the component of the orbital

angular momentum along the internuclear axis) must connect with atomic

orbitals having the same value of A (i.e. the same value of |m|).

2. The parity of the wave function (g or u) must be preserved as R varies from 0

to co, ,

3. The von Neumann-Wigner non-crossing rule must be obeyed, so that

energy curves corresponding to orbitals having the same symmetry do not

cross [6] as we let R vary from 0 to

A simple illustration of the two first conditions given above is provided by the

Hi problem we have already studied. We recall that in this case the exact

numbers other than A are well defined for intermediate values of R.
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ground state orbital <t>g
must approach for large R the orbital of atomic

hydrogen in the Is state. For small R, 4>g
must go over to the lowest sta c of

He 1

also a Is state. On the other hand, the exact lowest repulsive orbital «I»U

also correlates with H(ls) at large R, while as R -»• 0 it must approach a wave

function of He+ with odd parity. The component of the angular momentum

aLg the internuclear line (the Z axis) is A = 0, and the lowest lying state of

He * with odd parity and such that A - 0 (that is, m = 0) is the 2Po state. Thus

must go over to the 2Po wave function in the united atom hmit (R-+ 0).

It should be noted that molecular orbitals can either be labelled by the

separated or the united atom limits. For example, the lowest odd orbital 4\, can

be designated in the separated atom limit as o-*ls (as was done above) or in the

united atom limit as 2pcr*. We recall that the repulsive (or antibonding) orbitals

are distinguished from the attractive (or bonding) orbitals by the addition of an

aS

From spatial MOs, <f>(>) for each electron, spin-orbitals ‘Ki'MO or 4>(i)^(t)

can be formed, and a completely antisymmetric many-electron wave function is
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given by the Slater determinant of these spin-orbitals. For example, the '^g

wave function <f>A for H2 , given in [9.67a], can be written in determinantal form

as

In this case, both electrons can be in the bonding orbital d>g
which is trls in

character. However, in the three-electron system He2 , the Pauli principle only

allows two electrons to be in the crls orbital, and the third one must go into the

next level o-*ls, so that the molecule has the configuration (crls)
2
(fr*ls). The

combination of one bonding and one antibonding orbital, with the same

separated atom limit, leads to a small net repulsion. In the present case, with

two bonding and one antibonding orbitals, the net effect is a weakly bound

state.

The four-electron system He2 must have the configuration (<xls)
2
(o-*ls)

2
with

two electrons bonding and two antibonding. The net effect is a repulsion and

there is no stable ground state. It should be noted that excited states such as

(o-1s)
2
(o-*1s)(o-2s) can exist as stable bound states.

Next in complexity is the lithium molecule Li2 . Atomic lithium has the

configuration (ls)
2
(2s). The two K shell electrons play a small role in the

molecular structure, and the bonding is due to the 2s valence electron. The
ground state has the configuration (o\2s)

2
. Continuing up the periodic table, the

molecule Be2 must be (<t2s)
2
(o-*2s)

2 and this state is not bound. The boron atom

has a configuration (ls)
2
(2s)

2
(2p) and bonding results from a (cr2p)

2
molecular

configuration. The next case, carbon, with an atomic configuration

(ls)
2
(2s)

2
(2p)

2
is interesting in that the molecule C2 contains two separate

bonding orbitals (crg2p) and (rru2p).

Lastly we consider the case of oxygen. Atomic oxygen has the configuration

(ls)
2
(2s)

2
(2p)

4
. Three of the p electrons in each atom can form the bonding

orbitals (cr
g2p)

2
(77-2px )

2
(i72p

3,)
2

. The remaining pair of electrons must be

associated with antibonding orbitals (7r*2p). It turns out that one electron goes

into the (7r*2px) and one into the (7r*2py) orbital.

%(2>(2) <t>g(2)/3(2)

Pairing and valency

In order to form a bonding orbital, the electron from one atom must usually

form a singlet spin state with the electron taken from the second atom, as in H2 .

The triplet state, on the other hand, leads to a repulsion. Now consider what

happens when a hydrogen atom is brought up to a helium atom. Both the

electrons in the helium atom are in the Is level, and are in a singlet state with

5 = 0, one electron with spin m
s
= +1/2 and one with ms

= -1/2. The
electron on the hydrogen atom cannot exchange with the electron of opposite

spin in the helium atom, for if this happened, we would have two electrons in

the same spin state in the Is orbital, which would violate the Pauli principle.
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The electron in the hydrogen atom can only exchange with the electron of tlu|i

same spin in the helium atom. In this case, the corresponding spatial part of \

wave function is antisymmetric and the orbital is antibonding. To see this

more detail, we can form a trial function, of the Heitler-London type, by takingif

two electrons to be in the Is orbital of helium, v ls , and one electron to be in th«

Is orbital of atomic hydrogen, Ui s . The Slater determinant for the three-electron

system is

v ls(l)a(l) v ls(l)/3(l) u ls(l)a(l)

$ = N v ls(2)a(2) v ls(2M2) u Js(2)a(2) [9.90]

v ls(3)a(3) v ls(3)/3(3) u ls(3)a(3)

where N is a normalisation, factor. Substituting [9.90] into the variational

expression [2.361] of the energy, we find that

E(R) =J - K [9.91]

where J is the direct integral

J = N2
dri dr2 dr3 v, s(1)v Is(2)u 1s(3)Hv 1s(1)v 1s(2)u 1s(3) [9.92]

and K is the exchange integral

K = N2 dr
t
dr2 dr3 Vi s(l)vi s(2)ui s(3)Hv ls(3)v ls(2)u )s(l) [9.93]

The only exchange is between electrons 1 and 3, which have the same spin, and

the effect is to introduce a repulsion, so that a stable molecule of HHe does not

exist. The two electrons on the helium atom are said to be paired. Only unpaired

electrons contribute to chemical bonding, and the number of unpaired outer

shell electrons is equal to the valency of the atom. As all the electrons in a closed

subshell atom are paired, such atoms are chemically inert. A chemical bond

is formed from two unpaired electrons, one from each atom. The two bonding

electrons are themselves in a singlet state, and therefore cannot form a bond

with a third electron. Each bond uses up a different pair of electrons, and since

each pair is in a singlet state, stable molecules generally are in states with overall

spin 5 = 0, although exceptions to this rule occur, as in the case of 02 ,
where

the two electrons in antibonding orbitals are in a relative triplet state and the

total spin of 02 is 5 = 1.

Heteronuclear diatomic molecules

The molecular orbital method can equally well be applied to heteronuclear

molecules, formed from two dissimilar atoms. We now form the molecular

orbital by taking a linear combination of atomic orbitals, one from each atom

0(0 = Aua(rAl) + /xvb(rB,) [9.94]
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Unlike the homonuclear case there is no reflection symmetry about the mid-
point of the internuclear line, and the orbitals cannot be classified as g or u.

Another difference is that the separated atom classification of the configurations

is less convenient, and the orbitals can either be designated by the united atom
configuration, for example Iso-, Iso-*, 2p7r, etc, or just labelled lo-, 2a, 3a, .. .

In, 2n, 3n, ... in order of increasing energy within the a, n, .. . levels. In

general, the energy of the atomic levels must be close to each other, otherwise

the overlap between the atomic wave functions is small and no bonding orbital

can be formed.

A correlation diagram for heteronuclear molecules such that the nuclear

charges are not too different is shown in Fig. 9. 16, while a diagram showing the

energy splittings near the equilibrium distance is shown in Fig. 9.17. It should
be emphasised that the very simple approximation to a molecular orbital in

which only one orbital is taken from each atom (see [9.94]) cannot be expected
to be very precise, and in general accurate approximations will require the

combination of many atomic orbitals or other basis functions.

9.16 A correlation diagram for heteronuclear diatomic molecules. As in Fig. 9.15, the diagram is

not to scale and the actual energies vary from molecule to molecule.
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9.17 Energy levels of a diatomic molecule composed of two atoms A and B, where A is more

electronegative than B. The energies of the molecular orbitals at equilibrium separation R0 are

shown in the middle with the energies of the atomic levels on either side. The diagram is not to scale.

In order to illustrate some of these points, we shall now consider the examples

of the LiH, HC1 and NaCl molecules.

Lithium hydride LiH

In this system, which is one for which detailed calculations have been made, we

have four electrons. An isolated lithium atom has the ground state configuration

(ls)
2
2s, and ground state atomic hydrogen is of course in the Is state. The lowest

lying molecular orbital is designated lcr, and in accordance with the inert nature

of the inner shells of atoms, it is practically identical with the Is atomic orbital of

the K shell of lithium.

It would be natural to suppose that the next highest molecular orbital would

be a 2 cr composed of the 2s atomic orbital of lithium and the Is orbital of

hydrogen. In fact this is not quite correct, as it turns out that a lower energy is

obtained from the variational method if a linear combination of the 2s and 2ps

atomic orbitals of lithium is used in place of just the 2s orbital. This

phenomenon, which occurs when ns and np atomic orbitals are very close in

energy, arises because the linear combination of a symmetrical s function fo(r)

with a p function, such as fx (r) cos 9, provides an asymmetric charge distribu-

tion (see Fig. 9.18) which leads to a large electron density in the region between

the atoms. This combination of orbitals corresponding to different values of the

angular momentum is called a hybrid orbital (a sp hybrid in the present case) and
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9.18 Charge distribution of a hybridised (s + p») orbital.

this phenomenon is known as hybridisation. In the separated atom limit the 2cr

orbital approaches the Is orbital of atomic hydrogen.

The ground state of the molecule, which has two electrons in each of the la

and 2a orbitals, becomes Li
+ + H" in the separated atom hmit with two

electrons in the Is orbital of Li
+ and two m the Is orbital of H . At the

equilibrium distance, R0 = 1.6 A, excess negative charge is still associated with

the proton. As a consequence, the molecule has a permanent electric dipole

moment. It is interesting to remark that other hydrides such as BH, NH and

HF also possess permanent electric dipole moments, but of opposite sign.

Hydrogen chloride HCI

In the chlorine atom the K and L shells are completely full and these play no

part in chemical activity. The valence shell with n = 3 has the configura ion

C3sI
2
(3p)

5
. The 3s electrons do not mix significantly with the Is orbital o

hydrogen, as the energies are not sufficiently commensurate. This leaves t e

3p 3P and 3pz orbitals to be considered. Of these only 3p can contn u e

to a a orbital and the bonding orbital is thus a mixture of the 3p* orbital of

chlorine with the Is orbital of hydrogen. This time the coefficient of h Ps

atomic orbital of chlorine is larger than that of the Is orbital of atomic hydrogen,

so that the wave function represents H + + CP and the dipole moment has the

polarity associated with the redistribution of charge. The bonding is ionic in

character.

Sodium chloride NaC!

Particularly good examples

alkali atom and a halogen.

of ionic bonding are given by the compounds of an

The alkalis (Li, Na, K, Rb, Cs) consist of a single
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valence electron moving outside closed shells. This single electron is easily

detached leaving a stable closed shell singly charged positive ion. On the other

hand, the halogens (F, Cl, Br, I) have a single vacancy, or hole, in an otherwise

closed shell. These atoms are strongly electronegative, and readily combine with

an electron to form a stable closed shell singly charged negative ion. In the case

of sodium, with the configuration (ls)
2
(2s)

2
(2p)

6
3s, and chlorine, with the

configuration (ls)
2
(2s)

2
(2p)

6
(3s)

2
(3p)

5
, it is necessary to supply 1.49 eV to

convert (Na + Cl) to the ionic state (Na+ + Cl
-
), at infinite separation, but

because of the Coulomb attraction between the ions, at separations less than

about 18 a.u. the ionic system (Na + + Cl
-

) has a lower energy than the atomic

system (Na + Cl).

At small separations where the electron densities overlap, the interaction

between the closed shell Na + and Cl systems is similar to that between the

inert gases, He + He for example, and is strongly repulsive. It can be

empirically represented by the potential A exp(— cR). The variation with the

internuclear separation R, of the energy of the (Na+ + Cl
-

) system relative to

the sum of the energies of the isolated neutral atoms is given by

ES(R) = Ef?o) - ± + Ae-C* [9.95]

where atomic units have been used, and Es
(co) = 0.0548 a.u. (1.49 eV). The

function ES(R) is displayed in Fig. 9.19. It has a minimum at an equilibrium

distance R0 determined by the constants A and c in the repulsive potential.

A simple ionic model of sodium chloride (NaCl) is obtained by viewing the

molecule as a combination of Na +
and Cl ions bound by the Coulomb

attraction and with an energy ES
(R0), the energy at the minimum of [9.95]. To

establish the accuracy of this model, we need to find A and c, from which R0 ,

E s(Ro) and the dissociation energy D0 can be computed. The chemically

measured dissociation energy D0 is 4.22 eV and this can be compared with the

computed value ofD0 . The rotational and vibrational spectrum of the molecule

can be used to find A and c. First, from the rotational spectrum, the moment of

inertia of the molecule can be obtained (see [9.21]) and this gives the

equilibrium distance R 0 which is found to have the value 4.38 a.u. Then, from

the vibrational spectrum, the fundamental wave number v0 = m0/(2itc) can be

determined (see [9.24]), which in turn yields the force constant k. The value of

vq (see Table 9.3) is 364.6 cm -1
. Having obtained R 0 and v0 , the constants A

and c can be calculated by using the equation [9.19], The quantity Dc =

EXV-) - E
S
(R 0) and the dissociation energy D0 = Dc - hw0/2 can then be

determined. Using the calculated values, the dissociation energy D0 is found

(Problem 9.7) to be 3.85 eV, which is about 10 per cent less than the measured

value (by chemical means) of 4.22 eV.

The ionic model can be further confirmed by computing the electric dipole

moment and comparing this with the experimental value. The model can be

refined in various ways, the most important of which is to take into account the

long range attractive interaction between the Na +
and Cl ions due to their
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polarisability (see Chapter 12). This very simple model of the ionic bond can be

applied to the other alkali halides and the properties of a number of these

molecules are shown in Table 9.3.

9.5 THE STRUCTURE OF POLYATOMIC MOLECULES

Just as for diatomic molecules, the Born-Oppenheimer separation can be made

for polyatomic molecules, and the motion divided into rotational, vibrational

Table 9.3 Some properties of selected alkali halide molecules

Molecules «o(A). v0{cm *) 10
29

• |D|(C m)+ D0(eV)

Li F 1.564 910.3 2.11 5.99

Li Cl 2.021 641.0 2.38 4.85

Na Cl 2.361 364.6 3.00 4.22

Na Br 2.502 298.5 3.04 3.74

K Cl 2.667 279.8 3.42 4.37

K Br 2.821 219.2 3.54 3.92

Rb Cl 2.787 223.3 3.51 4.31

Cs Cl 2.906 214.2 3.47 4.59

T In many texts electric dipole

10
-29 x 0.336 coulomb-metres.

moments are given in units of debyes, where 1 debye =
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9.5 The structure of polyatomic molecules

and electronic modes. The rotational motion may be treated approximately by

supposing that the nuclei are fixed at their equilibrium position, so that the

molecule forms a rigid body. If the molecules possesses an n-fold symmetry axis,

with n & 3, then two of the three principal moments of inertia [7] of the rigid

body are equal, and the molecule is called a symmetrical top. For example, the

ammonia molecule NH 3 ,
which has a threefold symmetry axis, is a symmetrical

top. The rotational energy levels of symmetrical tops are not difficult to obtain

[8] and we shall briefly discuss the corresponding spectra in the next chapter. If

all three principal moments of inertia of a molecule are equal (as in the case of

methane, CH4) the molecule is called a spherical top. It is then a simple matter to

show that the rotational energy levels are given by an expression which has the

same form as the result [9.21] we obtained for the rotational energy levels of a

(rigid) diatomic molecule. On the other hand, for asymmetric top molecules (such

as water, H20) having three different principal moments of inertia, no simple

treatment of the rotational motion is possible and the energy levels and wave

functions must be computed numerically.

The vibrational motion of a polyatomic molecule can be discussed by

supposing that the nuclei execute small oscillations about their equilibrium

positions. The normal modes of vibration can then be determined by the usual

methods of classical mechanics, described for example by Goldstein (1962).

Each normal mode is associated with a characteristic frequency v, and the

corresponding quantised normal-mode energy is

E
Vi = ho

t
(^v

t + ^

= ho>i(vi + [9.96]

where = 0, 1, 2, . . . and w, = 2ttv,. The total vibrational energy is the sum

of the individual vibrational energies associated with each normal mode, namely

E = 2 +
5)

19.97]

In general, the vibrational spectrum of a molecule with many degrees of

freedom is extremely complex and the treatment of this problem is beyond the

scope of this book [9], In the next chapter, however, we shall consider in some

detail a particularly interesting vibrational motion, which is responsible for the

inversion spectrum of the ammonia molecule NH3.

[7] The principal moments of inertia are defined for example in Goldstein (1962).

[8] See for example Pauling and Wilson (1935).

[9] A comprehensive account of the rotational and vibrational spectra of polyatomic molecules may

be found in Herzberg (1945).
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Electronic structure \

The general principles of the molecular orbital approach can be applied to the

electronic structure of polyatomic molecules. The molecular orbitals, as before,

can be built from atomic orbitals corresponding to each centre (LCAO

approximation). Except for very simple molecules containing a few centres and

a few electrons, molecular orbital theory must be built up on a semi-empirical

basis, but in the simple cases elaborate calculations are possible, using modern

computers, in which energy levels and wave functions are obtained ab initio

[ 10].

The water molecule H20

As a simple example, let us consider the water molecule H 20. From spectro-

scopic measurements, it is known that the oxygen nucleus, O, and the two

protons p! and p2 form an isosceles triangle, with the PiOp2 angle equal to 105

(see Fig. 9.20). The two protons are about twice as far apart (1.6 A) as they are

in the hydrogen molecule H2 (0.7 A), so that the important bonds are between

the oxygen atom and each hydrogen atom. From our discussion of 02 , we

expect that the bonding orbitals will be constructed from two of the 2p orbitals

of atomic oxygen. If the plane of the molecule is the (XY) plane, we can, from

linear combinations of the 2px and 2py orbitals of oxygen, construct orbitals V\

and t>2 which are directed along the lines Opi and Op2 ,
respectively. If the

hydrogenic Is orbitals centred on the protons pi and p2 are denoted respectively

by ui and u2 then suitable LCAO molecular orbitals will be of the form

$a = v, + Aui
|-9>98]

<pB = v2 + Au2

The full wave function for the two valence electrons coming from the oxygen

atom and the two electrons from the hydrogen atoms can then be written as a

P:

Pi

9.20 The water molecule. The bond angle with no hybridisation would be 90°.

[10] A detailed treatment of the electronic structure of polyatomic molecules is given by Pilar

(1968).

422



9.5

""""""" "

The structure of polyatomic moUculn

Slater determinant, namely

4>a( 1 )«( 1 ) <t>A(l)j3(l) <t>B(l)a(l) 4>b(1)/3(1)

<Ha(2)o(2) 4>a(2)/3(2) <J>b(2)<*(2) 4>B(2)/3(2)
* “ N

<t>A(3)a(3) 4>a(3)/8(3) 4>B(3)a(3) d>B(3)/3(3)

4>a(4)o(4) d>A(4))8(4) 4>B(4)a(4) <t>B(4)/3(4)

where jV is a normalisation constant.

Calculations based on wave functions of this kind show that the equilibrium

angle p,Op2 is about 90°. The hybridisation of the 2s and 2p oxygen orbitals

accounts for the slightly greater angle found experimentally. The orbitals <I>A

and 4>b give rise to charge distributions which are localised along the lines Opi

and Op2 This localisation is the physical basis of the directional character of a

chemical bond. If the hydrogen atom with nucleus pi were replaced by a

different atom, then the wave function in the region between the oxygen atom

and the proton p2 would be hardly altered, so that we can speak of a

characteristic O—H bond, associated with a molecular orbital of the type

or <bB .

The methane, ethylene and acetylene molecules

As a further example, we shall now look at the methane molecule, CH4. The

carbon atom in the ground state has the configuration (ls)
2
(2s)

2
(2p)

2
, but there

is an excited state with the configuration (ls)
2
(2s)(2p)

3 which is very close in

energy and it is from this state that carbon bonds most readily. The orbitals are

hybridised by forming linear combinations of the 2s, 2p* , 2pv and 2p, orbitals,

which consist in this case of one 2s orbital and three 2p orbitals, and are

therefore called sp
3
hybrids. Four combinations can be constructed:

<bi = V2s + v2p> + V2pv
+ V 2p=

^2 = V2s + v2p> — v2p — v2p
[9 . 100

j

= v2s
- V2p> + V2p> - V2p=

ff>4 = V2s - V2p - V2Pj + V2p.

Since the functions v2p ,
v2p and v2p are proportional to x, y and z

respectively, and v2s is spherically symmetric and positive <J>i has a maximum in

the direction defined by a vector with Cartesian coordinates (1, 1, 1). Similarly,

d>2 , <J> 3 and $4 have maxima in the directions (1, —1, —1), (
— U F ' 1) an<3

(-1, -1, 1) respectively. The angles between each pair of directions are 109 . 6
"

and CH4 forms a tetrahedral structure, as shown in Fig. 9 . 1 .

Carbon is particularly rich in different structures, which arise because other

types of directional bonds are possible. For example, sp
2 hybrid orbitals which

are linear combinations of only v2s , v2Pt
and v

2Pv
orbitals can be formed, namely

4>i
= v2s + Jl v2Pt

<*»2 = v2s + ^ 3/2 v
2Pv - J 1/2 v2p< [

9 . 101 J

= v2s - J3/2 v
2Pi

- J1J2 v2p<
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Molecular structure 9.S

Here the bonds lie in a plane, with an angle of 120° between each bond. This

structure is found in ethylene C2H4 (see Fig. 9.21(a)). The four protons and the

two carbon atoms lie in a plane, the four C—H bonds and one of the C—

C

bonds being of the type considered in [9.101], For such bonds the component of

the orbital angular momentum in the bond direction is zero, and by analogy

with the terminology used in the theory of diatomic molecules these bonds are

called <7 bonds. The remaining pair of valence electrons are associated with the

2pa orbitals in the carbon atom, the Z axis being perpendicular to the plane of

H C ==C H

(b)

H H

9.21 Three carbon-hydrogen bond structures: (a) Ethylene C2H4 ; (b) Acetylene C 2H 2 ;

(c) Benzene C6H6 .
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9.5 The structure of polyatomic molteukt

the molecule. This pair is said to form a 77 bond, the component of the angular

momentum in the bond direction being ±h.

Yet another possibility occurs in acetylene C2H2 , which is a linear molecule

arranged as shown in Fig. 9.21(b). In this case one can form two hybrid orbitals

consisting of the 2s orbital and only one 2p (for example 2px) carbon orbital.

These sp hybrid orbitals are given by

<t>. = v2s + v
2Pi

[9,102 ]

$2 = v2s - v2p
,

This gives rise to a bonds linking the hydrogen atoms with the carbon atom,

and to a single cr bond linking the two carbon atoms. The angle between these

bonds is 180°. The remaining four electrons form a pair of rr bonds between the

carbon atoms.

The benzene molecule and non-localised orbitals

In the molecules we have been discussing, the bonds are localised and provide a

directed interaction between a pair of atoms within a molecule. A single bond

contains a pair of electrons in a relative singlet spin configuration, and the most

important bonds are designated cr, in which the magnitude of the component of

the orbital angular momentum of each electron in the bond direction is zero, or

tt in which this component has the magnitude \h\. The cr bond are usually

stronger and more localised than tt bonds, and we have also seen that hybridised

bonds are stronger than simple bonds. Although this description is successful

for many molecules, it must be extended and a new concept of non-localised

bonds introduced for others. A typical example is benzene (C6Hft). I he six

carbon atoms lie in a plane, which we shall take to be the (XY ) plane, and lorm a

regular hexagon, while the six hydrogen atoms also lie in this plane, as shown in

Fig. 9.21(c). We can assume that three out of the four n = 2 electrons of carbon

form sp
2
hybrid orbitals, as in the case of ethylene, the combinations ot atomic

orbitals being given by [9.101]. A linear combination of one ol these functions

with the Is orbital of atomic hydrogen forms a cr C—H bond, while the other

two combine with the corresponding orbitals on the neighbouring carbon atoms

to form C—C bonds which are also cr in character. The remaining atomic

carbon orbitals are 2pa , and there is one of these per atom. Because of the

symmetry of the structure, there is no unique way of associating these 2p,

orbitals in pairs, forming localised 77 bonds. We could form all possible

combinations of localised bonds, and use the variational method to determine

the coefficients of each term, but a useful alternative is to construct a

non-localised orbital by combining all the six atomic orbitals directly. The

ground state is represented by the completely symmetrical combination

= Af[u2Pj (l) + u
2Pi(2)

+ u2Pj(3) + u2p,(4)

+ u
2Pt(5)

+ u2p_(6)] [9.103]
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Problems

where N is a normalisation factor. This orbital forms a tt bond, which is

associated with the whole benzene ring and which is not localised to a pair of

atoms. The six equivalent electrons are free to move round the ring, with the

result that benzene has a very large diamagnetic susceptibility resulting from the

magnetic field created by this current loop.

A qualitative understanding of chemical bonding in the hydrocarbons can be

achieved in the way we have sketched for methane, ethylene, acetylene and

benzene. In the case of the simpler structures, quantitative results confirming

these ideas have been obtained by performing elaborate ab initio numerical

calculations, based on the variational method.

PROBLEMS

9.1 The moment of inertia of H79Br is 3.30 x 10
47 kg m2

. Calculate the

energies of the first five excited rotational levels of the molecule in eV and

the corresponding wave numbers (v = E/hc) in units of cm -1
. Find the

internuclear distance in atomic units and in angstroms.

9.2 The wave number v0 of the fundamental vibrational motion of the

molecule H79Br is 2650 cm-1
. Calculate (a) the energy of the lowest and

first excited states in electron-volts; (b) the corresponding periodic times;

(c) the force constant in SI units.

9.3 Find the energy of dissociation D0 of the deuterium molecule D2 , given

that the energy of dissociation of H2 is 4.48 eV and that the energy of the

lowest vibrational level of H2 is 0.26 eV.

9.4 When a diatomic molecule rotates it stretches, so that the internuclear

distance is increased to R\ where R i is given approximately by [9.35],

Prove this result as indicated in the text.

9.5 IfH is the electronic Hamiltonian of a diatomic molecule and L is the total

orbital angular momentum of the electrons, show directly that

[.H , LJ = 0 and [H, L x \ ^ 0, [H , Ly] f 0, where the Z axis is along the

internuclear line. The Hamiltonian is given by H — Te + V, where Te

and V are defined by [9.6] and [9.8] respectively.

9.6 Obtain the overlap function D and the matrix elements //AA , H.\b for the

hydrogen molecular ion from [9.49] and [9.54], by using the variable

charge orbital of [9.58] in place of the hvdrogenic functions <pi s(rA),

(/q s (rB ). Evaluate the integrals using the results of Appendix 9. Using a

calculator, plot how Eg(R ) varies with the effective charge Z* at the

equilibrium distance R 0 = 1.06 A.

9.7 Using Ro — 2.36 A and v0 = 364.6 cm-1
determine the constants A and c

in the potential [9.95] representing the energy of Na35
Cl. Calculate the

depth of the well De and hence the dissociation energy D0 . Calculate the

electric dipole moment of NaCl assuming a simple ionic model.

9.8 Repeat the calculation of the dissociation energy D0 and the dipole

moment for the molecules LiF, KF and KI using the following data:
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LiF: R0 = 1.564 A i>0 = 910.3 cm" 1

KF: R0 = 2.172 A v0 = 426.0 cm -1

KI: R0 = 3.048 A v0 = 186.5 cm -1

The ionisation energy of Li is 5.39 eV and that of K is 4.34 eV. The

electron affinity of F is 3.45 eV and that of I is 3.08 eV.

(Note F/00
) of [9.95] is the difference between the ionisation energy of the

alkali and the electron affinity of the halogen.)
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Molecular spectra

Transitions between the energy levels of a molecular system can take place

with the emission or absorption of radiation. The molecular spectra are more

complicated than those of atoms, and in this chapter we shall only analyse some

of the simpler features of the rotational, vibrational and electronic spectra. For

the most part we shall confine the discussion to diatomic molecules, pointing out

in some cases how extensions to polyatomic systems can be made. In the last

section, however, we shall examine in some detail the inversion spectrum of the

ammonia molecule NH 3 , which as we shall see in Chapter 14 is of great interest

in the construction of the maser.

10.1 ROTATIONAL ENERGY LEVELS OF DIATOMIC MOLECULES

In Section 9.3 we obtained an expression for the energy levels of a diatomic

molecule which is in a 2 state, that is for a state in which the electrons have a

zero component of orbital angular momentum along the internuclear line. We
found (see [9.22]) that

Es>v,r = Es(Ro) + Ev + Er [ 10 . 1 ]

where E
s(Ro) is the electronic energy, Ev the vibrational energy and Er

the

rotational energy.

Let us now consider the situation in which the electrons have non-zero orbital

angular momentum, assuming that L-S coupling is small so that the spins of the

electrons need not be considered. The total orbital angular momentum of the

electrons will be denoted by L and the orbital angular momentum of the nuclei

by N. The total angular momentum J is then

J = L + N [10.2]

Since N = R x P, where R is the internuclear position vector and P is the

relative (linear) momentum of the two nuclei (see [A2.12]), we must have that

N • R = 0 [10.3]

This implies that the projection of J on the internuclear line, JR = ( J • R)/R
must be equal to the projection of L along this line, LR (see Fig. 10.1). It has

already been shown in Chapter 9 that the electronic wave function of a diatomic



10.1 The angular momentum of a diatomic! molecule with no coupling between the electronic and

the orbital motion. Since the angular momentum N of the nuclei A and B is at right angles to the

internuclear line AB, the components of the electronic orbital angular momentum L and the total

angular momentum J along AB are equal (LR = JR).

molecule is an eigenfunction of LR (which was previously called Lz because we

took the internuclear line as the Z axis) belonging to the eigenvalues ± A h. Since

J
2 and Jz (with the Z axis fixed in space) are always conserved, the eigenfunc-

tions of the Hamiltonian for the diatomic molecule can be labelled by 7, M 7 , A,

s, sn, where s denotes the electronic states and sn the sign of LR (when A J 0).

The radial equation for the nuclear wave function (which satisfied [9.17] in

the case L = 0) in general reads

*
2

<? + s^, + Em . E
2 ijl dR 2

2fxR
2

&(R) = 0 [10.4]

where <N2
) denotes the expectation value ofN2 with respect to the simultaneous

eigenfunctions of J
2

, Jz ,
LR and sn. Thus

<N2
) = <(J

- L)2
>

= fi
2
J(J + 1) - 2<J • L> + (L

2
) 1 10.5|

We note that since the system is in an eigenstate ofLR , the expectation value of

a component of L in a direction perpendicular to R must vanish, and since

Jr = Lr , we have

(J • L) = (JrLr)
= A2*2

[10.6|

Evaluating the rotational energy at the equilibrium distance R = Ro, we have

Er = J "p2 + V*
2 + <L2>

“ 2A^' 2
J [

107
1

2fiRo

The term ((L
2
)
- 2A2

h
2
) depends only on the electronic state and can therefore

be included with the electronic energy ES
(R0)• Thus we write

= E'XR0) + Ev + BJ{J + 1) [10.8]



Molecular spectra 10.

1

where

E;(Ro) = EXRo) + r-U «L2
)
- 2A 2h2

) [10.9]
IflKo

and B = h
2
/2^Ro. The form of the rotational energy BJ (J + 1) is the same as

for the case A = 0, but with the important difference that the possible values of

J are such that J 2* A. This arises because the component of J along the

internuclear line isJR — ±Ah and the magnitude of J must be equal or greater

than its component in any direction, |J| 3= JR .

The rotational energy can be discussed from a slightly different point of view.

In our treatment in the previous paragraph, the approximation in which we

fixed R at its equilibrium value was made at the last stage; but instead we could

have started by considering the molecule to behave, as far as rotations are

concerned, like a completely rigid body. In the principal axis system (Goldstein,

1962) the kinetic energy of a rigid rotating body is

T
‘~1Tj^k3Ukf‘ [KU0]

where Ia , Ib and Ic are the moments of inertia about axes a, b and c andJa,Jb,Jc

are the components of the angular momentum about these axes. It should be

noted that the axes a, b, c form a system fixed in the rotating body, and the

corresponding operators obey slightly different commutation relations from the

components of J in a coordinate system fixed in space.

A diatomic molecule is axially symmetrical about the internuclear line, which

can be taken as the axis c. Then Ia = Ib and the system forms a symmetrical top,

with energy

T = j-- (J
2
a + ft) + jj-ft [10.11]

The componentJc is along the internuclear line,Jc = JR , and, as we have seen,

JR = Ah. As usual, the operator J
2
has eigenvalues J{J + 1 )h

2
, so that the

rotational energy is given by

*,-£w + i) + (£-£)aV [10.12]

The moment of inertia of the molecule about the axis a, which is perpendicular

to the internuclear line and goes through the centre of mass is Ia = jiRo, while

Ic is the moment of inertia about the internuclear line, and depends on the

electronic state. It is seen that the expression [10.12] is equivalent to the result

[10.7] which we have previously obtained, since the term in A2
h
2
can be

included in the electronic energy.

In the approximation in which the nuclei are considered to be fixed at their

equilibrium positions, a polyatomic molecule also behaves like a rigid body with

the rotational kinetic energy given by [10.10]. We have seen in Section 9.5 that



10.1 Rotational energy levels of diatomic moltadu

if there is an n-fold symmetry axis, with n 5= 3, then two of the three prindpll

moments of inertia are the same, and the molecule is called a symntitrical
iff

In this case the rotational energy levels are again given by an expreaiion

like [10.12].

The rotational spectrum

In the electric dipole approximation, which was discussed in Chapter 4, the

transition amplitude for emission or absorption of radiation was shown to be

proportional to the matrix element of the electric dipole operator D. For a

molecule this operator is given by

D = *(2 Z,R, - 2 r,) U0.13]

where the first sum is over the positions R, and charges Z,e of all the nuclei and

the second sum is over the positions r
;
of the electrons.

On the other hand, we have seen in the previous chapter that in the simplest

approximation the couplings between the electronic, vibrational and rotational

motions can be neglected. Disregarding spin, the complete molecular wave

function^ corresponding to a given state a is then the product of an electronic

wave function <t>„ a vibrational wave function (times R ') and a rotational

wave function The diagonal elements of D are thus given by

D«a = <^a|D|^a), a = (*, v,J, Mj, A) [10.14]

and are equal to the permanent electric dipole moment in the state at. Phis quantity

always vanishes for non-degenerate levels of atoms, because these are eigenstates

of the parity operator. However, for heteronuclear molecules in which an excess

of charge is associated with one of the nuclei, has a finite value (sec

Section 5.3). In symmetrical homonuclear diatomic molecules, such as H 2 , 0 2 ,

N2 , ...» the permanent electric dipole moment vanishes. Since the rotational

and vibrational motions preserve the symmetry of the molecule, the matrix

elements of D between different rotational or vibrational states must vanish for

symmetrical homonuclear molecules, unless the electronic state changes. As a

result symmetrical molecules possess no purely rotational or vibrational spec-

trum, without an electronic transition. In contrast, molecules which possess a

permanent electric dipole moment such as HC1 exhibit spectra corresponding to

rotational and vibrational transitions, without change in the electronic state.

The selection rules for a rotational transition are, if A = 0

AJ = ±1

AMy = 0, ± 1

110.15]

If A f 0, the first selection rule must be replaced by AJ = 0, ± 1. This is due to

the fact that although the photon absorbed or emitted carries one unit of angular

momentum, the nuclear rotation can change, with no change in J, if the
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Molecular spectra 10.2

electronic angular momentum makes an equal and opposite change. Symmetry

considerations require that the electric dipole moment of a diatomic molecule is

directed along the internuclear line, and this leads to the additional selection

rule AA = 0. If no change in vibrational state occurs then we must have

A 7 * 1.

The pure rotational spectrum of a diatomic molecule consists of lines in the

far infra-red or the microwave region, the frequencies of these lines being given

by

hv3+UJ = Er{J + 1) - E rU) r
1016l

= 2B(J +1)

where J 3= A. Figure 10.2 illustrates the rotational spectrum of HC1. The

constant B can be obtained with an accuracy of up to 1 part in 10
9 from the

observed spectra, and this allows the equilibrium distance R0 to be determined.

The intensity of the line is proportional to the permanent electric dipole

moment in the particular electronic state concerned.

Kcm ')

10.2 The rotational absorption spectrum of gaseous HC1. From [10.16] we see that the spacing in

frequency between the absorption lines, (corresponding to transitions from J J + 1), is constant

and equal to 2B/h. For HC1 B =
(B/hc )

= 10.59 cm” 1 and the spacing in terms of the wave

number v is 2B = 21.18 cm" 1
.

10.2 VIBRATIONAL-ROTATIONAL SPECTRA OF
DIATOMIC MOLECULES

Vibrational transitions can occur, due to the interaction with the radiation field,

if the matrix element

Dv'v ip*'D dR [10.17]

does not vanish. In this expression D(i?) is the matrix element of the electric

dipole moment expressed as a function of the internuclear distance R, and ipv ,

t/v are vibrational wave functions, which are simple harmonic oscillator wave

functions in the first approximation (see Section 9.3).

If D is independent of R, the integral [10.17] vanishes because of the

orthogonality of ipv and t/v when v ^ v’ . On the other hand, ifD depends on R ,
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10.2 Vibrational-rotational sptctrum

we may expand it as

dD
D(.R) = D(i?0) + (R ~Ro) +

R=R0

[10.18]

and we can neglect the higher order terms in first approximation since the

amplitude of the vibrational motion is small compared with Ro . In this

approximation the selection rule depends on the integral

I(v',v) = [
«Ji*(R — Ro)^ dR [10.19]

The harmonic oscillator wave functions ijjv are given (see Section 2.4) by

«k(x) = Nve~
aV/2 Hv(ax) [10.20]

where Nv is a normalisation constant, x = R ~ Ro and a 2 = jxwo/h, w0 being

the angular frequency of the oscillator. Using the result [A3. 15] of Appendix 3

we see that the integral [10.19] vanishes unless v — v — 1. We note that this

selection rule may also be derived immediately by using the recurrence relation

for the Hermite polynomials. Using [2.147],

2(ax)Hv(ax) = 2vHv-i(ax) + Hv+1(ax) [10.21]

it follows at once that the integral [10.19] vanishes unless

Av = v' — v = ±1 [10.22]

Since the potential well is only approximately described by a simple harmonic

oscillator, transitions with Av = v' - v = ±2, ±3, . . . can occur, but these

transitions are usually weaker, by at least an order of magnitude.

Because the absorption of a photon requires the molecule to take up one unit

of angular momentum, vibrational transitions are accompanied by a change in

rotational state, which is subject to the same selection rules as for the pure

rotational spectrum. For a molecule in a X state (with A = 0), the transitions

between two rovibronic levels (v,J) and with vibrational quantum

numbers v and v' — v + 1, fall into two sets according to whether AJ ~ "t
-

1 or

AJ = -
1 (see Fig. 10.3). The first set is called the R branch. Using the simple

linear harmonic oscillator expression [9.24] for the vibrational energy and the

rigid rotator formula [9.21] for the rotational energy, we find that the

corresponding frequencies p
r

are given by

hvK = E(v + 1,7 + 1) - E(v,J)

= 2B(J + l}+ ha>0 ,
7=4), 1,2, ... [10.23]

The second set is known as the P branch. In the same approximation (linear

harmonic oscillator, rigid rotator), its frequencies, v
v

are such that

hvp = E(v + 1,7 - 1) - E(v,J)

= -2BJ + hw0 , 7 = 1, 2, 3, , . . [10.24]
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V — 1<

v = (K

Oi—
R(0) R(l) R(2) R(3)

A7= +1

2B/h-

(a)

4B
~~h

P(l) P(2) P(3) P(4)

47= -1

2B/h

P(5) P(4) P(3) P(2) P(l) R(0) R(l) R(2) R(3) R(4)R(5J

J

-4

3

2

• 1

-0

10.3 (a) Energy level diagram of the lowest vibrational-rotational levels in a diatomic molecule

showing the absorptive transitions from the band with 8 = 0 to the band with 8=1. The
band spectrum contains two branches: the R branch with \J = + 1 and the P branch with

AJ = -1. The lines in each branch are labelled by they value of the lower level.

(b) A spectrogram showing the lines corresponding to the transitions shown in (a). It is

assumed that the rotational constants of the 8 = 0 and 8 = 1 are the same so that the lines are

equally spaced in frequency, except for a gap corresponding to the vibrational frequency v0 .

Both branches make up what is called a vibrational-rotational band. These

bands are in the infra-red part of the spectrum. We note that according to

[10.23] and [10.24] such bands contain lines whose frequencies are equally

spaced by 2B/h, except that there is a gap of 4B/h at the vibrational frequency

v0 = cdq/Itt. This is illustrated in Fig. 10.3(b) and in Fig. 10.4, the latter

showing the absorption spectrum of HC1. We see that a measurement of the

position of the gap determines oj0 , while a measurement of the spacing of the

lines determines B(= h2
/2/xRo) which is inversely proportional to the moment
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10.2
Vibrational-rotational tptetnm
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10 4 Absorption spectrum of HC1. The double peaks exist because naturally occurring chlorine is a

mixture of the two isotopes
3S
C1(75.5 per cent) and

37
C1(24.5 per cent). The positioni of the central

gap in the spectrum determines v0 = 2885.9 cm" >, (h a* = 0.369 eV) and the spacing determines the

rotational constant B = B/hc = 10.59 cm 1 (B = 1.31 x 10
3 eV). (By courtesy of R. Colin.)

of inertia I0 = fiR% of the molecule. Except for very heavy molecules, most

molecules in a gas at room temperature are in the vibrational ground state with

v = o, so the most easily observed transitions are between the levels with v = 0

and v= 1. This band is called the fundamental band.

In actual spectra the difference in frequencies between adjacent lines is not

quite constant, as in the simple model we have just described. This may be seen

from Table 10.1, which displays the observed frequencies of a band in the

spectrum of HC1. This departure from constancy is due to the fact that the

rotational constant B is not quite the same in each of the vibrational states, so

that we must consider two constants Bv and Bv+ 1
. In this case the frequency of

the lines is a quadratic function of J, and the second differences of the

frequencies are constant. From the first and second differences both By and

B .

1

can be calculated. We also note from Table 10. 1 that the central line in the

spectrum which should be at 2885.9 cm" 1
is missing. The corresponding gap

makes the identification of the P and R branches lines easy. In practice, the

Table 10.1 Wave numbers of the central lines in the rotational-vibrational band (

v

0 « * 1) of

HC1

P (cm— )
A (cm )

R(5) 2997.78

R(4) 2980.90

R(3) 2963.24

R(2) 2944.89

R(l) 2925.78

R(0) 2906.25

Vq missing at 2885.90

P(l) 2865.09

P(2) 2843.56

P(3) 2821.49

P(4) 2798.78

P(5) 2775.79

P(6) 2752.03

A = Wave number difference between neighbouring lines.

16.88

17.66

18.55

19.11

19.53

21.53

22.07

22.71

22.99

23.76
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departure from simple harmonic motion in vibrational-rotational spectra can be

observed and the anharmonicity constant (see [9.29]) can also be calculated.

If the molecule is not in a 2 state, so that A is not zero, transitions with

Ajf = 0 are allowed. This gives rise to a further hranch of the vibrational-

rotational spectrum, called the Q branch. The frequencies corresponding to

the lines in this branch are given by a quadratic function ofj ifB„+ i and Bv are

unequal, and reduce to the single frequency

hv^ = E(v+l,J)-E{v,J)
= ha>o

if Bv+ i
= Bv .

Raman scattering

So far, the main experimental technique for obtaining information about the

properties of atoms and molecules that we have considered is the observation of

the emission or absorption of radiation. Important additional methods involve

the scattering of electrons or of radiation by atomic systems. We shall study

electron scattering in Chapter 12, while here we discuss briefly some characteris-

tics of the scattering of radiation by an atom or a molecule.

The scattering of radiation by an atomic system must be at least a second-

order process. In step 1, a photon of energy h<o is absorbed, exciting the atom

(or molecule) from a state a to a state «, and in step 2 the atomic system emits a

photon of energy ha>' and is de-excited from the state n to a final state b.

Alternatively, the two steps can occur in reverse order, the photon of energy ha>'

being emitted first and the photon of energy hw being absorbed subsequently

(see Fig. 10.5).

If the final state b of the system is the same as the initial state a, the emitted

radiation has the same frequency as the incident radiation. This process is called

Rayleigh scattering and was first discussed within the framework of classical

physics by Lord Rayleigh. If the final state of the atom is different from the

initial state, the scattering is inelastic, and by conservation of energy the angular

frequency to' of the emitted radiation is given by

hot' = ha> + (Ea - Eb) [10.26]

The inelastic scattering process is called Raman scattering (or the Raman effect)

after C. V. Raman who discovered the effect experimentally. The theory of

both Rayleigh and Raman scattering may be developed in a straightforward way

ho)

\ /
E. E„ Eb

10.5 The two second-order terms in scattering of photons by atomic systems.
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by solving the coupled equations [4.25] to second order. In particular, the

differential cross-section for Raman scattering is found to be

d(r _ 2 , 3 v (mU(g' • Dj„,)(g • D„
fl) (e Dfe„)(e' ' Dna)

dll
roCOC

° „\e 2

)\ En -Ea -h(o E„-Ea + hw'

where

r0 = (———1 ——j = 2.82 x 10“ 15 m
[
10 . 28]

\47t£o/ me

is the
‘
classical radius of the electron ’, Dy is the matrix element of the electric

dipole moment D between the states i and j of the atomic system, while £ and £'

are the polarisation vectors of the photons, in the initial and final states; the sum
over n which occurs in [10.27] is over all possible intermediate states. If the

energy of the incident photons is such that fuo = En - Ea , where En is the

energy of one of the intermediate states, the first term in the cross-section

formula [10.27] becomes infinite. This is due to the fact that in obtaining the

£tf J

0

3U13 2 ; i 5

2

3

L/.D J J

i

3

oL 1 it—:

Rayleigh
Stokes lines scattering Anti-Stokes lines

|AJ| = 2 = 0 |A7l = 2

J
S(4) S(3) S(2) S(l) S(0) S(0) S(l) S(2) S(3) S(4) v-

v,

10.6 A Raman spectrum for rotational transitions. The scattered light contains a line at the incident

frequency v, due to Rayleigh scattering AJ = 0, and equally spaced lines on either side due to Raman
scattering with

|
AJI = 2. Transitions with

|
AJ[ = 2 are often called the S branch and are numbered

by thej value of the lower level.
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result [10.27] the width of the energy level En has been neglected. If we allow for

the finite width T„ of this level by replacing En by E„
- tTn /2 (see Section 4.6),

the correct behaviour of the cross-section in the region hoj — En - Ea is found.

By the usual electric dipole selection rules, the intermediate state n must have

opposite parity to each of the states a and b. Thus Raman scattering does not

change the parity of the atom or molecule, and the selection rules are given by

A3 = 0, ±2 [10.29]

If the initial state a of the atomic system is the ground state, the final state b

must have higher energy, so that <o' < to. In this case the observed spectral line

is called a Stokes line. If the initial state a of the atomic system is an excited state

the final state b may have higher or lower energy . In the latter case a> > co and

the corresponding spectral line is known as an anti-Stokes line.

For Raman scattering to occur with appreciable strength, the intermediate

states n should have closely spaced energies En which are also close to Ea and

(or) Eb ,
since in this case the energy denominators in [10.27] are small. This

condition is met by the rotational-vibrational levels in molecules. We note that

the Raman effect does not require the existence of a permanent electric dipole

moment, but rather than an electric dipole moment should be developed under

the influence of the radiation field. For this reason, Raman lines are observed for

symmetrical molecules like H2 , O2 , . • • which exhibit no pure rotational and

vibrational spectra without a change in electronic state. A schematic energy level

diagram for the rotational Raman spectrum is shown in Fig. 10.6, together with

the corresponding spectrogram.

10.3 ELECTRONIC SPECTRA OF DIATOMIC MOLECULES

Molecular spectra for which changes in the electronic as well as in the

vibrational and rotational states of the molecule occur are called electronic

spectra. The energy differences between electronic levels being much larger than

those corresponding to transitions without a change in the electronic state, the

lines associated with electronic spectra lie in the visible or the ultra-violet part of

the spectrum. When observed with small dispersion, electronic spectra usually

appear to consist of more or less broad bands, and one speaks of electronic band

spectra. As an example, we show in Fig. 10.7 various bands (photographed in

A)0 A22-XJZ*
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(E
s

- + Ev - + Er’)
- (E

s + Ev + Er)
[10.30]

where the primed letters refer to the upper electronic state. We may also write

[10.30] as

V = PS
'

S
+ Vv’v + VT'T [10.31a]

with

E, - Es E„- - E,„ Er
~ Er

[10.31b]

For a given electronic transition (s, s' fixed) the quantity jy, is a constant, which is

positive since we have assumed that Es > E
s

. On the other hand, iy„ and v,> r

can vary and need not be positive. A given band corresponds to fixed values of

both vS ’

S and jy„ and all possible (allowed) values of iy r ,
while the band system of

a given electronic transition (iys fixed) is obtained by letting both ty,, and iy r

take all possible values. Thus jyB characterises the vibrational or band structure

of the spectrum, and ty r its rotational structure, that is the fine structure of the

band.

emission) corresponding to the transition A21 ' —

*

X2£ ' between the excited

electronic state A2X + and the ground state X2£ +
of the AlO molecule. When !

spectrographs of larger resolving power are used, one finds that most of the

bands exhibit a fine structure in the sense that they consist of many closely spaced

individual lines. This is illustrated in Fig. 10.8, which shows the fine structure

of a particular band of the electronic emission spectrum of the Bel molecule.

In order to understand the basic features of electronic spectra, we return to

1 10.1] which expresses the fact that the total energy EStVr of the molecule may
be written (approximately) as the sum of the electronic energy E

s , the

vibrational energy Ev and the rotational energy E r . Thus the emitted or

absorbed frequencies of the various spectral lines corresponding to the transi-

tions between two electronic states are given by

R>t

405 305 205 T05

10.8 The fine structure of the 0-0 emission band of Bel, arising from the electronic transition

A2
fl i /2

~ X 2I
+

. (By courtesy of R. Colin.)
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Vibrational structure of electronic spectra

Let us neglect for the moment the fine structure due to the rotation of the

molecule. Keeping only the first two terms on the right of (10.31a) and using for

the vibrational energy levels the simple linear harmonic oscillator expression

[9.24], we find that for a given electronic transition (iys
fixed) the frequencies v

of the transitions (s'v' —> sz;) are such that

hv = hvs
’

s + hco'o(v' + i)
~ ha)o(v + 2O [10.32]

where co0 and «o are the vibrational constants of the lower and upper electronic

states, respectively. A more precise expression may be obtained by taking into

account the anharmonicity of the vibrational motion. In terms of the anharmo-

nicity constant introduced in [9.29], we have

hv = hvs
.

s + ho)o(v' + 2 )
~ hf3'(i>o(v' + i)

2

- hcj0(v + i) + hpa)0(v + i)
2 [10.33]

which is known as the Deslandres formula.

It is customary to record the frequencies of the transitions (s v —* sv)

between pairs of vibrational levels v and v' (for a given pair of electronic states

s and s') in a Deslandres table. The rows of such a table are labelled by the

vibrational quantum number v of the lower level and the columns by the vi-

brational quantum number v' of the upper level. A set of bands having the

same v (or v') is called a ©Corn') progression. At thermal energies (corresponding

to room temperature) gases are primarily in the ground electronic state, with

p = 0, and the absorption spectrum only contains the corresponding v = 0

progressions. Finally, a group of bands having the same value of v' - v is called

a band sequence', it occurs along the diagonal of the Deslandres table.

Rotational structure of electronic spectra

Let us consider a given electronic band, corresponding to fixed values of (s, v)

and (s' v'). The rotational energies Er and Er are characterised by the quantum

numbers J and J'

,

respectively. If the transition occurs between two 1 states,

then the selection rule is AJ = ± L On the other hand, if one or both of the

electronic states have A f 0 (where we recall that A is the absolute value of

the projection of the orbital angular momentum on the internuclear axis) the

selection rules are AJ = 0, ± 1 and AA = 0, ± 1 . Moreover, in the absence of

spin-orbit coupling we have AS = 0, while for transitions between A states we

have X +
<-» 2 + and 2" ^ 2~. For homonuclear molecules, we have the

additional selection rule g *-* u which only allows transitions between gerade

and ungerade states. There is no selection rule for the vibrational quantum

number since the harmonic oscillator wave functions t/y and i/y' which enter into

[10.19] belong to different wells.
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As a result of the selection rule AJ = 0, ± 1 , the band divides into P, Q and R
branches, the Q branch being absent for transitions between two 1 states, when
A

J

= ± 1. The frequencies of the rotational lines are given by

hv? =hv + B'J{J - 1) - BJ{J + 1)

kPQ = hv + B'J{J + 1) - BJ{J + 1) [10.34]

hvK = hv + B\J + 1)C7 + 2) - BJ(J + 1)

where hv is either given by the Deslandres formula [10.33] or - if the simple

j

linear harmonic oscillator approximation is made - by [10.32]. In these formu-

lae, the lower level in each case has angular momentum J, while the upper level

has angular momentum J - 1, J or J +‘ 1 for the P, Q and R branches,

respectively.

Band head

10.9 A Fortrat parabola for a i —* I transition in a diatomic molecule, (no Q branch). The
spectrogram beneath shows the position of the band head.
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In contrast to the vibrational-rotational expressions [10. 23]—[10.24]^ which

are linear inJ, or [10.25] which is independent ofJ, the formulae [10.34] for the

rotational structure of electronic bands are parabolic inJ

.

This is due to the fact

that the rotational constants B and B are in general different in the lower and

upper levels. Plots ofJ against the frequencies of the rotational lines are called

Fortrat diagrams. A typical example of a Fortrat parabola is shown in Fig. 10.9.

We see that since B f B' the lines are not equally spaced. In the example shown

the lines become closely spaced at the low frequency ( red end ) of the band, and

form what is known as a band head at the minimum frequency. As one goes to

higher frequencies the intervals between the lines increase, and the intensity of

the band falls off gradually. This is called band degradation . In other cases the

band head can be at the highest frequency and the band degrades towards lower

frequencies.

The Franck-Condon principle

We have seen in Chapter 9 that there is little interaction between the electronic

and nuclear motions in a molecule, the nuclear periods being much longer than

the electronic ones. Thus an electronic transition can be considered as taking

place ‘instantaneously’ on the time scale of vibrations, or in other words at a

nearly constant value of the internuclear separation R. The heavy nuclei do not

change their positions or momenta during the electronic transition, but only

after it has occurred. Referring to Fig. 10.10, in which the potential energy

curves of two electronic states A and B are shown with their associated

vibrational levels, we see that an electronic transition between the states A and B

is accurately represented by a vertical line, that is a line of constant R. T.his is

known as the Franck-Condon principle.

The Franck-Condon principle can be combined with our discussion of the

linear harmonic oscillator wave functions in Section 2.4 to understand the

intensity distribution among the bands of a band system. Indeed, if the molecule

is in the lowest vibrational state of a given electronic state, the probability

distribution function for R is large only near the equilibrium separation of that

electronic state. On the other hand, in excited vibrational states this probability

distribution becomes larger at the classical turning points, that is at the extreme

ends of the classical vibrational motions. Thus, looking again at Fig. 10.10, we

see for example that an electronic (absorption) transition from the ground

(v = 0) vibrational level of the (lower) electronic state A will lead to the point Pi

on the upper electronic curve B, corresponding to the vibrational level v — 6.

As a result, the band v = 0 -» v' = 6 will be the most intense member of the

progression starting from the v — 0 vibrational level of the electronic state A.

Similarly, we see from Fig. 10.10 that an (emission) electronic transition from

the v' = 0 state of B will lead to the point P2 on the lower electronic state,

corresponding to v = 7. When both vibrational levels v and v' are excited

states, the most favoured transitions will be those that can occur at constant R

with the nuclei in the electronic states A and B at the classical end points of their
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10.10 Electronic transitions illustrating the Franck-Condon principle.

vibrational motion. Examples in Fig. 10. 10 are shown by the vertical lines from

v = 2 to v' = 2 and v = 3 to v' = 1.

The above qualitative considerations can be expressed more precisely as

follows. The total wave function of the molecule in a given state a

(neglecting spin) is the product and the transition amplitude

is proportional to the matrix element of the electric dipole operator [10.13J

between two wave functions and Trl . That is

<¥a.|D|¥0 >
= e dR R -2

dr d>
5V;W,M7

-.,v

X 2 Z
>
R

<

- 2 r
>) A [ 10 . 35 ]

\>=i

where R = Ri - R2 and the symbol /dr denotes an integration over all the

coordinates of the electrons. Because of the orthogonality of the electronic wave
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functions 4>
s
and <f>s , the first term in [10.35] containing only nuclear

coordinates vanishes, so that

('MiW [10.36]

where

De,CR)
= -e

|
r;)^ dr [ 10 - 371

is the electronic part of the matrix element of the electric dipole operator D. The

Franck-Condon principle amounts to assuming that Dei(i?) is independent of

R, so that the transition amplitude [10.36] is proportional to the Franck-

Condon factor

U =
|
W*. dR [l«.38]

This quantity is just the overlap integral between vibrational wave functions ipv

and iff in different electronic states. Thus we see that the most intense

transitions will be those for which the overlap between ikv (determined from the

electronic potential in the lower state) and ipf (obtained from the electronic

potential for the upper state) is a maximum, in accordance with our foregoing

qualitative discussion.

Dissociation and predissociation

In addition to the discrete molecular transitions which we have considered thus

far, continuous molecular spectra are frequently observed, both in emission and

absorption. These spectra result from transitions in which at least one of the

states is a dissociative state. For example, we show in Fig. 10.11 two electronic

absorption transitions leading to the dissociation of a molecule.

It may also happen that an excited state B is coupled by internal perturbations

(such as spin-orbit effects) or external ones (such as collisions) to a dissociative

state D. In this case the excited state B can either decay to a lower electronic

state A by a radiative transition (spontaneous emission of radiation) or be

transferred to the dissociative state D by a radiationless transition due to the

coupling between the states B and D. The latter process is called predissociation

and is illustrated in Fig. 10. 12. We remark that it is similar to autoionisation and

to the Auger effect discussed in previous chapters for atoms. The effect of

predissociation is to weaken and broaden the emission lines from the excited

state.

Fluorescence and phosphorescence

Molecules which absorb radiation in the near ultra-violet and visible range may

re-emit it at a longer wavelength. This phenomenon is known as fluorescence and
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10.11 Electronic transitions leading to dissociation. A transition from level A to level C letdl to

dissociation because C is repulsive. The curve B exhibits a minimum, but the transition shown leads

to a level with sufficient energy to surmount the barrier.

is illustrated in Fig. 10.13(a). First, absorption transitions occur from a lower

electronic state to some vibrational levels of an upper electronic state, these

absorption transitions being governed by the Franck-Condon principle. For

example, we have shown in Fig. 10.13(a) a transition leading from the lowest

vibrational level of the ground electronic state of the molecule (which we take to

be a singlet state and denote by LX) to an excited vibrational level of an upper

electronic state 'A. The molecule may then lose vibrational energy through

collisions with other molecules (thermal decay) and reach the lowest vibrational

state o' = 0 of the excited electronic level ‘A. This process is often more rapid

than spontaneous emission of radiation, so that when the molecule finally

re-emits radiation, it is from the vibrational level v' = 0. As a result, the

emitted radiation is at a lower frequency than the incident one.

The fluorescence phenomenon which we have just discussed involves a

spontaneous emission between two electronic states of the same multiplicity. A
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X

10.12 Predissociation. A transition from A to B leads to a bound vibrational level, but a further

transition is made to a dissociating level of D.

related process, known as phosphorescence ,
involves the spontaneous emission

from an excited electronic state to a lower one of different multiplicity. For

example, let us assume that a molecule first undergoes an absorption transition

from a singlet ground state
lX to a singlet excited state 'A, as in the case of

fluorescence studied above. Thermal degradation of the vibrational energy then

occurs via collisions with other molecules. Suppose now that the state 'A is

coupled to a triplet state
3A of similar energy, as shown in Fig. 10.13(b). Instead

of going down the vibrational ladder of the state A , the molecule may then

undergo an intersystem crossing and be transferred by a radiationless transition

into the triplet state
3A. After the crossing has occurred, thermal decay will

proceed within the
3A well, until the molecule has reached the lowest vibrational

level of the
3A state. This triplet state may now decay to the ground (singlet)

state ‘X by a radiative transition called phosphorescent emission. Indeed, although

electric dipole transitions between the excited
3A state and the ground state

*X are spin-forbidden because of the selection rule AS = 0, radiative transitions

3A -» lX may not be absolutely forbidden, and may occur slowly through
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spin-orbit interactions. As a result, phosphorescent emission may take glace for

seconds or even longer after the incident radiation (responsible for the initial

absorption process *X —* :A) has been switched off.

10.4 THE ELECTRONIC SPIN AND HUND'S CASES

In our discussion of the spectra of diatomic molecules to this point, we have not

taken into account the coupling between the spin of the electrons and the orbital

angular momentum. For light molecules (as for light atoms) this coupling is

small, and of course the L-S coupling vanishes in any case for singlet states

(5 = 0) and for 2 states (A = 0). More generally, the molecular angular

momenta may couple together in various ways: L-S, J-L, J-S, N-S, . . .

where

J = L + N + S [10.39]

denotes the total angular momentum (excluding nuclear spin) and we recall that

N is the orbital angular momentum of the nuclei, which is perpendicular to the

internuclear axis of a diatomic molecule.

The coupling schemes were first systematically studied by Hund, who

considered five limiting cases, known as Hund’s cases (a), (b), (c), (d) and (e).

Hund’s cases are idealisations, but they represent good approximations to the

actual states of many molecules. The relative strength of the couplings

determines which case applies, and therefore also the fine structure of the

spectra. We shall only consider here two of Hund’s cases [1].

Hund's case (a)

In this case the electronic orbital angular momentum L is coupled by the strong

axial internuclear field to the molecular axis. Moreover, the spin-orbit (L-S)

coupling is sufficiently strong also to constrain the total spin S to interact

strongly with the axial field of the molecule, while the interaction of the nuclear

rotation with the electronic motion (orbital and spin) is very small. Thus only

the projections of L and S on the internuclear axis are well-defined quantities.

We have seen previously that the magnitude of the projection of L on the

internuclear axis is Ah. It is customary to denote the projection of the total spin

S on the molecular axis by 1h [2]; the quantum number 2 can therefore take on

[1] A detailed account of Hund’s five cases may be found, for example, in Herzberg (1950).

[2] The quantum number 1 used here should not be confused with the symbol 1 describing the

electronic terms with A = 0!
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:

;

the 25 + 1 values -5, -5+1, ... +5. Both A and 1 are thus 'good
y

quantum numbers’ in Hund’s cases (a). Defining |f|§

n = |A + 2
1

[10.40]

it follows that 17 is also a good quantum number, which can take on the values

|A - 5|, |A - 5| + 1, ... A + 5 (see Fig. 10.14(a)). Hence, for a given value

of A an electronic term splits into 25+1 terms which can be labelled by the

value of 17, written as a lower subscript. To each set of quantum numbers A and

11 corresponds a series of rotational levels with different values of J , where J
must be such that J 3= 17. For example, in a

3
II state, with A = 1 and 5=1, the

allowed values of 17 are 17 = 0, 1,2. The electronic level
3
I1 splits into three

levels, denoted by 3
fl0 ,

3n! and 3n 2
,' the magnitude of the splitting being

determined by the spin-orbit interaction. Each of these three levels gives rise to

a series of rotational levels, as shown in Fig. 10.15.

In order to obtain the energies of the rotational levels, we notice that the

total angular momentum J is obtained by adding to N (the orbital angular

(a)

10.14 Angular momentum vectors in Hund’s cases (a) and (b).
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X

jn„ 3n,

7 = 3

3n,

7 = 3

i

o

10.15 Spin orbit splitting of a
3nn level. Note ft = 0, 1 or 2 and J & Cl. The electronic energy of a

multiplet term is given by A AS where A is a constant and A and S are the projections of L and S on

the internuclear line.

momentum of the nuclear motion) the vector ft = fMR, where R is a unit

vector along the molecular axis. That is

J = N + ft [10.41]

The rotational energies are given as in Section 10.1 (see [10.5] and [10.7]) by

Er = B(N2
)/h

2
[10.42]

where B = h2
/2fiRo. Using [10.41] and [10.42] and remembering that N and ft

are at right angles, we then have

Er
= B[J{J + 1) - ft

2
] [10.43]

Hund's case (b)

Here the electron spin S is either very weakly coupled or not coupled at all to the

molecular axis. This decoupling takes place in particular for 2 states (A = 0)

where the spin-orbit coupling is absent; it may also occur even if A i= 0

provided the spin-orbit interaction is weak; this situation happens in particular

in light molecules, for example in some of the first row hydrides. In this case the

orbital angular momentum L may still couple to the molecular axis, with a

projection determined by A, which is therefore a good quantum number. On
the other hand, since the spin S is decoupled from the molecular axis, we note

that ft is not a good quantum number in the present case. Writing A = AftR,

we first neglect S and form the resultant ofA and N, which is denoted by K (see

Fig. 10.14(b)). That is,

K = A + N [10.44]

so that K is the total angular momentum apart from spin. The corresponding

quantum number K can take on the integral values A,A+l,A + 2,..., and
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the rotational energy of the molecule - neglecting spin - is given by

E° = BK(K + 1) [10.43J

The total angular momentum J is obtained by coupling K and S, namely

J = K + S [10.46]

so that the possible values of the quantum numberJ are |AT - S|, |AT - S| 4- 1,

. . . , K + S. Thus, except if AT < S, each level corresponding to a given K
splits into 2K + 1 components. The simplest type of Hund’s case (b) molecules

are in
21 states, with 5 = 1/2. The additional energy due to the coupling

between K and S is then of the form

E'r = y <K • S) [10.47]

where y is a small coupling constant. Now, using [10.46], we have

(K • S) = |[J(J + 1) - K(K + 1) - S(S + l)]h
2

so that

E'r = ^Kh2
, J = K+ l

-

= ~j(K+ 1)H
2
, J = [10.48]

and the total rotational energy, including the electron spin interaction is given

by

Er
= E°r + E'r

y ' 1

= BK{K + 1) + j Kh2
, J = K + -

= BK(K + 1) - y
(K + 1)h

2
, J = K -

j [ 10.49J

Spin uncoupling. A-doubling

As we pointed out above, Hund’s coupling cases are idealisations, to which

many molecules approximately conform. However, deviations from these

idealisations may occur, which represent a partial uncoupling or decoupling of

some of the angular momenta. This uncoupling may increase as J increases,

since the electrons may not follow the nuclear motion. Thus a molecule may fall

approximately in one coupling case for low J , but in another case for high J ,

while for intermediate rotational states one has intermediate coupling.

A common example of intermediate coupling is provided by the transition

from Hund’s case (a) to (b). For lowj, the spin S is coupled to the molecular
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axis, according to the coupling scheme (a). However, as J increases and the

rotational frequency becomes larger, S uncouples from the molecular axis (spin

uncoupling) and eventually couples with K, as in Hund’s case (b).

Another type of uncoupling, produced by an interaction between the

rotational and electronic motions, is that which decouples the electronic orbital

angular momentum L from the molecular axis. This uncoupling has the effect of

splitting the two otherwise degenerate levels corresponding to A ^ 0, and is

known as A-doubling.

10.5 THE NUCLEAR SPIN

The coupling between the spins of the nuclei and the magnetic fields, due to the

orbital motion and the spin of the electrons, makes no significant contribution to

the molecular energies. Despite this fact, the nuclear spin has a large influence

upon the spectrum of molecules containing identical nuclei, because of symme-

try considerations. A particularly interesting case is that of homonuclear diatomic

molecules, which have two identical nuclei. Neglecting the very small coupling

of the nuclear spins with the rest of the molecule, we can write the total wave

function Ttot of a homonuclear diatomic molecule as

Ttot = T(R, q)XN(l, 2) [10.50]

where is the spin function of the two nuclei. The part of the wave function

not depending on the nuclear spin, T, is a function of the internuclear

coordinate R and of the spatial and spin coordinates of the electrons, which we

denote collectively by q. The total wave function Ttot must of course be

antisymmetric with respect to the interchange of any pair of electrons, in order

to satisfy the Pauli exclusion principle. In addition, however, since the two

nuclei 1 and 2 are identical in a homonuclear diatomic molecule, the total

function Ttot must be either symmetric or antisymmetric under the interchange

1 <h> 2 of the identical nuclei. According to our discussion of Section 2.7, the

symmetrical case arises when the nuclei are bosons which have zero or integer

spin (for example
1602 ,

14N2) and the antisymmetrical case occurs when the

nuclei are fermions, having half-integer spin (for example *H2 ,

19F2 ,

127
I2).

On interchanging the nuclei 1 and 2, we see that T(R, q) —> \P(—R, q) while

^N(l, 2) — *N (2, 1). Under these transformations, the factors T and must

each be either symmetrical or antisymmetrical, and we denote the correspond-

ing functions by T s
, T A

, and *n, An, respectively. Thus, when the nuclei are

bosons, the total wave function Ttot must be of the form T'Vn or TA
;y
A

, while

for fermions, Ttot must have the form or

Let us consider first the functions T, which, neglecting spin-orbit coupling,

can be written in the form of the product:

T = <S>sXeiR-
l^h,My ,a [10.51]

where is the spatial part of the wave function for the orbital motion of the
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electrons, Xti is the spin function of the electrons, and tf/v and are

nuclear vibrational and rotational wave functions, respectively. The function

is even or odd under the operation R —

*

— R. Indeed, we saw in Section 9.4 that

for X states (A = 0) the levels X g
* and Xu are even while Xg

and Xu are odd.

Moreover, if the degeneracy of the levels with A ^ 0 (II, A, . . . ) is removed by

magnetic interactions (A-doubling) then one has levels ng , Ilu >
Ag ,

Au ...

which are even, and levels Ilg , IIu , Ag ,
A„ , • • • which are odd. The second

factor, ^el , is clearly unaffected by the operation R -R, since it does not

depend on the nuclear coordinates. The vibrational wave function i{/v depends

only on the magnitude R of the vector R, and so is also unaltered when

R —

*

-R. The rotational wave functions a, however, may be either even

(ifJ = 0, 2, 4, . . .) or odd (ifJ =1,3, 3) under the transformation R —

*

-R.

The overall symmetrical (S) or antisymmetrical (A) character of the function ¥
is therefore given as follows:

g+ g- u+ u-

J even S A A S

J odd A S S A

We now turn to the nuclear spin function *N . According to the rules of

addition of angular momenta, the spins I of the two nuclei form a resultant T

,

which is the total nuclear spin of the molecule. The corresponding total nuclear

spin quantum number T can therefore take on any one of the 21 + 1 values

T = 0, 1, . . . 21 - 1, 21, where / is the spin quantum number of the

individual nuclei.

We begin by looking at the simple case of spinless nuclei, for which

/ = T = 0 (for example 1602). In this case is a constant and hence trivially

symmetric in the interchange of the nuclei 1 ** 2. Since the total wave function

'ktot has to be symmetrical, it follows that only even rotational levels can occur if

the electronic wave function is even, and only odd rotational levels are present if

the electronic wave function is odd. For example, the ground electronic state of

l602 is a
3Xg state; its (g-) character requires that J should be odd. As a

consequence, the ground state of the molecule is a .7 = 1 state. Moreover, in the

rotational Raman spectrum of molecules like
1602 , half of the expected levels

are missing. Also, in transitions between electronic X states of homonuclear

diatomic molecules with spin-zero nuclei (say Xg
—* X( or Xg

-* Xu ) alterna-

tive lines in the rotational fine structure are missing, since AJ = ± 1 and

transitions between symmetrical (S) and antisymmetrical (A) states are forbid-

den. If the nuclei are not identical, for example if one of the
160 nuclei of the

1602 molecule is replaced by the isotope
17
0, then the missing transitions are

restored. The appearance of these ‘missing’ lines is an important tool for

determining the existence of isotopes like
170 and ls

O.

Let us now analyse the case of the ‘ordinary’ hydrogen molecule 'H 2 ,
which

contains two protons. Since the spin of the proton is I = j, the total nuclear

spin quantum number T can take on the values T = 0 or T = 1 . When T = 0
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the nuclear spin function is the singlet function

*£(1,2) = -^[«( l)/3(2) - /3(l)a(2)] [10.52]

which is antisymmetrical (A) with respect to the interchange 1 <-> 2 of the two

protons. For T = 1 we have the triplet of nuclear spin functions

xUh 2)

«(D«(2)

•4 [«(D/3(2) + /3(l)a(2)]

/3(l)/3(2)

[10.53]

which are symmetric (S) with respect to the interchange of the two protons.

Transitions between the T = 0 and T = 1 states occur extremely rarely,

because such transitions could result only from very small perturbations

involving the nuclear spins. Thus one can consider molecular hydrogen as

consisting of two distinct species, namely para hydrogen for which T - 0

(antisymmetrical Case) and ortho hydrogen where T = 1 (symmetrical case).

Remembering that the electronic ground state of the hydrogen molecule is a Xg

state, and that the total function Ttot must be antisymmetric in the interchange of

the two protons, we see that in this state para hydrogen can only have rotational

levels J = 0,2,4... while ortho hydrogen can only possess rotational levels

with odd valuesJ = 1, 3, 5, .... In statistical equilibrium, at room tempera-

ture, three times as many hydrogen molecules will be in T — 1 (ortho) states as

in T = 0 (para) states. As a consequence, the alternate lines in the rotational fine

structure show a 3 : 1 ratio of intensities. On cooling to temperatures of the order

of 20 K, at which hydrogen is liquid, the molecules of para hydrogen are

concentrated in their lowest allowed rotational state, J = 0, while those of ortho

hydrogen go over to their lowest allowed rotational state 3=1. Since the

coupling between the T = 0 and T = 1 states is extremely small, the ortho

hydrogen molecules will remain in the J = 1 state for a long period of time.

Eventually, after some months, the molecules will all be found in the J = 0

state of para hydrogen. If now the hydrogen is allowed to warm to room

temperature, hydrogen gas will be obtained in the pure para form.

Finally, let us consider the general case of two identical nuclei with spin

quantum number 1 ^ 0. The possible values of the Z component of spin of each

nucleus are Mj = —I, —I +1,.../ — 1, /; (2/ + 1) values in all. The total

number of combinations of MI ( 1) and Mr(2) is therefore (21 + l)
2

. Out of

these, all the 2/ + 1 spin functions of the form \m,( 1 ) Xm,(2) are symmetrical.

One-half of the remaining (21 + l)
2 - (21 + 1) functions can be combined in

symmetrical states

*n(1, 2) = —j= [XM'WXmP) + *M,'(l)*Af,(2)], M1 f Mr

[10.54]
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10.6 The inversion spectrum of ammonia

and one-half in antisymmetrical states,

2) = -j= [xm,W Xm%2) - Xm,(. 1 ) Xm,(2)], Af/ * AfJ [10.55]

The total number of symmetrical states is then

21 + 1 + ±[(2/ + l)
2 - (2/ + 1)] = (21 + m + 1) [10.56]

and the total number of antisymmetrical states is

j[(2I + l)
2 - (21 + 1)] = (21 + 1)/ [10.57]

As a result, the ratio of intensities in the lines of the rotational fine structure of

homonuclear diatomic molecules with nuclei of spin quantum number / is

(l + 1)//; for bosons this represents the relative statistical weights of the states

y8
to the states V

l
/A

, while for fermions it represents the relative statistical

weights of the states TA
to the states Ts

. The observation of this alternation of

strong and weak lines provides an important method for the determination of

nuclear spins.

10.6 THE INVERSION SPECTRUM OF AMMONIA

The ammonia molecule NH 3 has the form of a pyramid, whose summit is

occupied by the nitrogen atom, while the basis is an equilateral triangle formed

by the three hydrogen atoms (see Fig. 10.16). At equilibrium, the distance NH
is d = 1.014 A, the distance of the nitrogen atom from the plane of the

hydrogen atoms is z0 = 0.38 A and the angle a between a NH bond and the

threefold axis of symmetry of the molecule is a = 67°58'.

There are many degrees of freedom in this system, involving electronic,

vibrational and rotational motions, and resulting in a variety of energy levels and

various quantum numbers to specify them. In this section, however, we shall

assume that the NH 3 molecule is in its lowest electronic state and analyse a

particular vibrational motion which is associated with the inversion of the

molecule. To see how this comes about, let us consider one of the possible

N

10.16 Schematic diagram of the ammonia molecule.
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vibrational motions of the NH3 molecule, analogous to the movement of an

umbrella which is being opened and closed, and during which the angle a

oscillates around its equilibrium position. Neglecting all other degrees of

freedom, the potential energy of the system is then a function V(z) of the

algebraic distance z between the plane of the hydrogens and the nitrogen atom.

The curve V(z) is sketched in Fig. 10.17(a). Because the system is symmetric

with respect to the plane z — 0 it is clear that the potential V(z) must be an even

function of a. The two minima of V(z) correspond to symmetrical configurations

of the molecule such that the nitrogen atom is located respectively above and

below the plane of the hydrogen atoms (see Fig. 10.17(b)) at the equilibrium

positions z = ±z0 = ±0.38 A. We shall refer to these two configurations as the

‘up’ and ‘down’ configurations, respectively. The molecule can vibrate in the

manner indicated above in either of the two potential wells, with the nitrogen

atom on one side of the plane of the hydrogen atoms. The wave number

corresponding to this vibrational motion is v = 950 cm ,
which is in the

infra-red region.

As seen from Fig. 10.17(a), the potential F(a) forms a barrier about 2 = 0.

This barrier is due to the Coulomb repulsion between the nitrogen nucleus and

the three protons. If it were of infinite height, the nitrogen atom would never be

able to penetrate the plane of the hydrogens and be found on the other side of

this plane. However, the barrier has a finite height V0 = 2072 cm \ so that

there is a certain probability that the molecule will invert during the course of its

vibrations, that is make transitions between the ‘up’ and ‘down’ configurations.

It is important to emphasise that in the ground state (v = 0) as well as in the first

excited state (v = 1) of the vibrational mode considered here, the energy of the

molecule is lower than the potential height. As a result, the inversion of the

molecule NH 3 in the vibrational states v = 0 and v = 1 is a classically forbidden

(or hindered) motion which can only take place because of the quantum

mechanical tunnel effect.

10.17 The potential well (a) for the inversion motion (b) of ammonia.
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10.6 The inversion spectrum of ammonia

In order to understand the characteristics of this tunnelling motion let us

write the one-dimensional Schrodinger equation for the motion along the Z axis,

namely

_ d ijj(z)

+ = [10.58]
2m az

where m is an effective mass [3]. If the potential barrier between the two wells

were of infinite height, the two wells would be totally ‘disconnected’ and the

energy spectrum would consist of the same set of energy eigenvalues in each

well. Thus, each energy eigenvalue of the system would be doubly degenerate,

and the eigenfunctions corresponding to a given energy would be linear

combinations of the (normalised) ‘up’ and ‘down’ wave functions <j/u(z) and

i
~[/

d(z) which vanish identically for z =s 0 and a 5= 0, respectively. A pair of wave

functions tpu and t/td is shown in Fig. 10.18(a) for the case of the lowest (v = 0)

vibrational state.

. 0'

•I'dA
0 '

0dA
0-

02

/A
-*0 z —Zo +20 Z + Zo

Z

(a) (b)

A _
(c)

A AA ,

0
•

rr*
—

1

+Z0 2 -z0 +Zo Z — Zo +z0
z

10.18 The wave functions (a) <J/a and 0d ; (b) 0U and ibd ; (c) 0] and i//2 .

In the real situation, with a finite barrier, there is a ‘coupling’ between the two

wells which allows the inversion motion to occur. As a result, the degeneracy is

removed, and the energy levels are split into doublets (see Problem 10.5). In the

simple model considered here, the separation between the pair of energy levels

forming a doublet depends only on the nature of the potential barrier and on

the vibrational state of the molecule. As indicated in Fig. 10.17(a), the two

energy levels forming the lowest (v = 0) doublet are separated by about 9.84 x

10
5 eV (0.8 cm -1

), while the next (v = 1) lowest pair of levels are about

4.4 x 10
-

3

eV (36 cm
-1

) apart. We note that the inversion wave numbers

i>(v = 0) = 0.8 cm-1
and v(v = T) = 36 cm

-1
are much smaller than the wave

[3] Assuming that the distance between the hydrogen atoms remains constant during the motion,

the effective mass m is then the reduced mass m = 3 AfHAfN/(3 MH + AfN ), where AfH is the

mass of the hydrogen atom and AfN that of the nitrogen atom.
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number v = 950 cm 1 corresponding to the vibrational motion, since inversion

is considerably inhibited by the presence of the potential barrier.

In what follows we shall focus our attention on the lowest doublet (y - 0)

which we shall treat as a two-level system. It is clear from the above discussion

that since the potential barrier is finite we do not have rigorous ‘up’ and ‘down’

eigenfunctions <pjz) and ij/d(z) vanishing identically for s ^ 0 and z 2= 0,

respectively. Instead, we define the corresponding (normalised) wave functions

,pu(z) and i//d(z) to be those for which the nitrogen atom is most probably located

above or below the plane of the hydrogen atoms. These wave functions are

sketched in Fig. 10.18(b). It is important to realise that because the two wells

are coupled, the functions «fru and <pd are not energy eigenfunctions, and are not

orthogonal to each other. Indeed, the true energy eigenfunctions must be

either symmetric or antisymmetric with respect to the inversion operation

z —z. In terms for ipu and i//d ,
the normalised energy eigenfunctions are

therefore given by

4>i = (*Au + l/'d)
[10.59a]

and

=
—J=

(4>u
~

'Ad)
[10.59b]

The symmetric wave function corresponds to the lowest energy £i of the

doublet, while the antisymmetric wave function <h corresponds to the higher

energy E2 . Both functions <//, and ip2 are shown in Fig. 10.18(c).

Having obtained the energy eigenfunctions ipi(z) and tp2(z) we may write the

general time-dependent wave function of our rwo-level problem as (see [2.85J)

¥(*, 0 = c lU^l/h)Eu + c2 4>2(z)^
l/h)Elt [10.60]

where

E2 = Ei + AE [10-61]

and AE = 9.84 x 10~ 5 eV is the energy splitting of the doublet. Let us assume

that at time r - 0 the wave function describing the system is tf>u > so that the

nitrogen atom is most probably to be found above the plane of the hydrogen at

that time. Using [10.59] and [10.60], we then have

T(z, 0) = CjiMz) + c2 «Az(z)
= <W» = -j= [<Ai(2) + ^2(2)] [10.62]

so that

Cl
[10.63]

Substituting [10.63] into [10.60] and using [10.61], we see that the function
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Viz, t) will evolve in time according to

Viz, t) = -j= [Uz)t^'/h)E '‘ + iA2(z)e
_(l//i)£l

' e
_(,/yi)A£

‘]

= -j= [^(2) + 1foiz) e
-2mw

] e' (‘/fi)£,t [10.64]

yj L

where we have written AE = hv. At the time t = 1/2 v the wave function

[10.64] is given by

so that

^(2 , t = 1/2 v) =
-j= [Me)

~ <k(*)]e
(</A)*“

\Viz, t = l/2v)|
2 = \Uzf

[10.65]

[ 10 .66]

and the nitrogen atom is most probably to be found under the plane of the

hydrogen at t = 1/2 v. Since the energy difference AE = hv = 9.84 x 10 eV

corresponds to a frequency v — 23800 MHz, we see that the time required for

the NH 3 molecule to invert is t = 1/2 v — 2.1 x 10
11

s.

The existence of the energy doublets of the ammonia molecule was first

inferred from the analysis of its infra-red vibrational-rotational and pure

rotational spectra. However, radiative transitions between the two states

forming a doublet can also occur, the corresponding lines being in the

microwave region. In 1934, the progress made in radio-frequency techniques

allowed C. E. Cleeton and N. H. Williams to observe directly a peak in the

absorption spectrum at a wavelength A — 1.25 cm which corresponds to the

inversion frequency v — 23800 MHz of the lowest doublet. The experiment ol

Cleeton and Williams opened the new field of microwave spectroscopy [4], and

eventually made possible the development of the maser. Of course, it should be

realised that, in common with all molecular vibrational motions, the inversion

spectrum ofNH 3 contains a fine and hyperfine structure due respectively to the

rotational motion and to magnetic and quadrupole interactions involving the

nuclei.

PROBLEMS

10.1 Show that the ratio of the number of molecules in the rotational level J
to that in the lowest level, in a gas at temperature T, is R = (2J + 1)

exp[(fj 0 - Ej)/kT] where E3 = BJ{J + 1). Make a graph of this

expression as a function of J for H 35
C1 at room temperature. Show that

[4] A comprehensive treatment of microwave spectroscopy may be found in Townes and Schawlow

(1955).
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Problems

R(J) has a maximum and obtain the relative intensities of absorption

lines in a pure rotational spectrum. B = B/hc = 10.6 cm 1

for HC1.

10.2 Find the ratio of the number of molecules in the first vibrational levd to

the number in the lowest level, in a gas at temperature T. For (a) H Cl

and (b) D35
C1 calculate this ratio at 300 K, 1500 K and 3000 K.

v0 - 2990 cm -1
for F1

35
C1.

10.3 In the fundamental band of
12C 160 the spacing of the lines is found to be

constant with the value 3.86 cm *. The band is centred on a missing line

at 2170.21 cm-1
. Calculate the rotational constant B, the internuclear

separation R0 and the force constant of the vibrational motion.
^ +

10.4 In the
14N2 molecule the ground state X*Xg and the excited state b Xu

have the following constants:

vo (fivo) B

X 2359.6 14.456 2.010

b' 751.7 4.82 1.145

where all values are given in units of cm" 1 and i>0 = v0/c, (/3*>0 )
= Pvo/c

and B = B/hc.
. . . _ , _

The wave number of the electronic transition is vS '

S - v^Jc -

103678.9 cm ‘.
, , .,

(a) Construct a Deslandres table for the transitions between the vibra-

tional states v' = 0, 1, 2, 3, 4, 5 and v = 0, 1, 2, 3, 4, 5.

(b) Calculate the wave numbers of the first few members of the R and

branches for the transition r>' = 0 to z> = 0.

(c) Draw the Fortrat parabola by using the variable m = -J ~
1 for the

R branch and m = J for the P branch. Determine whether the band

is shaded to the red or to the violet and find the position of the band

liCcicl

.

10 5 Consider the one-dimensional Schrodinger equation [10.58] which de-

scribes the inversion motion of ammonia. Compare the solutions in two

cases:

(a) An infinite barrier separating two wells, so that

l/(z) = 3c z < -L, -a < z < a, z > L

V(z) = 0 -L < z < -a, a < z < L

(b) A finite barrier separating the two wells:

V(z) = 30 z < ~L and z > —L
V(z) = Vo -a<z<a
V(z) = 0 -L < z < -a and a < z < L.

Show that the (degenerate) energy levels of case (a) are each split into two

non-degenerate levels in case (b).
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H Atomic collisions: basic concepts

and potential scattering

Atomic collisions phenomena are of fundamental importance in atomic and

molecular physics and play also an important role in other fields such as

astrophysics, chemistry, plasma physics and laser physics. Basically, these

phenomena involve collisions between an ‘elementary particle (photon,

electron, . . .) and an atomic system (atom, ion, molecule) or between two

atomic systems. We have already discussed in previous chapters various

photon—atom (molecule) collision processes, such as the photoelectric effect, the

Compton effect and Raman scattering. In the next chapter, we shall study

electron—atom collisions while Chapter 13 is devoted to atom (ion)—atom

collisions. However, before analysing these complex collision processes, we

shall introduce in this chapter various basic definitions, and discuss in some

detail the simple problem of the quantum theory of scattering by a centre of

force [1].

11.1 TYPES OF COLLISIONS, CHANNELS, THRESHOLDS AND
CROSS-SECTIONS

Let us consider a typical atomic collision experiment [2] which is illustrated

schematically in Fig. 11.1. A homogeneous, well-collimated beam of mono-

energetic particles A is directed towards a target containing the scatterers B. We

shall assume that the experimental conditions have been chosen in such a way

that each target scatterer acts as if it were alone [3]. After the collision between a

beam particle A and a target particle B, some or all the particles emerging from

the interaction region are registered by detectors, which are placed outside the

path of the incident beam, so that undeflected particles are not recorded. Several

[1] More detailed accounts of the atomic scattering theory discussed in Chapters 11, 12 and 13 can

be found in the books of Bransden (1983) and Joachain (1983).

[2] The type of experiment shown in Fig. 11.1 in which a beam of particles is scattered by a

stationary target is not the only possible kind. It is often more convenient to study the scattering

of one beam of particles by another, for example, and more complicated experiments are

concerned with two or more successive scattering processes.

[3] Single scattering conditions can be achieved by making the target sufficiently thin. Coherent

scattering as in electron diffraction by crystals will not be considered here.
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processes can occur:

1. The two particles A and B are scattered without change in their internal

structure. That is,

A + B A + B [11.1]

This is known as elastic scattering.

2. The two particles A and (or) B undergo a change of their internal quantum

state during the collision. For example

A + B —» A + B' [11-2]

where B’ denotes an excited state of the particle B. Such processes are called

inelastic collisions.

3. The composite system (A + B) splits into two particles C and D, different

from A and B,

A + B-^C + D [11.3]

or into more than two particles:

A + B^ Cx + C2 +
•

• C„ [11.4]

These collision processes are known as reactions.

Channels

A channel is a possible mode of fragmentation of the composite system (A + B)

during the collision. It is characterised by the number and the nature of the

fragments into which the system (A 4- B) can be decomposed. In elastic

collisions the two colliding particles A and B remain in the initial channel, while

inelastic collisions or reactions are processes leading from a given initial channel

to a different final channel. A channel is said to be open if the corresponding

collision is allowed by known conservation laws (such as energy conservation);

otherwise it is said to be closed.
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Thresholds

Let us consider a general reaction of the type [11 .4], and denote by wA , toB , so i,

w2 , . w„ the internal energies of the particles A, B, Ci , C2 , . . . C„. Working

in the centre of mass (CM) system (in which the centre of mass of the composite

system (A + B) is at rest) we write the energy conservation law as

Ti + wA + wB = Tf + wi + w2
'

'
' w„ [11 -5]

where T, and Tf are the initial and final kinetic energies, respectively. This

relation may also be written as

Tf = Tj + Qi{ [11.6]

where

Qif = wA + wB - (w x + w2 + wn) [11.7]

is the change in internal energy which has occurred.

A necessary condition for the reaction to take place is that T{ 5* 0. As a result,

if 3= 0 the reaction is always allowed from the point of view of energy

conservation (it can be forbidden by other conservation laws) and is called

exothermic. On the other hand, if Qi(
< 0, the reaction is said to be endothermic.

It can only occur if

Ti^T\ [ 11 . 8]

where T\ = -Qif is known as the threshold of the reaction (in the CM system).

In the laboratory system - where the target particle B is at rest before the

collision, the corresponding threshold energy (T')L is given by (see [A2.9])

(TDl
mA +

mB

[11.9]

where mA and mB are the masses of the particles A and B, respectively.

In order to illustrate the notions of channels and thresholds introduced above,

let us consider the scattering of electrons by hydrogen atoms initially in the

ground state Is. We shall take the mass of the proton to be infinite with respect

to the electron mass, so that the centre of mass and laboratory systems coincide.

For incident electron energies E(= 7)) below the threshold energy for excitation of

the m = 2 levels of hydrogen (that is for E < 10.2 eV) the only open final channel

corresponds to the elastic scattering process:

e~.+ H(ls) —* e~ + H(ls)

For incident electron energies E ranging between the n = 2 excitation threshold

(10.2 eV) and the ionisation threshold at 13.6 eV, the inelastic channels

e + H* - where H* denotes an excited hydrogen atom - open successively,

corresponding to the inelastic collisions

e“ + H(ls) —> e + H*
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Finally, if E 3= 13.6 eV, the ionisation channel (H + + 2e “ ) becomes open,

corresponding to the ionisation reaction

e“ + H(ls) —» H + + 2e~

Cross-sections

The results of collision experiments are usually expressed in terms of quantities

called cross-sections. Generalising the definition given in Appendix 1 for the

simple case of scattering by a centre of force, we shall define the cross-section for a

certain type ofevent in a given collision as the ratio of the number ofevents of this type

per unit time and per unit scatterer, to the flux of the incident particles with respect to

the target. Cross-sections are independent of the incident flux so that we may
choose this number to be one, and cross-sections can also be defined as transition

probabilities per unit time, per unit target scatterer and per unit flux of the incident

particles with respect to the target [4].

Consider for example the reaction [11.3], Let NA be the flux of incident

particles relative to the target (defined as the number of particles A crossing per

unit time a unit area placed at right angles to the direction of the incident beam
and at rest with respect to the target) and let nB be the number of particles B
within the target interacting with the incident beam. Calling N^,t the total

number of particles C which, together with the particles D, have been produced

per unit time in the collision between the beam particles A and the target

particles B, we have

[ 11 . 10]

where cr£t is the total cross-section for the reaction [11.3]. Total cross-sections

for elastic scattering, inelastic scattering and reactions of the type [11.4] may
be defined in a similar way. Finally, if we denote by the total number of

particles A which have interacted per unit time with target scatterers, we may
define a total (complete) cross-section crtot by the relation

Ntot
— NA^BCOot [11.11]

If only elastic scattering between the particles A and B can occur, then crtot is

just equal to the total elastic cross-section cr[‘ t . However, when other channels

than the elastic one are open, then crtot is the sum of the total cross-sections

corresponding to each of the open channels.

It is apparent from the foregoing discussion that total cross-sections have the

dimensions of an area. Since in atomic units (a.u.) the unit of length is the first

Bohr radius a0 — 5.29 x 10
11 m, it is convenient to express atomic cross-

sections in units of a\ = 2.80 x 10
-21 m2

. Units of iral = 8.80 x 10
21 m2

are also often used for atomic total cross-sections.

[4] This is the same definition as that used for the absorption and stimulated emission of radiation in

Chapter 4.
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In order to define differential cross-sections, we must choose a coordinate

system or reference framework. Two convenient choices are the laboratory

system and centre of mass system which have been introduced above. Experi-

ments are often, but not always [5], performed in the laboratory system, while

calculations are usually carried out in the CM system, where the three degrees of

freedom attached to the centre of mass of the system (A + B) may be ignored.

The relationship between the laboratory and centre of mass differential cross-

sections is established in Appendix 2 for the simple case of elastic scattering.

The results obtained in Appendix 2 can be generalised in a straightforward way

(Problem 11.1) to inelastic collisions and reactions involving two particles

(complex or not) in the initial or final states-

11.2 POTENTIAL SCATTERING. GENERAL FEATURES

In this and the next three sections, we shall study the simplest collision

problem, which is the non-relativistic scattering of a spinless particle by a potential

F(r). From our discussion in Section 2.7 it is apparent that this problem is

equivalent to that of the elastic collision between two structureless particles,

treated in their centre of mass system.

The stationary state wave function for scattering

We start from the Schrodinger equation

r h2
,V2 + F(r)

2m

where m denotes the mass of the particle. The potential is taken to be real and

independent of the time, in which case the equation [11.12] has stationary

solutions of the form

¥(r, 0 = ik ~ *(r, t)

dl
[ 11 . 12 ]

Tfr, t) = <Kr)e
iEt/fi [11.13]

where t/»(r) is a solution of the time-independent Schrodinger equation

t2
h' ,

V2 + V(r)
2m

<Kr) = EtKr)

and E, the energy of the particle, has the well-defined value

2l2

E =
hzk 1

2m
—— = - mv
2m 2

[11.14]

[11.15]

[5] Crossed beam experiments in which two beams, inclined at a certain angle, interact, are neither

in the centre of mass nor the laboratory systems, but the measured quantities are easily

transformed to one of the standard reference systems.
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Here

IPfh k = N = |kf |, Vi = |vf |

[11.16]

are respectively the magnitudes of the initial (or final) momentum, wave vector

and velocity of the particle, with

Pi = hki = m\i, p f = hk{ = mvf [11-17]

It is convenient to introduce the reduced potential

U(r) = ^ V(r) [11-18]

so that [11-14] may be rewritten as

[V2 + k
2 - U{r)]<Kr) = 0 [11-19]

In what follows we shall assume that the potential vanishes faster than 1/r for

large r. In this case, the scattering wave function (which we denote by 4>v) satisfies

at large r the free-particle Schrodinger equation

(V 2 + k
2
)tp(i) = 0 [11.20]

and in this region we can write

i/'k
i

(*)
~ ‘/'inc(r) + iAscW [11.21]

r—

where i/*inc represents the incident beam of particles and <Jjsc represents the

scattered particles. Since the incident particles are monoenergetic and are

travelling in the direction k;, which we take to be parallel to the Z axis, the

incident beam can be represented by the plane wave

i//mc(r) = A exp(ikj r) = A exp(tfe) [11.22]

where A is an arbitrary normalisation constant. Since the number of particles

per unit volume is |i/f;nc
|

2 = A 2 and each particle has the velocity v — hk/m ,
the

incident flux F is

F - v\A\
2 [11-23]

A plane wave is of infinite extent in a transverse direction, but in any real

experiment the beam is collimated and has a finite transverse extension.

However the transverse dimensions of the beam, which may be of the order of

1 cm to 1 mm, are sufficiently large for the corresponding uncertainty in

momentum to be negligible and for the wave function to be described accu-

rately by a plane wave over the scattering region (which, for atoms, is ol the

order ~10-8
cm).

Far from the scatterer, the scattered wave function must represent an

outward flow of particles from the scattering centre. It has the form of an

outgoing spherical wave, the amplitude of which depends on the direction of r
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and on the energy E (i.e. on k ). We write

iAscW = Af(k, e ,<t>)

~ikr

[11.24]

where (6 , <j>) are the polar angles of r, with respect to the Z axis (the incident

direction) and / is known as the scattering amplitude. The function i//9C is an

asymptotic solution (large r) of the free-particle Schrodinger equation, so that

in the large r region the wave function </fk .(r) must satisfy the asymptotic boundary

condition

<Ak,W Jkr
t
ikr

'

+ f{k, e, d>)— [11.25]

The cross-section

Using the general definition of cross-sections, given in Section 11.1, we

introduce a differential cross-section, dcr/dfl. We imagine that the detector

subtends at the scattering centre a small solid angle dfl and is placed in the

direction (6, <j>) at a distance r. Then dcr/dQ is defined as the ratio of the outgoing

flux of particles passing through the area r
2
dfl to the incident flux. The detector

is placed outside the incident beam, so that only scattered particles are recorded

and the corresponding flux can be calculated from ipsc alone.

The probability current density j
has been obtained in Section 2.2 (lee

[2.50]). For a stationary state, it is given by

-
(V<A*)<A [11.26]

The gradient operator in spherical coordinates is

a l a , l a— f -i 0 -I :

dr r 36 r sm 9 d<j)

[11-27]

so that the radial current is given by

ft

2mi
1

di/j dijj*

4>
— r~
dr dr

[11.28]

If we substitute the expression [11.24] for t//sc into [11.28], we find that at

large r the corresponding radial current, jsc • r, is

j5C -f= \A\
2
v\f(k, 9, d>)|

2
/r

2 [11.29]

where terms of higher order in 1/r have been neglected. The outgoing flux

per unit solid angle is just (;scr
2 dfl)/dO, so that the differential cross-section is

^ = |/0M,d>)|
2 [11.30]

where we have used [11.23] for the incident flux.
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The total cross-section for elastic scattering is obtained by integrating over all

solid angles, namely

<Tu

da

dfT
dfl

= sin 9 dd

2lT da

o

d4)
da

[11.31]

We notice that the cross-section is determined by the amplitude of the

asymptotic wave function, which corresponds to the experimental conditions

because any detector will be placed at a very large distance from the scattering

region, compared with atomic dimensions.

The optical theorem

Since the total number of particles entering the scattering region per unit time

must be balanced by the number leaving it per unit time, we must have

r
2

(j
• r) dfl = 0 [11.32]

where the integration is over all angles and j
• r is the complete radial current,

rather than the outgoing current jsc
‘ r. The complete radial current is computed

by substituting [11.21] into [11.28], which gives up to terms of order (1/r
3
)

_ — ikr~\

j r = |A
|

2 e
~,krcos 8 + (j,)

r

Jkr

ik cos 6 e
ikr cos 6 + f(k, 9, 4>)ik + c.c. [11.33]

where c.c. denotes the complex conjugate and we have used the fact that

z = r cos 6. By inserting this expression into [11.32], one finds (Problem 11.2)

Im f{k, 6 = 0) =

or, using [11.30]

4'7T'
I/I

2
dfl

crtot = y Im f(k, 9 = 0) [11.34]

This relation is known as the optical theorem and expresses conservation of

the probability flux.

11.3 THE METHOD OF PARTIAL WAVES

We now turn to the problem of calculating the scattering amplitude, from

which the cross-section can be found from [11.30]. We shall first consider the

case of a central potential V(r), which depends only on the magnitude r of the
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vector r. As we have seen in Section 2.6 the Hamiltonian operator

H =~ V2 + V(r) [11.35]
2m

then commutes with the operators L2 and Lz , and the Schrodinger equation

[1 1.14] is separable in spherical polar coordinates. In addition, the problem also

possesses symmetry about the incident direction (which coincides with our

Z axis), so that the wave function - and hence the scattering amplitude

and the differential cross-section - is independent of the azimuthal angle </>. The

wave function t/>k may therefore be expanded in a series of Legendre polyno-

mials (which form a complete set in the interval - 1 cos 0 =s +1) as

oc

4>k (k, r, 0) = 2 R,(k, r)P/(cos 6) [11.36]

z=o

The radial equations

The equations satisfied by the radial functions Ri(k, r)can be found as in Section

2.6. We have

d2
2

dr
2

r dr

1(1 + 1 ) - U(r) + k
2

R,(k, r) = 0 [11.37]

where U(f) is given by [11.18]. For the special case of the Coulomb interaction!

these are the same equations as we found in [3.6]; but in that case, we were looking

for solutions ofnegative energy . As shown in Section 2 . 6 , the equations [
1 1 . 37 ] can

be simplified by introducing the new radial functions

u,(k, r) = rR
:
(k, r) 1 11.38]

which satisfy the equations

d2

dr
2

1(1 + 1)
U(r) + k

2
u,(k, r) = 0 [11.39]

There is no loss of generality in assuming u
t
(k, r) to be real since both the real

and imaginary parts of a complex U[(k, r) would separately satisfy the radial

equations [1 1.39].

For potentials which are less singular than r
2

at the origin, the radial

function u
{
(k, r) can be expanded in a power series,

ui(k, r) = 2 anr
n

[11.40|
n

and the examination of the indicial equation [6] shows that there are two

solutions, one regular at the origin, which behaves like

Ul(k,r) ~ r
,+ 1 - [11.41a]

r—>0

[6] Series solutions of differential equations are described in Mathews and Walker (1973).

469



Atomic collisions

and one irregular, such that

U[(k, r)

11.3

[11.41b]

In order to describe a physical scattering situation, the wave function </»k must

be finite everywhere, so that we must choose for u,(k, r) the

^
g^

r

^
U “

which behaves like r
;+1

at the origin. It is clear from [11.38] that the

corresponding regular radial function Ri(k, r) behaves like r as r -

Let us now examine the behaviour of the functions R,(k,r) or ufk, r) for la g

,. WeLl assume shat the potential may be neglected when ,

given value a. In this external region r > a the equation [11.37] then reduces to

the free particle equation

~_d^

dp2

2 d_

P dp
+ 1 -

IQ + D\
R,(p) = ° [11.42]

where we have set p = kr. This equation is known as the spherical Bessel

differential equation. The general solution of this equation is a linear combination

of the spherical Bessel function

h - 1 /7(P)

and the spherical Neumann function

»,(P) = (-D
'+1

^ \i /2

5)
2 t-i /2(P)

[11.43]

[11.44]

where J (p) is a Bessel function of order v. We have already encountered the

rPherical Bessel functions;] in Section 2.6 when we discussed the expansion of a

plane wave in Legendre polynomials, and we shall return to this point shortly

We recall here for convenience the expressions of the first three spherical Bessel

functions, and also give the first three spherical Neumann functions, name >

io(p)
=

«o(p)
=

sin p

P

cos p

>l(p)
=

sin p cos p

cos p
«i(p)

= —^2

P

sin p

hip) =
3 ’

-3 sin p
P
3

Pi

1

[11.45]

cos p

»2(P)
= - LI

C°SP --2 si"P
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The behaviour of the functions jt
and rt

t
for small p is given by

-
1 )!! [

1 !

— +
(p2/2)2—— - • • -1 [11.46a]

(21 + 3) 21(2/ + 3)(2 1 +5) J

1

(21- 1)!! I" p
2
/2 (P

2
/2)

2

p
/+1 1

1!(1 - 2!) 2!(1 - 2/)(3 - 21)

[11.46b]

where

(21
-

1)!! = 1.3.5
•

• (21 - 1); (21 - 1)!! = 1 for / = 0

Thus the spherical Bessel function;';, which is proportional to p
l

as p —

*

0, is a

regular solution of [11.42], On the other hand, the function n,, which has a pole

of order (/ + 1) at p = 0 is an irregular solution of [11.42].

For p somewhat larger than 1(1+ 1) one may use the asymptotic formulae

ji(p)
-* ~ sin (p - /

7

t/2)
p—

P

[11.47a]

«/(p)
—» cos(p - /tt/2)

p
[11.47b]

Let us now return to the radial functions R;(k, r) and Ui(k, r). We see that in

the external region r > a, Ri(k, r) must be a linear combination of j,(kr) and

n,(kr)

R,(k, r) = = B
l
(k)j

l
(kr) + C&Mkr) [11 .48]

r

where B
t
(k) and C,(k) are real ‘constants of integration’ which are independent

of r. Using the asymptotic formulae [11.47], we see that

R,(k, f) =
U;(k, r)

am sil,(*r :',,/2) - cm c°5(tr

;
W)

1 1 1 .49,
kT Rr

It is convenient to set

Ai(k) = [Bj(k) + Cj(k)]*(b\|l/2 [11.50a]

471



Atomic collisions
11.3

and

tan S,m = -Cm/Bm [ll-50b]

so that we obtain for Rfk, r) the simple asymptotic behaviour

R[(k, r)

uJ^lA ~ ^sin [kr - Itt/2 + 8,(*)] [H-51]

r kr

It may be shown (Problem 11.3) that this expression is valid for all potentials

which vanish faster than r”
1 when r ®. Using [11.48] and [11.50b], we see

that for r > a the radial function can be written as

R,(k, r) = = B,(k)[j,(kr)
- tan S^kMkr)] [H-52]

The quantities 8fk) which are called phase shifts, display the influence of the

interaction. Indeed, in the complete absence of interaction the free particle

equation [11.42] holds for all r and the boundary condition at r - 0 excludes

the irregular solution n, in [1 1.48], thus forcing us to set C, - 0. As a result the

corresponding free particle radial functions R, are proportional to j,(kr), in

agreement with the expansion [2.260] of a plane wave in Legendre polynomials,

oc

kz _ Affkrcos e _ ^ ^ (21 + \)i‘j,(kr)P,(cos 6) [11-53]

1=0

where A is an arbitrary normalisation constant as in [11.22]. The asymptotic

behaviour of R° is then

R%k, r) = r~
lu%k, r)

~ Afkr)”
1

sin {kr - hr/2) [H-54]

r—

To relate the scattering amplitude to the phase shifts, we use [11.53] to write

the asymptotic form of </'kl (
r)> glven by [11-25] as

Akr

2 (21 + Y)i
l
(kr)

1
sin(fcr - ln/2)Pi(cos 0) + f(k, 6

) ^

= A

/=0

jkr

r

ikr f
3c

r {,?»

— W^)-2
o (^!

(2/+1)^cose)

+^ fi (-i/f^p + i)P;(cos e) [11.55]

On the other hand, the asymptotic form of «Au,(r) can be written from [ 1 1 . 5 1] and
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[11.36] as

<Ak 0) ~ 2 (kr)
lA,(k)P/(cos 0)

r—*> /~0

x {exp[i(&r — Itt/2 + 6/)] — exp[— i(kr — Itt/2 + 6;)]} [11.56]

On equating the coefficients of e
lkr

in [11.55] and [11.56] we find that

A
t
{k) = A(2l + I)!

7
exp[iS,(&)] [11.57]

Next, by matching the coefficients of e
lkr and using [11.57], we have

f(k, 0)
= ~ 2 (2/ + l){exp[2i6;(A)] - l}P/(cos 0) [11.58]

2ik i=o

which is the desired result. We remark that the scattering amplitude is

independent of the choice of the ‘normalisation constants’ A t
(k).

Turning now to the differential cross-section, we have from [11.30] and

[11.58]

£ - '**• *)|2

= Tl 2 2 (2l + l)(21 + l)exp {t[S/(As) - 5, -(*)]}
« 1=0 1 = 0

x sin 8i(k) sin 8r(k)P/cos 0)Pr(cos 0)

and the total cross-section is given by

[11.59]

GTtot(fc) = 2 77
i

0 dn (k

,

0) sin 0 d0

rr 2 ( 2l + ] ) sin
2
5;(fe)

1,2k i=o

[11.60]

where we have used the result [2.171]. We may also write [11.60] as

o-tot(k)
= 2 °i(*) [11.61]

where each partial wave cross-section u/k) is given by

7i

a/k) = —j (21 + 1) sin
2
8/k) [11. 62 J

The maximum contribution of each partial wave to the total cross-section is

af“(k) = jt (21 + 1 ) [11.63]

llUiiiuJ
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and occurs when 8t
(k) = (n + 1/2)7t, n - 0, ±1, ±2, ... In contrast, when

§[(k) = mr at a certain value of k there is no contribution to the scattering from

the partial wave of order / at that value of/:. We also note that the optical theorem

[11.34] follows by comparing [11.58] with [11.60] and using the fact that

It is clear that the method of partial waves is most useful when only a small

number of partial waves contribute to the scattering. This situation occurs at

low incident energies. Indeed, the ‘effective (reduced) potential’ which occurs in

the radial equations [11.37] or [11.39] is

UeS(r) = U(r) + [11-64]

Thus, as / increases, the centrifugal barrier term 1(1 + l)/r
2 becomes more

important and the incident particle needs more energy to overcome this

repulsion and to probe the interaction region where the potential acts. Hence at

low energies we expect that only a few partial waves will be required in the

partial wave expansion.

In order to obtain an estimate of the number of partial waves which are

needed for a given value of the incident energy, we note that the first and most

important maximum of the free radial wave function j/(kr) occurs approximately

at r<) ~ l/k while for small r,jt
(kr) is small, and behaves like r

l
as r-* 0. Thus, if

the potential has a ‘range’ a (that is, it acts in a region r < a), and if a <S l/k, the

function ji will remain small in the scattering region, and the corresponding

phase shift will be negligible. It is then reasonable to cut off the partial wave

expansion at a value Zmax = ka. Hence, if ka is small only a small number of

phase shifts must be calculated.

We must also come to the above conclusion by using a simple (non-rigorous)

semi-classical argument. If a potential vanishes beyond a certain distance a, then

according to classical mechanics an incident particle having an impact parameter

b will be deflected or not according to whether b < a or b >a (see Fig. 11.2).

Now the impact parameter is given by

b = - [H-65]
P

11.2 Classical scattering of a particle with impact parameter b, by a potential of finite range a. If

b > a no scattering occurs.
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where p and L are the magnitudes of the particle momentum and orbital angular

momentum, respectively. Thus, according to classical mechanics, particles with

orbital angular momentum

L > pa [11.66a] J

are not scattered. Let us now assume that the quantity ka is somewhat larger

than unity, so that the reduced de Broglie wavelength X = A/2 77 = k of the

particle is small with respect to a and we are in a semi-classical situation. We

may then write L — hi and since p — hk, we see that scattering is again

expected to be small in angular momentum states for which

l>ka ' [11.66b]

The phase shifts

Before we turn to the problem of the actual determination of the phase shifts, we

shall discuss a few of their key properties [7]. First of all, the relation between

the phase shifts and the interaction potential may be analysed by considering the

scattering first by a reduced potential U(r) and then by a different reduced

potential U(r). The radial equations are (see [11.39])

1(1 + 1 ) - U(r) + k
2

ui(k, r) = 0 [11.67a]

and

Kl + 1 ) - U(r) + k
2

«/(*, 0 = 0 [11.67b)

We shall adopt a normalisation such that in the external region r > a

R,(k, r) — r
1
ut

(k, r) = ji(kr) - tan 5,(k)ni(kr)

_ — [sin(£r - Itt/2) + tan 8,(k) cos(kr - lir/2)] [11.68J

r-co kr

with similar relations for Ri and W/, in which tan 5; is replaced by tan

The Wronskian of the two solutions u, and u, is defined as

W(uh «/) = ufil - u'fit [11.69]

where the prime denotes a derivative with respect to r. Premultiplying [1 1.67a]

by u;, [11.67b] by uu subtracting term by term, and using [11.69], we have

-j- W(uh hi)
= - £0m/“/ [1L70]

[7] Further properties of the phase shifts are given by Bransden (1983) and Joachain (1983).
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Upon integration over the variable r from 0 to we obtain

tan 0/(k) - tan Sfik) = -k

= -k

.0

r oo

Ui(k, r)[U(r) - U(r)]ui(k, r) dr

Rt(k, r)[U(r) —U(r)]R
t
(k, r)r

2
dr

[11.71]

where we have used the fact that u^k, 0) — ufik, 0) — 0, together with [11 .68].

We note from [11.71] that if the difference (U -U) is small, so that

ufit = (u,)
2

,
the difference (8, - 8,) has the opposite sign to that of (U - U).

Moreover, by constructing a series of ‘comparison potentials’ between U and U,

this result remains true for all (JJ — U). If we adopt an absolute definition of

phase shifts by requiring that 8
t
= 0 if U — 0, we see from [11.71] that if the

potential is everywhere repulsive (positive for all r) then 8; < 0. On the other

hand, a potential which is everywhere attractive (negative for all r) yields phase

shifts with 6; > 0. By choosing U — 0 we also deduce from [11.71] the

important integral representation

tan 8t = ~k ‘j,(kr)U(r)R,(k , r)r
2 dr [11.72]

which is valid provided the radial function, R !y is normalised according to

[ 11 . 68].

In order to compute the phase shifts, the radial equations [11.37] or [11.39]

are solved (in general by numerical methods) in the internal region (r < a)

subject to the boundary conditions at the origin discussed above. We then

require both R t
and dRjdr to be continuous at r = a. An equivalent procedure

consists in requiring that the logarithmic derivative [Rf^dRJdr)] is con-

tinuous at r = a. Since the radial wave function R; is given in the external region

by [11.52], and denoting by

y

i

= [flrW/drXU* [11-73]

the value of the logarithmic derivative of the internal solution at r

have

yfik) =
k[jl(ka) - tan 8,(k) n'fika)]

jfika)
- tan 8

;
(k) nfika)

a, we

[11.74]

where

Thus

j'fika)
=

dhip)

dp
; n'fika) =

p — ka

dnfip)

dp p—ka

_ kj'fika) - yi(k)j,(ka)
tan

1

kn'fika) - yt
(k)ni{ka)

[11.75]
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The behaviour of the phase shifts at low energies is readily obtained by using

the properties of the functions jt(p) and nt{p) for small values of p. For example,

if we define the quantity

y, = lim yt
(k) [11.76]

k^o

it may be shown that provided

ayi f —(l + 1) [11.77]

the quantity tan S,(k) behaves like k
2,+ l

as k -» 0. Except for the s wave (/ = 0)

contribution which in general tends towards a non-zero constant, all partial

cross-sections crfl 1) then vanish as when k —

*

0. Thus the scattering is

isotropic at very low energies and atm = cr0 . Defining the scattering length a as

a = —lim
tan 80(k)

k

the scattering amplitude is such that

f ^ -a
k—>0

[11.78]

[11.79]

while the differential cross-section is given by

drr
a

dfl k~*o

[11.80]

and the total cross-section becomes

<rtot
—* 4na2 [11.81]

k^o

Let us now examine the behaviour of the phase shifts at high energies. For

fixed l and large k we expect that the importance of the potential will become

vanishingly small, so that the radial function R /
will approach the corresponding

free spherical wave jt . Hence, using [11.72] we may write tan 5; — (tan 5
( )W i

,

where

(tan 5 i)m = [ji(kr)]
2
U(r)r

2
dr [11.82]

is called the first Bom approximation to tan 8,.

Examples

As a first example of the determination of the phase shifts, let us consider a

square well potential

U(r) =
(U0 > 0),

[11.83]
r < a

r > a
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In the internal region r < a the radial equation [11.37] becomes

d2 2d /(/ + 1) 2
1 1

- K R,(k, r) = 0 [11.84]
dr

2
r dr r

2

where we have set k = (k
2 + U0)

l/2
. Upon comparison with [1 1 .42] we see that

the regular solution of [11.84] is

Ri(k, r) = Di(k)ji(Kr) [11.85]

where D,(k ) is a normalisation constant. In the external region r > a, the radial

wave function R/ is given by [11.52], so we find that tan 8
:
(k) is given by

[11.75], with

... KJiixa)

7iW = T—7"

Ji(xa)

For example, in the case of s wave (/ = 0) scattering, we have

k tan(tca) - k tan(ka)
tan S0 =

k + k tan(&a) tan(/«z)

and

Sn = -ka + tan
1 — tan Ka

K

[ 11 . 86]

[11.87]

[
11 . 88]

where we have used the fact that j0(p) = (sin p)/

p

and n0(p) - -(cos p)/p. We
see from [11.78] and [11.87] that the scattering length is given by

a
tan(A 0a)

A0a
a [11.89]

where A0 = JTT0 . We note that for weak couplings (A0a « 1) the phase shift

80(k) tends to zero as k —» 0 and the scattering length a is negative. When A0a

reaches the value ir/2 such that the potential is nearly able to bind an s wave

bound state, the phase shift 80{k) tends to ;r/2 as k -»• 0. The scattering length

then becomes infinite and the s wave cross-section diverges like k
z alk = 0,

thus providing an example of a ‘zero-energy resonance’. If A0a is just above 77/2,

then 80(k) will tend to n as k —» 0. Repeating this argument, it is seen that if A0

is increased in such a way that the potential can support n bound s states, then

the s wave phase shift is such that

lim 80(k)
= mr [11.90]

Moreover, when A0a = (2n + l)7r/2, so that the potential is about to support its

(n + l)th bound s state, we have

lim 80(k)
=

k^O
[11.91]
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11.3 The method of partial waves

A similar study can also be carried out for higher angular momenta (/ > 0). In

particular, it may be shown that

lim 8t(k) = «/Tr [11.92]

where n, is the number of bound states of angular momentum l > 0 which can

be supported by the potential. The results [11.90]—[1 1.92] turn out to be true

for more general interactions than the square well considered here; they are

examples of Levinson’s theorem.

Another simple, but interesting example is the ‘hard sphere ’ potential

U(r) =
r a

r > a
[ 11 .93 ]

Since in this case the particle cannot penetrate into the region r < a, the

boundary condition is simply that the ‘external’ radial function [11.52] must

vanish at r — a. Thus

tan 8, =
it(ka)

n
t
(ka)

[11.94]

and in this case y, is infinite. Using [11.46] we see that in the low-energy limit

(.ka < 1)

tan 8

1

—
Cka)

2l+1

(21 - 1 ) 11 (2 / - 1 )!!

[11.95]

so that | tan <5,| quickly decreases as / increases. In fact the low-energy scattering

is always dominated by the s wave (/ = 0), the corresponding phase shift being

S0 = ~ka [11.96]

As k —> 0, the differential cross-section is isotropic and given by dcr/dO = a
2

,

and the total cross-section at zero energy becomes

crtot
—* 4n

a

2 [11.97]

k^O

which is four times the classical value.

At high energies (ka > 1), we may use the asymptotic formulae [11.47J to

obtain from [11.94] the approximate expressions of the phase shifts. That is,

8i
— - ka + 2^ [11.98]

It is worth noting that because of the singular nature of the hard sphere

potential [11.93] the phase shifts [11.98] do not vanish as k —

*

c°, but tend to

— oo in that limit. Using [11.60] we write the total cross-section as

crtot = (2/ + 1) sin
2

^
hr - kaj [ 11 . 99]
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Taking / „ = ka in accordance with our general discussion of the partial wave
* rvx a ^q max - i

method, and pairing successive terms in [11.99], we have

4tt
ftot

~

+ 2

sin
2
(ka) + sin

2
! ka - -it

sin
2

1
ka — -7r) + sin

2
{ka tt) H-

• * *

= [1U001
R 1=0

This result is twice the classical value, which at first sight is surprising since

we have ka > 1. However, because the ‘hard sphere’ potential has a sudden

discontinuity at r = a the scattering can never be treated classically. A detailed

study of this problem shows that at high energies half of the total cross-section

arises from ‘diffraction’ or ‘shadow’ scattering which is produced by interfer-

ence between the incident wave and the outgoing scattered wave, and occurs

within a narrow diffraction peak in the forward direction.

Resonances

In general the phase shifts - and therefore also the cross sections - vary slowly

as a function of the incident energy and of the strength of the potentta .

However, in certain cases it may happen that a phase shift 8, will vary rapid y

a certain energy interval, causing a dramatic change in the corresponding par la

cross-section cr, in that energy range. r , . .

In order to study this problem, we first use [11.75] to write exp(218,) in t e

form

a2u, yt~ ri
+ ls‘

e
2,s

' = e‘
y/

- b is,

[ 11 . 101 ]

where y, is the logarithmic derivative of the internal solution R, at r - a (see

[11.73]) and the real quantities r, and s, are defined by

2l(, _ iiika) - in,(ka)

and

ji(ka) + in
:
(ka)

j'i(ka) + in’iika)

r? + lS
‘ j,(ka)

+ ini{ka)

[11.102a]

[11.102b]

Since the quantity (y,
- r, + is,)/(y, - r, - is,) is of unit modulus, it may be

written as exp(2 ip,), where

p,
= arg(y, - r, + is,)

= tan
- [11.103]

y

i
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11.3 The method of partial waves

and therefore we see from [11.101] that the phase shift 8/ can be decomposed as

5, = ft + Pi [11.104]

The first term ft on the right of this equation has an interesting significance.

Indeed, by comparing [11.94] and [11.102a], we see that the quantity ft corre-

sponds to ‘hard sphere’ scattering by a potential of ‘range’ a. The function ft

does not depend on the shape and depth of the potential. On the other hand, the

term p, does depend on the details of the potential through the logarithmic

derivative yt
.

The quantities ft, r, and s, vary, in general, slowly and smoothly with the

incident particle energy. On the other hand, the logarithmic derivative y„ and

hence the contribution p, to the phase shift, may in certain cases [8] vary rapidly

in a small energy interval of width T about a given energy value E r . For

example, if p, increases rapidly through an odd multiple of tc/2 when the energy

passes through the value ET (see Fig. 11.3(a)), we may write p, =* 8\ in the

energy interval (Er — T/2, Er + T/2), with

S']
= tan

1

2(Er - E)
[ 11 . 105 ]

In that energy interval the phase shift [1 1. 104] is therefore given approximately

by 8t = ft + 8
r

u and will also rapidly increase through an odd multiple of tt/2.

This behaviour is called a resonance, with Er being the resonance energy and F the

width of the resonance . In the vicinity of the resonance energy E = Er , [ 1 1 . 10 1 j

may be written as

e
2,s ' = e

,2i(i
E - E r

- tT/2

E -E t
+ tT/2

[11.106|

Let us call /, the contribution of the 2-th partial wave to the scattering

amplitude. From [11.58] and [11.106] we see that in the energy interval

(Er
- r/2, Er + f/2) we have

//
=

21 + 1 r/2
sin ft + e

!

' ^ _ E _ -

r/2
7ft(cos 6) [11.107]

Thus, near the resonance energy E = Er , the quantity /; will be dominated by

the second term on the right of [1 1 . 107]. In what follows we shall assume for the

sake of simplicity that the ‘hard sphere’ scattering in the 7th partial wave (due to

ft) can be completely neglected, together with the contribution of other partial

waves to the scattering amplitude [11.58] In that (idealised) case, which

corresponds to a pure resonance the full scattering amplitude can be written in

[8] A simple example is that of low-energy scattering by a strongly attractive square well, which it

treated in detail in Joachain (1983).
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the vicinity of E = Er as

/ =
21 +1 r/2

k Et
- E — tT/2

P/(COS ff) [11.108]

and the corresponding differential cross-section is

do-

dO

(21 + l )
2

P
r2

/4

(£ r
- £)

2 + F2
/4
P2

(cos 0) [11.109]

We see that for any scattering angle 6 the ‘pure resonance’ differential

cross-section [11.109] exhibits a sharp peak of width V about the resonance

energy E = E r . It is also apparent that near E E r the shape of the angular

distribution does not depend on the energy, but only on the value of the angular

momentum quantum number l. Integrating [11.109] over the scattering angle,

we obtain the ‘pure resonance’ total cross-section

&tot &l

Ait(21 + 1) r2
/4

k
2 (E - Er)

2 + r2
/4

[ 11 . 110]

which is called the (one-level) Breit-Wigner formula , and is illustrated in

Fig. 11.3(b). We note that at E = Er , axot reaches its maximum value and this

is identical with afax given by LI 1.63]. The shape of a, is the characteristic

Lorentz shape which we already encountered in Chapter 4.

It is worth stressing that the above discussion of a ‘pure resonance’ represents

an idealisation. Within- the framework of potential scattering, it is often

necessary to take into account the effect of ‘hard sphere’ scattering in the /th

partial wave, and the contribution of the other (non-resonant) partial waves to

the scattering amplitude. Moreover, in actual atomic collision processes, where

resonance phenomena are of great interest, the complex (many-body) structure

of the particles involved in the collision must also be taken into account. We
shall return to this point in the next chapter, where the narrow resonances

observed in the scattering of electrons by atoms will be discussed.

The physical significance of a narrow resonance can be inferred by examining

the amplitude of the radial wave function inside the interaction region. Let us

consider for example the simple case of a strongly attractive square well. If we

normalise the radial wave ufk, r) outside the well to unit amplitude, namely

ufk, r) = sin(kr - -jin + Si), r s* a [11.111]

then near E = E r the corresponding ‘internal’ wave function, obtained by

requiring that the function a, and its first derivative be continuous at r = a, is

given by [9]

(21 - 1 )!! T/2
,

...
. M1

ui(k, r) -
(kay _ Ey)2 + p2/4ji/2

^rfiixr

[9] See for example Joachain (1983).
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where k = (k
2 + U0)

l/2
. We see from [11.112] that the probability of finding

the scattered particle within the potential well is much larger near the resonance

energy E = E t ,
so that in this case the particle is nearly bound in the well. 1 hus

the resonance may be considered as a metastable state, whose lifetime r, which is

much longer than a typical collision time, can be related to the resonance wi t

T by using the uncertainty relation [2.23]. Thus, with At t and A

haye

[11.113]

11.4 THE INTEGRAL EQUATION OF POTENTIAL SCATTERING

Let us return to the Schrodinger equation [11.19], which we rewrite as

(V
2

4- k
2Mk, r) = U(r)f(k, r) [11.114]

where we have indicated explicitly the k dependence of the wave function. The

general solution of this equation may be written as

^(k, r) = r) + G0(k,r,r')U(r’)ib(k,r')dr'
[11.115)

where ®(k, r) is a solution of the homogeneous equation

[V 2 + k
2
]<&(k, r) = 0

and Go(k, r, r') is a Green’s function such that

[V
2 + k

2]G0(k, r, r') = 5(r - r')

[11.116]

[11.117]

The Green's function

In order to determine the Green’s function G0(k, r, r'), we first use the integral

representation [2.32] of the delta function, so that

5(r - r') - (2 tt)
3 dk - [11.118]

and we write

G0(k, r, r') = (2ttT
}

c
lW l

go(k, k', r') dk' [11.119]

Substituting [11.118] and [11.119] in [11.117], we find that

g-ik'-r'

g0(k, k', r') =
k

2 _ k
,z [

11 . 120]
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11.4 The integral equation of potential scattering

giving

GoCM, r') = -(277)- 3

j

*
2 3 k

l dk' [11.121]

The integrand in [11.121] has poles at k' = ±k, so that a well-defined

prescription is required to avoid these singularities. This may be done by using

the boundary condition [11.25]. Upon comparison of [11.25] and [11.115], we

first note that the free wave d>(&, r) is just the incident plane wave /I exp(ik; • r).

In what follows it will be convenient to choose the normalisation constant to be

A — 1 and write the corresponding incident plane wave as

q>k(r) = e
,kr ’

[11.122]

Comparison of [11.115] with [11.25] also shows that the Green’s function

(r0(k, r, r') must be determined in such a way that it leads to an outgoing

spherical wave for large r. This particular Green’s function will be denoted by

CtfXk r, r').

Setting R = r — r' and performing the angular integrations in [11.121] with

R as the polar axis, we find that

G0(k, R) = - 1
j

+=
* k' sin k'R

4^R J_„ k'
2 - k

2
[11.123]

where we have used the fact that the integrand is an even function of k’

,

so that

the integral may be extended from to +*. We may also write [11.123] as

where

and

G«(‘- R) ‘ <' - «

/, = e
1

_1 k'R
1 1

+
k' ~ k k' + k

dk'

1

2

= -ik'R
1 1

+
k' ~ k k' + k

dk'

1
11.124a]

[11. 124b
|

[11.124c]

We can give a meaning to the integrals 1 1
and 12 by regarding them as contour

integrals in the complex k' plane. Suppose, for example, that we avoid the poles

at k' = ±k by choosing the path P shown in Fig. 11.4 (a). The integral I
\
can

then be evaluated by writing

+
k'

dk' [11.125]

where the contour C consists of the path P plus an infinite semicircle Ci in the

upper-half k' plane (see Fig. 11.4(b)). Since exp(ik'R) vanishes on Q , the
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Im k'

(a)
+k

Im k‘

t

I ^
P

/

\c.

\
\

\

~k +k
(b)

Im k'

\

-\-w-i r

u
Rek ’

+k
I

/
/

/C.

(c)

11.4 (a) The path P avoiding the poles at k' = ±k.

(b) Contour (P + C,) for calculating the integral

(c) Contour (P + C2) for calculating the integral I2 .

contribution to h from the infinite semicircle C, is equal to zero, and the

integral [11.125] is equal to its value along the path P. Using the Cauchy

theorem [10], we then obtain for the integral I
, ,

evaluated along the path P, the

value 1 1
= 27n exp(ikR). . . ,

The integral h can be evaluated in a stmiiar way by dosing the contour wtth

an infinite sem,circle C2 in the lower-half V plane as shown in F* 11Ac .

Using again the Cauchy theorem, we find that h

,

evaluated along the pat ,

[10] The Cauchy theorem is discussed for example in Byron and Fuller (1969).
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11.4 The integral equation of potential scattering

given by I2
= —2m exp(ikR). Thus by choosing the path P to avoid the poles at

k' = ±k, we see that /, - I2 = 4m exp(ikR). Returning to [11.124] and

remembering that R = r — r', we therefore obtain a Green’s function

Gi
+\k, r, r')

1 e
’*

1

'""'
1

4ir |r — r'|

[11.126]

which exhibits the required purely outgoing wave behaviour (of the form

cxp(ikr)/r) when r is large. It is easy to verify that any other choice of integra-

tion contour which avoids the poles at k' = ±k in a way different from the path

P shown in Fig. 11.5(a) leads to an incoming wave behaviour (of the form

exp(— ikr)/r) in addition to or in place of the outgoing wave behaviour obtained

above.

We remark that the choice of the path P is equivalent to keeping the

integration path along the real axis, and shifting the two poles slightly so that the

poles are now at

k' — ±(k + is'), s' —* 0'

We can then write

Gi+\k, r, r') = —(2tt)~
3

lim

„ik'-(r-r’)

k’
1

k — is
dk' [11.127]

where we have written s = 2k
s'

and neglected terms in s’
2

.

Using C?q
+) given by [11.126], the final form of the integral equation [11.115]

is (with ip(k, r) = <Ak .(r))

•Akj(r) = e
!k,r

1

4v

e^rT'l

U(r')<Aki
(r') dr' [11.128]

This is equivalent to the original Schrodinger equation [11.19], together with

the boundary condition [11.25], which is satisfied automatically.

To verify the asymptotic behaviour of ^(r), we note that for r large and

r' < r,

so that

|r — r'| -> r - f • r' + • • *

r—

c

[11.129]

piklr-r’l ikr— e
,kf ' r

'

[r — r'| r

+ • • [11.1 30]

where terms of higher order in 1/r have been neglected, and we have introduced

the final wave vector kf = kr, which points in the direction of the detector and

has spherical polar coordinates (k. d, <b). Thus, using [11.128] and [11. 130],

we have

<Ak (r) *
,krr - T~— I

e- ,kf-r'U(r')^
ki
(r') dr' [11.131]

1

r _>oo 47t r
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Upon comparison with [11.25], we see that *i/k
,

exhibits the desired asymptotic

behaviour, with A = 1 ,
and we obtain for the scattering amplitude the integral

representation

f=-L <^u^ > = ~k
—ikrr'' r ' [11.132]

where we have introduced the plane wave <l>k
,

corresponding to the final wave

vector kf,

<J>k
f
(r)

_ ikrr [11.133]

The integral equation [11.128] can also be analysed in partial waves.

Assuming that we are dealing with a central potential, and expanding e

scattering wave function .//k
,

in Legendre polynomials as in [11.36], it can b

shown (Problem 11.10) that each radial function /?,(*, r), normalised accord g

to [11.68], satisfies the radial integral equation

Ri(k, r) = ii(kr) + G,(k, r, r')U{r')Ri(k, r’)r'
2
dr' [11.134]

where the radial Green’s function G,(k, r, r') is given by

Giik, r, r') = kjtikr^kr^) [11.135]

Here r< and r> denote respectively the lesser and the greater of r and r'. By

analysing the behaviour of the radial integral equation as r - “and comparing

with [11.68], the expression [11.72] for tan 8, can be re-denve .

11.5 THE BORN APPROXIMATION

Approximation methods are clearly necessary in order to analyse complicated

processes such as those occurring in atomic collisions where exact sol^°^
not available. Whenever possible, it is useful to first discuss approxima

treatments within the framework of potential scattering, where their interpreta-

tion is simpler and their accuracy can be checked easily. In this

concentrate our attention on one of these approximation methods ’
the

f
series, which is a perturbation expansion of the scattering wave fundion ,

or the

scattering amplitude, in powers of the interaction potential. In P^icular we

shall study in some detail the first term of this expansion, known as the (first

Born approximation, since a generalised version of it will be used in the nex w

chapters to analyse electron-atom and atom-atom collisions.

The Born series

Let us attempt to solve the integral equation [1 1 . 128] by iteration,^ng from

the incident plane wave <hk ,(r) as our ‘zero-order approximation. « obtain
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this way the sequence of functions

<Ao(r)
= = e

'k r [11.136a]

<Ai(r)
= ‘I’kW + G (

0
+)

(k, r, r')U(r’)Mr') dr' [11.136b]

<A„0) = d>
ki
(r) + G (

0
+)

(k, r, r')C/(r')«A„- 1(r') dr' [11.136c]

Assuming for the moment that this sequence converges towards the exact wave

function i/>k .,
we may write for tf/k .(r) the Bom series

iAk.(r) = d\(r) + G (

0
+
\k, r, r')f/(r')d>k.(r') dr'

r')U(r’)G^Xk, r', r"){7(r")<D
ki
(r") dr' dr" + • • •

[11.137]

which is clearly a perturbation expansion in powers of the interaction potential.

Upon substitution of the series [11.137] into the integral representation [
11 . 132]

of the scattering amplitude, we obtain the Bom series for the scattering amplitude.

That is,

f= —L<cp k |U + UG^'^U + UG^UG^U + |d>k > 1 11.138]
4-77

f

The first term of this series, namely

/bi =~ ^kjt/l^k,} [H-1391
477

is called the (first) Bom approximation to the scattering amplitude.

Working in partial waves, we may also solve the radial integral equa-

tions [11.134] by iteration, starting from the zero-order approximation

Rf\k, r) = jfkr). Upon substitution in [11.72] we then generate a Born series

for tan 8
t
whose first term is just the first Born approximation [11 .82] to tan 8, .

The problem of the convergence of the Born series is a difiicult one, which lies

outside the scope of this book. Roughly speaking, we may obtain a crude

sufficient condition of convergence by requiring that the time tx
spent by the

particle in the ‘range’ a of the potential should be small with respect to a

‘characteristic’ time rz necessary for the potential to have a significant cflect.

The time 7 \
is given approximately by T\ — a/v, where v is the velocity of the

particle. On the other hand, if |U0 |

denotes a typical strength of the potential

(which may be attractive or repulsive) and \U0 \

= 2m\V0\/fi
2
the corresponding

strength of the reduced potential, we may take t2
— h/\V0 \

= 2m/(h\U0 \). If
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we require that it <# ti, we must have

\Vo\a \Uo\a
^ l

hv 2k
[11.140]

The first Born approximation

Let us now study in more detail the first Born approximation [11.139]. Using

the explicit expressions of <t>k.(r) and (f>k
f
(r) given respectively by [11.122] and

[11.133], we have

/B1 “
477

e
i(ki-kf)-r

jy(r) df

1

477
e
,A ' r U(r) dr

where we have introduced the wave-vector transfer

A = kj - kf

[11.141]

[11.142]

11.5 The vectors k; , kf and A.

which is shown in Fig. 11.5, together with the vectors k; and kf and the

scattering angle 0. The momentum transfer is given by hA and is of course

identical to A in systems of units (such as atomic units) where h = 1. It is

apparent from Fig. 11.5 that since k = |k;| = |k f
|

the magnitude of the vector A

is given by

A = 2k sin — [11.143]

We see from [11.141] that the first Born scattering amplitude is proportional

to the Fourier transform of the potential, and we also see that the first Born

differential cross-section

remains unchanged

/ d<r

\dfT

when the sign

- I/bi |

2

of the potential is reversed.

[11.144]
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Let us consider the particular case of central potentials. We may then easily

perform the angular integrations in [11.141] and obtain (Problem 11.11)

/bi
- _ 1

A
r sin(Ar)C/(r) dr [11.145]

We see that this quantity is real and depends on k (i.e. on the energy) and on the

scattering angle 6 only via the magnitude A of the wave-vector transfer. The

corresponding total cross-section in first Born approximation is given by

bi _
2rr |/Bi|

2
sin 6 d 6

2tt

V

o

2k

|/B1(A)j
2 A dA

[11.146]

where we have used the fact that sin 6 dd = A dA/k2
. It is interesting to note

from [11.146] that

limt^o-SC*)] = 2tt |/Bi(A)|
2A dA [11.147]

jo

Since the right-hand side of [11.147] is independent of k, we see that cr®
1

,
is

proportional to k~ 2
as k becomes large. Because E = fi

2
k
2/lm, we may also

write

~ AE- 1 [11.148]

where A is a constant. Thus tr®{ tends to zero as E 1
at high energies.

As an illustration of this discussion, we consider the Yukawa (or ‘screened

Coulomb’) reduced potential

e~
ar

U(r)
= U0

r

e~
r/a

= C/0 —-— , a = a~ l
[11.149]

The integral [11.145] is then straightforward, and yields

/bi
a2 + A2

[11.150]

The first Born differential cross-section

dcr \ Up

dO/Bi
"

(«
2 + A2

)
2 [11-151]

is plotted in Fig. 1 1.6 as a function of the scattering angle 6, for various values of

ka. We see that for large ka the differential cross-section [11.151] is essentially
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11.6 The angular distribution for scattering by a Yukawa potential in first Born approximation, for

various values of ka.

concentrated within a forward cone of angular aperture 86 — (ka)~ . This

behaviour is a direct consequence of [11.141] and of the fact that the Fourier

transform of a function U(r) which is negligible for r > a is appreciable only for

values of A such that A :£ a~ l

, i.e. (see [11.143]) corresponding to scattering

angles

[11.152]

The Coulomb potential

It is interesting to examine what happens in the above formulae when we let a

tend to zero. The ‘screened Coulomb’ reduced potential [11.149] then becomes

the reduced Coulomb potential

U(r) = — [11.153]
r
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The first Born scattering amplitude [11.150] now reads

(/bi)c
= [11.154]

and the corresponding first Born differential cross-section is

/ do
-

si\ = Ul

\ dfl )c A4 [11.155]

where the subscript c refers to Coulomb scattering.

In order to relate this result with our discussion of classical Coulomb
scattering in Appendix 1, we recall that the Coulomb interaction potential

between two particles having electric charges qA and qB , respectively, is

m =
gAffB

(477£0)r
[11.156]

so that the corresponding reduced potential U(r) = (2m/h 2
)V(r) is given by

[11.153], with

TJ
2m qAqB

0
h
2

(4t7£0 )

[11.157]

From this we see that [11.155] may also be written as

/ do-Bi \ _ / 9aQbY 1

\ dO / c \atteqJ 16E 2
sin

4
(6/2)

[11.158]

which is identical to the Rutherford formula [A1.33] obtained in Appendix 1 by

using classical Newtonian mechanics. A detailed discussion of the Rutherford

formula [11.158] is given in Appendix 1 and will therefore not be reproduced

here.

It is a remarkable feature of Coulomb scattering that an exact quantum

mechanical treatment of the Coulomb potential [11.156] also yields the Ruther-

ford formula [11.158] for the differential cross-section d(rc/dO! However, the

exact Coulomb scattering amplitudefc (such that d<r
t /dfi = |/c |

2
) differs from the

first Born result [11.154] by a phase factor. It is found that [9]

y T(1 + iv)m = "
2* si„;W2)r(l - iy)

exp<- ,

'

r l‘>«tsmAe/2U} UU59]

where T denotes the gamma function and

_ ffA?B _ tqAqBm
^

(47TEn)hv (4TT£n)h
2
k

[11.160]
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11.6 ABSORPTION PROCESSES AND SCATTERING

BY A COMPLEX POTENTIAL

Until now we have considered the scattering of a spinless particle by areal

potential V(r), a problem which is equivalent to the elastic scattering e w

two structureless particles. However, we have seen m Section 1 1A that when a

particle collides with a target, non-elastic scattering may occur. This mea
^

th

[here may be one, several, or an infinite number of open channels in addition to

the elastic one. As far as the elastic scattering is concerned, the presence of such

non-elastic processes can be viewed as absorption from the modal [beam, and

taken into account by introducing a complex or optical potential of the form

V = VR - iVj

The continuity equation [2.52] now reads

V j 4 v^i2

n

[11.161]

[11.162]

Hence for V, > 0, we have local absorption of the incident beam, the total

number Nabs of particles which are ‘absorbed’ per unit time within the volume V

being

Nabs F7 |^|
2 dr [11.163]

Let us consider the particular case of a central, complex potentia

V( )
= y (r) _ iv (r). Our discussion of the partial wave method is then easily

generalised. The radial function Rfk, r), which is now complex, is the regu ar

solution of [11.37], with the asymptotic form [11.51], where 8, may now e

complex. Let us write [11.51] as

Ri(k, r)

At(k)

2 ikr

- iSi(*)Q e
— i(*r—

/

tt/2
) + Si(k)z'^

kr '”/2>
] [11-164]

rhere

Si(k) = exp[2 iSiQt)]
[11.165]

' absorption takes place, the intensity of the outgoing wave mustber^uced

avir.g the incoming wave unaltered, and on the other hand if no absorption

ikes place, the intensity of the outgoing wave will remain the same that

ie incoming wave. For these reasons we must have

\S,(k)\^ 1

This suggests that we introduce complex phase shifts

8,(k) = Re 8,(k) + t Im 8,(k)

[11.166]

[11.167]
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11.6,

so that

where the quantity

Absorption processes at

S'(k) = ru(k)exp[2i Re «,(*)] [11.168]

17 i(k)
= exp[-2 Im 8i(k)] [11.169]

is called the ‘inelasticity’ or ‘absorption’ factor. It is clear from the above

equations that Im 8
;
s* 0, so that

0 =£ t)i(k) 1 [11.170]

and we note that the particular case tj; = 1 (i«e. Im 8t
= 0) corresponds to pure

elastic scattering.

The calculation of the elastic scattering amplitude fei proceeds as in

Section 11.3, and we find that (Problem 11.13)

/el = TT 2 (21 + WSK*) - 1 Jp/cos *)
llK 1=0

= ii(2/+ l)[ Vl(k)t
2tReSlW - lJP/cos e)

ZlR 1=0

The elastic differential cross-section is given by

da,

dll
T =

1
/e.l

2

[11.171]

[ 11 . 172 ]

and the total elastic cross-section is

77

O'tot ” ,2
K 1=0
2 (2/ + l)|T?,e

2,ReS' -
1|

2

= 2
/=

0

ei
°7

where

= £(21 + Din*
2***-el

1 ~ ¥

[11.173]

[11.174]

We can also obtain a total absorption cross-section cr?

£

t

s
(also called ‘inelastic’

or ‘reaction’ cross-section) by computing the ratio of the net ingoing flux divided

by the incident flux. The result is (Problem 11.13)

cr?ot = TJ E (2/ + Dd -
rfi)

* 1=0

/=0

.abs

[11.175]
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Problems

wnerc , n

of = £(2Z+ 1X 1 -U?)*^^ [H-176]

As we noted above, pure elastic scattering in the /th partial wave corresponds

[o 7h
— 1, in which case crf°

% = 0. On the other hand, non-elastic scattering

(corresponding to 0 ^ ip 1 ) is always accompanied by elastic scattering.

The total (complete) cross-section including both elastic and non-elastic

processes is given by

— ^r-el _L rr-abs
O-tot

— Otot ' u tot

= TT 2 (2/ + !)[1
—

Vi C0S(2Re 5/)]
k 1=0

= i a
t

[11-177]

/=o

where

o-, = (2 1 + 1)[1 - v, cos(2Re 5,)] ^ -
[1 1-178]

Upon comparison of [11.171] and [11.177], we see that the optical theorem

[ 11 . 34]
may be generalised to read

<Aot
= -£ Im U(k, 6 = 0) [11.179]

where trtot is the total (complete) cross-section and Im fei (k, 0 = 0) is the

imaginary part of the elastic scattering amplitude in the forward direction. This

generalised version of the optical theorem plays an important role in the analysis

of complex collision processes.

PROBLEMS

11.1 Consider a reaction of the type A + B C + D. Let mA , mB , mc , «d
be the masses of the particles A, B, C and D, and wA , zt'B, ujq, be

their internal energies. Using the methods of Appendix A2, show that the

centre of mass and laboratory differential cross-sections for observation

of the particle C in a given direction are related by

do~c

dfli.
(.&L; 4>l)

—
2rr COS d)

3/2

where the subscript L refers to laboratory quantities, and

?c =
/mAmc T

' \
[mBmD 1 + Qifl
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Problms

The quantity T
{
is the initial centre of mass kinetic energy and Q if is the

change in internal energy which as occurred in the collision, namely

Qi{ = wA + wB -
(wc + wu).

11.2 Prove the optical theorem [11.34] by inserting the expression [1 1.33] into

the equation [11.32], which expresses the conservation of the probability

flux.

11.3 Prove that the asymptotic form [11.51] holds provided r| Vfr)! —* 0 as

Y —> oo.

(Hint: Write solutions of the radial equation [11.39] for large r in the

form

ui(k, r) = Ft(k, r)e
±,kr

where Ft
is a slowly varying function of r. Obtain an equation for F

t
and

show that if r|U(r)| —> 0 as r —> », then F, is independent of r in the limit

r °°0

11.4 Consider a repulsive (reduced) potential of the form U(r) = A/r1

(A. >0).
(a) Obtain the phase shifts 5/ and show that 5/ — — 7n4/2(2/ +1) when

l is large.

(b) Discuss the angular distribution. Is the differential cross-section

finite in the forward direction? Is the total cross-section finite?

(Hint: For given v and large p one has j„(p) ~ sin(p - vtt/2)/().)

11.5 Consider an attractive (reduced) potential of the form U(r) — A/r2

(A < 0). How must the treatment of Problem 11.4 be modified? Show

that the radial equation [11.39] has physically acceptable solutions only if

A > -1/4.

11.6 Suppose that in an elastic scattering experiment between two structure-

less particles the centre of mass differential cross-section may be repre-

sented by an expression of the type

^ = A + 5Pi(cos 0) + CP2(cos ())+
all

Express the coefficients A, B and C in terms of the phase shifts <5/.

(Hint: Use the orthogonality relation [2.171] of the Legendre polyno-

mials and the recurrence relation [2.170].)

11.7 Using the first two partial waves (/ = 0, 1), discuss the low-energy

scattering by an attractive square well potential of reduced strength Uu

and range a. Plot the phase shifts, the partial wave cross-sections and the

total cross-section as a function of ka for 0 =£ =£ 1 and (a) U()a
2 = 1,

(b) U0a
2 = 10.

11.8 Find the total cross-section for low-energy (s-wave) scattering by a

potential barrier such that

U(r) =
|Uo(>0),

1
°

r < a

r > a
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Problems

Derive the ‘hard sphere’ zero energy result [11.97] as a particular case.

11.9 Using the first Born approximation [1 1.82] for tan Sh find the l
— 0 phase

shift for scattering by

(a) the Yukawa (or ‘screened Coulomb’) potential U(r)
= U0 exp(-ar)/r

(b) the ‘polarisation’ potential U(r) = U0/(r
2 + d2

)
2

,
where d is a

constant.

11.10 Obtain the radial integral equations [11.134] and the expression [11.72]

for tan 5; by analysing the integral equation [11.128] in partial waves.

(Hint: Use the expansions [A4.26] and [A4.27] and the addition

theorem [A4.23] of the spherical harmonics.)

11.11 Show that for the case of central potentials the expression [1 1 . 141] of the

first Born amplitude can be reduced to [11.145].

11.12 Obtain in first Born approximation the scattering amplitude, the

differential and the total cross-sections for scattering by the following

(reduced) potentials

(a) Exponential potential: U(r) = U0 exp(— ar)

(b) Gaussian potential: U(r) = U0 exp(~a 2
r
2
)

(c) Square well U(r)

(d) ‘Polarisation’ potential U(r) = U0/(r
2 + d2

)
2

.

Discuss the angular distributions and compare your results with those

obtained in the text for the Yukawa potential U(r) = U0 exp(- ar)/r.

Verify that o^1

,
~ AE 1

as E ->• *>, and find the coefficient A in each

case.

11.13 Prove equations [11.171] and [11.175].

= U0 ,
r < a

= 0 ,
r > a



Electron-atom collisions

With the help of the results obtained in the last chapter, for scattering of a beam

of particles by a potential, we are now ready to discuss electron scattering by

atoms, or by ions. In order to explain how cross-sections for elastic and inelastic

scattering can be calculated, we shall, for the most part, take the simple example

of electron scattering by atomic hydrogen; but the methods used for hydrogen

can be generalised, and both experimental and theoretical studies have been

carried out for many elements in the periodic table. As we remarked earlier, a

knowledge of electron scattering cross-sections is required for many important

applications in astrophysics, plasma physics and so on, but electron scattering is

also important in determining the structure of complex atoms, or ions, since an

electron beam can excite atoms from the ground state to levels that would be

forbidden in excitation by photons. In addition, the global properties of atoms,

such as the charge density, can be inferred from the measured cross-sections for

high energy electron scattering. We shall first discuss elastic scattering, in which

the energy of the target atom does not change, and then go on to consider the

excitation of discrete atomic levels and finally ionisation, in which one or more

electrons are ejected from the target. Although corresponding experiments have

been made for the scattering of electrons by molecules, because of the extra

molecular degrees of freedom - rotational and vibrational - and because of the

complicated nature of the molecular electronic wave function, the interpretation

of these data is usually very complicated and beyond the scope of this book.

12.1 ELECTRON SCATTERING: GENERAL PRINCIPLES

An electron scattering experiment can be carried out as shown schematically in

Fig. 11.1. The apparatus consists of an electron gun with electrostatic focusing

and collimating devices, a target containing the atoms to be studied and

apparatus to detect and analyse the scattered electrons. The whole apparatus

must be enclosed in a high vacuum, often at pressures of 10
6

to 10
9
Torr,

requiring the most advanced vacuum technology. Since the energy range

spanned by experiments is very large, from a few electron-volts to several

MeV, the detailed design of the electron source may differ considerably from

experiment to experiment. In general, the electron gun contains a heated
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filament (the cathode) which produces electrons by thermionic emission. The

electrons are accelerated to an anode containing an aperture through which the

beam is produced (see Fig. 12.1). The intensity of the beam is controlled by

applying a voltage, negative with respect to the cathode, to a cylindrical

electrode called a Wehnelt cylinder which surrounds the cathode except for a hole

through which the beam passes. The Wehnelt cylinder acts as a converging

‘lens’ focusing the beam, and further electrostatic lenses can be added to produce

a collimated beam in the region of interaction.

When studying scattering from the atoms of a monoatomic gas, such as

helium, or argon, the target can consist of a cell containing a sample of the gas

itself. This technique cannot be used when scattering by charged ions is to be

investigated, or for neutral atoms which would normally occur bound in

molecular form. In these cases a beam of target atoms, or ions, is produced and

scattering takes place at the intersection of the atomic and electron beams. In

the case of charged ions, the beam can be controlled and focused by passing it

through suitable electrostatic fields, but for neutral atoms the procedure is

different. Let us consider the example of hydrogen (see Fig. 12.2). By heating

hydrogen in a furnace, consisting of a tungsten tube, to 3000 K, over 90 per cent

of molecular hydrogen is dissociated to atomic hydrogen. If the hydrogen atoms

are allowed to escape through a suitably shaped small nozzle, a jet of atomic

hydrogen is produced, which can provide densities of up to 10
14 atoms/m in

the interaction region. It should be noted that the velocities of the atoms are

usually negligible compared with the electron beam velocities, so the collision

can be treated as being between the moving electrons and a stationary target. To

eliminate background effects, the atomic beam can be modulated by passing it

through a slit in a rotating disc, thereby chopping the beam at a frequency of say

-Vm

Wehnelt cylinder

Tungsten filament

(cathode)

Anode

12.1 Schematic diagram of an electron gun. The potentials (with respect to the anode) on the

cathode and the Wehnelt cylinder are denoted by -Vc and -Vw ,
respectively.

1
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12.1 Electron scattering

12.2 Diagram of an apparatus to measure electron scattering by atomic hydrogen. The atomic beam

is produced by dissociating H2 in a furnace at 3000 K. A jet of atomic hydrogen escapes through a

nozzle N and passes through a modulator before reaching the interaction region, where it is

intersected by an electron beam. The electron beam is monitored by collection in a Faraday cup F
and the scattered electrons are detected and analysed at D.

100 Hz. Only the signal in the detector varying with this frequency represents

scattering by the atomic beam, and any other signal represents scattering by

impurity atoms.

The electrons scattered from the interaction region at a certain angle must be

analysed and measured. The velocity of the electrons can be measured, or

selected, by deflecting their paths by electrostatic fields of known characteris-

tics. The velocity of selected electrons can be detected using electron multipliers

and the scattered current measured. The electron multiplier is a device

containing multiple electrodes called dynodes, such that the secondary electrons

ejected when the beam falls on the first electrode are accelerated towards the

second electrode, producing further secondary electrons, which are in turn

accelerated towards a third electrode and so on. Larger fluxes of electrons are

measured by collecting the electrons in a small metal container called a Faraday

cup and amplifying the current produced electronically. Some results of an

experiment by J. F. Williams and B. A. Willis, using an experimental

arrangement of the general kind described, are shown in Fig. 12.3.

Theoretical description

We will now develop the theoretical description of non-relativistic electron

scattering by atomic hydrogen. The spatial part i^(r x , r 2 ) of the wave function of

the scattered and target electrons satisfies the Schrodinger equation

-*V? - ±V§ +
ki r rzl

<Kri,r2)
= 0 [12.1]

where atomic units have been used for convenience, and ri and r2 are the

position vectors of the electrons, taking the proton to be at the origin of the
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12.1 Electron scattering.

12.3(Cont.)

coordinate system. The infinite nuclear mass approximation is used, so that the

proton can be considered to be at rest.

As explained in Chapter 6, the spatial part of the wave function must either be

symmetrical 1/4 (ri, r2) or antisymmetrical , r2) under the interchange of

the two electrons. The symmetrical spatial function corresponds to a singlet spin

state 5 = 0 and the antisymmetrical spatial function to a triplet spin state

5 = 1 . The functions t/4 and >p- can be determined independently, just as in

the case of the helium atom.

Let us now consider the boundary conditions to be satisfied by ,
r2), for

the particular case in which the target hydrogen atom is initially in the ground

(Is) state described by the hydrogenic wave function i/'ioo(r). The total energy

of the system Etot is given by

£tot = £1 + \k\ [12.2]

where E\ = — 2 a.u. (— — 13.6 eV) is the ground state energy of atomic

hydrogen and 2 is the kinetic energy of the incident electron. If the incident

energy is insufficient to excite the hydrogen atom to the n = 2 level, the wave

function, for rx
> r2 , must represent electron 1 moving with respect to a ground

state hydrogen atom containing electron 2, and we have

•A±(ri> *2) ~ F f(ri)«Aioo(r2) [12.3]
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Because of the symmetry of the wave function, we must also have

</,±(n,r2) ~ ±Ff(r2)<Aioo(ri)
[12 ‘ 4]

**2
>CC

The wave function for the free electron F f(r) must contain an incident plane

wave and an outgoing spherical wave, and hence satisfies t e oun ry

condition [11.25], Taking, as before, the direction of incidence along the Z axis

and the normalisation constant A (see [11.25]) to be unity, we write

Ff(ri) ~ e
‘* l2

‘ + i’ 6 ’ 40
[12.5]

The differential cross-sections for scattering in the singlet and triplet spin states

"then determined by the scattering amplitudes ft and ft >

target atoms and the beam electrons are orientated at random (unpolansed),

three times as many collisions occur in the triplet states as in the single state.

The differential cross-section dcrn/dfl for the elastic scattering proce

averaged over the four possible initial spin states is then

^ - ll/if + 11ft
ail

[12 .6]

Since the system is symmetrical about theZ axis,/f and da„/dn depend only

Beforetl:iscussing^ways in which the amplitudesft might be calculated, let us

consider the boundary conditions at higher energies, at which it is energetically

possible to excite one or more higher levels. To simplify our notation, we will

represent the three quantum numbers nlm of a hydrogen* level by the label q,

Xre“ = 1 for the ground state, so that each level , corresponds to a

wave function >b q
and an energy E q

. By conservation of energy, the kinetic

energy of an electron which emerges from the scattering region after exciting th

level q, is given by

\k] -'tot
= Eg) [12.7]

and for ‘open’ channels kl^ 0.
, f _• _

In the asymptotic region n>r2 ,
there must be terms in the wave functl°

representing a free electron of energy \k\ moving with respect to the target

level q, and in place of [12.3], the asymptotic form of .n, t2) is

[ 12 . 8]

N
iA±(ri , ti)

~ 2
r,*-r2 q= 1

where the sum runs over the N open channels. In every open channel q, there

must be spherical outgoing waves representing a current of electrons cmerging

from the scattering region, but only in the entrance, or incidence channel does

the plane wave representing the initial electron of energy occur. The
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12.2 Elastic scatttring

generalisation of [12.5] is therefore

gtijri

Ff (rj) ~ e'
A '21 + /f (ft i, 0, <t>)—

ri—= 1

[12.9]

Calculating the flux of outgoing electrons with energies , along the lines

indicated in Section 1 1.2, and dividing by the incident flux which is equal to ft|,

the differential cross-section for excitation of the level q, from the level 1 is, for

unpolarised beam electrons and target atoms

2 i r + ]2

dfi ki 4
/?l [ 12 . 10]

The exact wave functions t//s can be written for all r
x
and r2 in the form

N
>P±(ru r2) = 2 + Xn(*\>*2) [12.11]

where xn are called the closed channel wave functions. Since for r
x
> r2 , or

r2 5> r
x
there must be no electron flux associated with xn > we must have

~* 0 as r
x
—> t2Xn ~

*

0 as r2 -» » L 1 2 . 1 2

]

If the incident energy is increased beyond the ionisation threshold, which

for hydrogen is at \k\ = 13.6 eV, the level q represents a continuum

hydrogenic state with positive energy E
q

. For these ionised states, q becomes a

continuous index q = (E
q , l, m) and the sums over q in [12.8] or [12.11] must

include an integration over the continuous range of q. We shall return to this

later when discussing ionisation.

12.2 ELASTIC SCATTERING

The scattering amplitudes ff for elastic scattering can be calculated in one ol

several simple approximations which we shall now describe.

The static-exchange method

A procedure, analogous to the Hartree-Fock method for bound states

described in Chapter 7, is to represent the wave functions <A+(ri, r2 ) by the

symmetrised products:

<A±(ri> t*2) = [FfOO^fe) ± FfO^OO] 1 12.13]

This is clearly an approximate wave function, as the true wave function must

contain a closed channel component, as well as a component arising from any

other open channels. To obtain an equation for the function Ff(ri), we notice

that the projections of the Schrodinger equation [12.1] onto the complete set of
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orthonormal hydrogenic functions ip
q
must all vanish.

1

-ivf - -jvi
- - - - + r ,121 22

r, r2 |r, - r2 |

<A±(ri, r2) dr2 = 0,

<7=1,2,... [12.14]

With the approximate wave function [12.13], we can satisfy one of these

condition, by requiring the projection onto the ground state function t/q to

vanish:

1 1

-*V? -M - - - - +
1

-E
rx r2 |**i

- r2 |

x {Ff(ri)<Ai(r2) ± Ff(r2)</q(ri)} dr2 = 0

tot

[12.15]

This equation can also be obtained from the variational principle of Section 2^8

by requiring that SI = 0 under the variations F 1
—* F x + or 1 ,

F f* —> Ff* + SFf*, where

I = 4>% (H - E tof)ip± dri dr2
[12.16]

and </<± is given by [12.13] (see Problem 12.2)

Using [12.15] and the Schrodinger equation satisfied by the hydrogen atom

wave functions if/q ,
namely

1

'Pair) = 0-iV2 --
r

-E
q

the functions Ff are found to satisfy the equation

(V2 + k\)Ffirf) = 2Vu(r 1)Ff(ri)

± 2 [ Kn (ri, r2)Ff(r2) dr2

[12.17]

[12.18]

The direct potential Vn is simply the static potential, i.e. the electrostatic

interaction between the incident electron and the target hydrogen atoms,

averaged over the target state </q. That is,

Un(ri) = {'Pi

1
1

ri |ri
- r2 |

,
1

<^ 1
)- — ItAife)!

2

ki “ r2
\

dr2 [12.19]

The first term is the interaction with the nucleus, and the second term, with the

electronic charge density of the atom. Using the explicit form of the hydrogen

atom wave function, </<i
= 77

1/2 exp(—r2), and the expansion [A4. 24], we ave

Vn (r,) = -(1 + 1/rO exp(-2r0 [12.20]
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12.2 Elastic scattering

The exchange potential Ku is non-local and is given by the expression

1

K'liOi, r2) = i/'*(r 1)tMr2)
l

r l
- r2|

- (£•,< 2E i) [ 12 .21 ]

In Chapter 7, it was shown that the exchange potential for bound states wa«

important and could not be neglected. The same is true at low energies in the

scattering problem, but because the function Ff (r2 ) oscillate like exp (ik/ • r2),

the integral fKn(ri, r2)Ff (r2 ) dr2 decreases rapidly with increasing energy.

At high energies, where the Born approximation is accurate, the exchange

potential can be neglected to a good approximation, but at low energies the

exchange term must be retained.

At low energies, except near the inelastic thresholds where resonance

phenomena can occur (see below), the static-exchange approximation gives a

fair description of elastic scattering. The cross-section calculation proceeds by

expanding the function Ff in Legendre polynomials (see [11.36] and [11.38])

oc

Ff(ri) = 2 r
i

1
Mf(r1)F/

(cos 00
1=0

[ 12 .22]

The radial functions uf satisfy the equations

+ £fW(n) = 2Ln(r0«f(r0
d2

1(1 + 1)

dr? ri

where

K,(ru r2) = 4rir2e
-(n + n)

± 2

i+i Sio(.Eh
r>

K-i(r \ >
r2)“f (f0 dr2 [12.23]

2F0 (2/+1), [12.24]

r> and r< being the greater or the lesser of n and r2 . These equations can be

solved numerically to find the elastic scattering phase shifts. The expansion in

partial waves is rapidly convergent and at low energies (< 10 eV) only the terms

with 1 = 0, 1 and 2 are significant. The differential cross-section in this

approximation is shown in Fig. 12.3(a) compared with the experimental data.

High energies. The Born approximation

At energies for which exchange scattering can be neglected, Fi = F( = h
\

is a

wave function for scattering by the static potential V
r

n - For any atom, the

potential corresponding to [12.19] can be written down by recognising that

|i/,t(r2)|
2

is the electron density p(r2), and in general, for an atom with nuclear

charge Z

Z
Vnbi) +

P(r2)

ki
“ r2

|

dr2 [12.25]
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For sufficiently high energies, the elastic scattering amplitude is given by the

Born approximation. From [11.141] we have with U = 2Vn (in a.u.)

/bi "
277

e‘
A 'r‘F1 i(r ) ) dr. [12.26]

where A is the momentum transfer with A = 2k x
sin 9/2 (see [11.143]).

To reduce the scattering amplitude fB1 ,
given by [12.26] in the Born

approximation, to a more useful form, let us consider the integral

I =
|

e'
A ’ r

(e
_Ar

/r) dr

H f2 TT

r
2
dr

o

d(cos 6) d<t> e’
Arcos e

(e
_Ar

/0 [12.27]

where A has been taken as the Z axis. Integrating over cos 0 and
<f>
we find

sin(Ar)e“
Ar dr

[12.28]

477
r=C

I = —
A jo

477

(A
2 + A2

)

Taking the limit A —> 0 we obtain the Bethe integral

e
*A-f 477

dr =
-tt

[12.29]

r A

Inserting the expression [12.25] for Vn into [12.26], and using [12.29], we find

/bi = p- [Z - Sf(A)] [12-30]

where T(A; is a form factor called the X-ray scattering factor [1], defined as

(f(A) = e
iA ' r

p(r) dr [12.31]

[12.32]

The differential cross-section is, correspondingly,

Ob, = l/B,P ‘ ? |Z * ^<4>|2

In the case of atomic hydrogen Z = 1 and p(r) = exp(-2r)/77, giving

£f„(A) = [1 + (A/2)
2]^ 2 [12.33a]

[1] The term X-ray scattering factor is used because the function Sf(A) was first defined in the

theory of X-ray scattering by atoms.
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and

/dcr\ _ (A
2 + 8)

2

\da Jbi

_ 4
(A

2 + 4)
4 [12.33b]

For helium, (Z = 2), the density p can be evaluated using the approximate

wave function [6.70],

fee(ri, r2)
= —

7T

[12.34]

where the variational parameter Ze has the value Ze
— 27/16 [see (6.78)J. We

see immediately from [7.125] that

p(r) = 2^-^-je
_2Z'r [12.35]

and correspondingly

^Hc(A) [12.36]

In general, it can be shown that Sf(A) -> Z as A — 0 and that f/(A) is usually a

monotonically decreasing function of A as A —» x .

Measurements of the differential scattering cross section as a function of A, at

energies for which the Born approximation is accurate, determine .'/(A), and, by

inverting the Fourier transform [12.31], the density pit) can be calculated. By

comparing the values of p(r) obtained in this way with those calculated from

Hartree-Fock wave functions, the importance of correlation in atomic wave

functions can be established.

12.4 The elastic scattering differential cross-section for electron scattering by helium at 0.5 kcV

compared with the Bom approximation.

To verify whether the Born approximation can be expected to be accurate, the

experimental data at various angles and energies are analysed to check that

dcr/dfi is a function of A only, and not of k\ or 6 separately. For sufficiently high

energies the Born approximation is accurate, but for angles near the forward
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direction, second order corrections taking into account polarisation and absorp-

tion effects (see below) remain important up to quite high velocities. The

velocity above which the Born approximation is accurate increases with the

strength of the interaction, and so for a neutral atom increases with Z. For

example, for helium the Born approximation is certainly accurate by incident

energies of 500 eV, provided 6 > 15°. Corresponding accuracies with a neon

target are obtained above 12 keV, while for krypton energies about 40 keV are

required. As an example the cross-section for electron scattering by helium at

E = 0.5 keV is shown in Fig. 12.4.

The close coupling approximation

The static-exchange approximation based on the approximate wave functions

[12.13] can be improved in several ways. The principal physical effects omitted

in this approximation are the distortion of the target atom during the collision,

and (above the lowest inelastic threshold) the loss of flux from the elastic

scattering channel into other channels. Both these effects can be taken into

account, approximately, by including additional configurations in the approxi-

mate wave functions. Taking N terms each similar in form to [12.13], an

improved wave function can be written as

«A±(ri > *2) = 2 {^?(riWr2) 11 F
9 (

r 2> i)> [12.37]

0=1

The equations satisfied by the channel functions Fq
are obtained from [12.14]

with q
- 1, 2, ... N. It is found that

N
(V? + k

2

q)Ff(rj)
= 2 2 V„.(r ,)F^( ri ) ± 2 2 KqAru r2)F^{t 2 ) dr2

q = 1, 2, . . . N [12.38]

These are a set of N coupled equations which must be solved by imposing the

boundary conditions [12.9], The direct potentials Vqq
' are (compare with

[12.19])

Vqq
(t{)

1 1 \ 1
c

</v)
= 5??' +

ri |ri - r2 | 7 n J ki - r2
|

[12.39]

and the corresponding exchange potentials are

1

K
q
Aru r2) = </#(ri)</v(r2 )

- (Etot - Eq
- E

q0 [12.40]

The approximation represented by [12.37] is called the close coupling approxima-

tion, because it assumes that the N states q = 1, 2 . . . N are closely coupled

together and that the influence of the states with q > N is small. To reduce the
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l

equations [12.38] to radial form a decomposition into partial wave amplitudes

can be made, but we shall not pursue this here. It is sufficient to note thlt

detailed calculations based on this approximation can in suitable cases give B

very good description of the scattering of electrons by light atoms.

The optical potential

An alternative approach to elastic scattering, which goes beyond the static

exchange approximation, is to define an effective or optical potential Vop ,
such

that the exact channel functions F j (r x ) for elastic scattering satisfy the

potential scattering equation (in a.u.)

[V? + *f-2V^]Ff(r 1)
= 0 [12.41]

In the lowest (static-exchange) approximation Vopt — Vn ± Kn and contains

both the direct potential Vn and the non-local exchange potential Ku- The

distortion of the target atom during the collision modifies the effective potential,

and the most important effect is to add to Vn potentials which are of ‘long

range’ and decrease with like r x

2n
, n = 2, 3, . . . . The potential of longest

range is the most important and is due to the dipole induced in the target by the

incident charge. This effect is easiest to calculate at very low energies, for which

the kinetic energy of the incident electron can be neglected in the first

approximation. The Schrodinger equation for a hydrogen atom placed in the

field of a fixed charge (-1) situated at the position ri is

[H0 + V(ii , r2 )]d>(r 1 , r 2 ) = E(rOOfrj , r 2 ) [12.42]

with

V(r„r2)
1 1

r\ ki - r2
|

[12.43]

and where H0 is the Hamiltonian for the hydrogen atom

H0 = -iVi - -
r2

L12.44]

Both d> and the eigenvalue E depend on ri parametrically. Let us consider

the solution of [12.42] which, as rx
—* °°, becomes equal to the unperturbed

hydrogen ground state wave function i/q(rz) = </'ioo(r2 )- Thus

d>(ri, r2) -> t/uoofo); E(j{) -> E i as rx “

Applying perturbation theory (see Section 2.8) up to second order, we have

E{r,) = E x + E[l

\ri ) + E?\r x ) [12.45]

The first-order correction E^ is

E\l) = (^ool^r!, r2)|^10o) [12.46]
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and we see that E[l) = FnCn), the direct static interaction between an electron

and a ground state hydrogen atom, given by [12.20].

The second-order term is

mn)= s
nlm

(fi+ 1)

= 2 Eq'+ 1
b \

KfooolVfrl, r2)|ll>nlm)

Ey~En

\Vw(*i)\
2

[12.47]

where in the last line we have used the notation of [12.39]. The sum over (nlm)

includes an integration over the continuum states of atomic hydrogen.

The direct part of the optical potential Fopt can then be identified at low

energies with E(r x )
- E x . Adding the exchange potential Kn(ru r2 ), we have

V?pt(ri) = Vn(r,) + VjJti) ± Kn(ri, *2) t 12 -48]

where the polarisation or distortion potential FpoiOfi) is equal to Aj2j
(ri) and is

given by [12.47]. Since the exchange part of ToPt is non-local, the explicit form

of [12.41] reads

[V 2
4- k\ - 2Vu(n) “ 2V’poi(r 1)]Ff(ri)

= ±2 Ku (r
x , r2)Ff(r2) dr2

[12.49]

We easily see from [12.47] that since (E x
- En) < 0 for all n(n ± 1),

l/pol = Ef !

is negative and represents an attractive potential.
P

For large rx ,
using the expansion [A4.24], we have

V(rj,r2)
1

“

7^:
r i ;=i

Pi(cos 012) [12.50]

where 6U is the angle between ^ and r2 . The term decreasing most slowly

when n is large is that with 1=1, which decreases like r x .
Correspondingly,

the long range behaviour of Tpo i
from [12.47] and [12.50] is

[12.51]
V,pol

a

where a is the dipole polarisability of the target atom, which is given in a.u. by

(see [5.112])

. _ -s-, \('Pnlm\z2\ *Al0o)l \\2 52]a En - E x

l,m

Angular momentum conservation restricts the sum over intermediate states to p0

states (Z = 1, m = 0). For atomic hydrogen d = 4.5 a.u. The size of a is

largely determined by how close the lowest lying p state is to the ground state.

For the rare gases, the polarisabilities are small (for example ri = 1.38 a.u. for
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helium) while for the alkalis where the level n0p is very close to the ground state

n0 s, the polarisabilities are very large (a — 140 a.u. for sodium).

By studying the coupled equations [12.38] it can be shown that for large ri the

interaction of longest range is given by [12.51] not just at very low energies but

at all energies. Above the first inelastic threshold the optical potentials develop

an imaginary part to account for absorption (loss of flux) from the incident

channel (see Section 11.6), but the purely real potential [12.48] often gives a

good account of elastic scattering at all energies.

At high energies the effect of the polarisation potential is to enhance the

scattering in the forward direction, as observed in the experiments (see

Fig. 12.3). At sufficiently high energies, the exchange interaction can be

dropped and the direct interaction (Vn + Fpoi) can be inserted into the

expression for the Born approximation.

The asymptotic (large ri) form of Vpoi given by [12.51] is modified at small

values of ri. Since, except for hydrogen, it is difficult to calculate Vpoi from

perturbation formulae like [12.47], semi-empirical expressions are often

used, for example

T/po,(ri) = "
2(rf + d2

)

2 [12>53]

which depends on a constant d, of the order of magnitude of the radius of the

atom. A more detailed account of the optical potential theory may be found ih

Joachain (1983).

12.3 EXCITATION OF ATOMS TO DISCRETE LEVELS

To illustrate how cross-sections for inelastic scattering can be determined, we

shall again take the case of electron scattering by atomic hydrogen. The simplest

approximate wave function must contain both the incident channel and the final

channel of interest. If the target atom is initially in the ground state, and the final

state of interest is labelled by q 1), the simplest approximate wave function is

(compare with [12.37])

^±(ri, r2) = [FffaMfe) ± ^ffeWri)]

+ [Ff(ti)iffq (t2 ) ± F*(r2)^(ri)] [12.54]

A pair of coupled equations of the form [12.38] with N = 2, determines the

unknown functions Ff, Ff. Solving these equations numerically, subject to the

boundary conditions [12.9], allows the determination of the scattering ampli-

tudes/f and the differential cross-sections by [12.10]. This two-state approxima-

tion can be extended to a many-state close-coupling approximation by using

[12.37] and [12.38] with N > 2. For hydrogen the optically allowed transition

Is -> 2p is the largest excitation cross-section, and a three-state approximation

including the Is, 2s and 2p states provides reasonably accurate cross-sections for

this transition (see Fig. 12.5).
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12.5 The cross-section for excitation of the (2s + 2p) levels of hydrogen by electron impact at 54,

100, 200 and 300 eV. The solid line is the result of a three-state close-coupling approximation.

The Born approximation

We saw that experiments on elastic scattering, at energies which are sufficiently

high for the Born approximation to be accurate, provide a way of measuring the

charge densities of atoms (and indeed of molecules). Equally important

information can be obtained from excitation experiments at high energies.

At sufficiently high energies, exchange effects are small and the exchange

potentials in [12.38] can be neglected. In the Born approximation, the lowest

order wave function is set equal to the unperturbed function

<A±(ri, r2) = iAo(ri, r2) = exp(ik
;

• rjt/qoofo) [12.55]

with k ;
= kii. Hence the lowest order channel functions F

q
are given by

Ff(r0 = Fq(ri)
= 5,1 exp(j'kj • it) [12.56]

Inserting this lowest order approximation into the right-hand side of [12.38],
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and neglecting the exchange potentials, we have

(V? + k
2
q
)F

q
(t x ) - 2VqX(t{) exp(tki • r.) [12.57]

where, since F
q
= F~ in this approximation, the superscripts ± have been

dropped. The solution of this equation, with the boundary condition [12.9], can

be obtained with the help of the Green’s function [11.126], We have

F
q {n) =

1

277

e
^|ri-ri|

T, 1 (ri)e'
k ‘- ri

dri [12.58]

In the limit of large r, , this becomes

1 p.ik,r\

F,(ri) ~ e
_ik, 'riV

r

?1 (ri)e
,(ki

'

ri) dr[ [12.59]

r,— 2n ri J

where is a vector in the direction of r, with magnitude k
q

. Comparing this

expression with the asymptotic form [12.9], we obtain the scattering amplitude

fq in the Born approximation as

4 = -
277

e
lA 'r‘V

9i(r[)
dr[ [12.60]

where the momentum transfer A is now given by

A = ki - k
?

[12.61]

The amplitudes [12.60] can be transformed using the Bethe integral [12.29] to

obtain for the case of excitation (q f 1)

<A?(r) e
,A r

(Ai(r) dr [12.62]

where we have used [12.39], It is convenient to introduce the inelastic form

factor which corresponds to the integral [12.31] in the theory of elastic

scattering

if
qqiA) =

j

i>J(r)e
,A ' r

</y(r) dr L12.63J

so that we have

4 = -^2 4 i (A ) !
12.64]

In the case of scattering by a neutral atom, with nuclear charge Z, the

generalisation of ifqq
' is easily seen to be

z r
'

f

44A) = 2
=i J

dr! dr2 . .

j

drz<A*e
,A '^ [12.65]

In general, £f
?i(A)

depends on both the magnitude and the direction of A; but it

can be shown that Sm |£f
? i(A)|

2 depends only on A (the magnitude of A), where

the sum is over the magnetic quantum number of the final state q
m

(nlm ).
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The differential cross-section in the Born approximation is given by [2]

daqj_ _ K

han

'

?l = ? m 2
[ 12 .66]

where/, is given by [12.64], The total cross-section smnm,*I over the magnetic

quantum number of the final state q = (nlm) can be defined

<Tq\(kl) = 2772 -j^
d(cos 0)\fq \

[12.67]

where q - (nl) labels the final state. Since lm \fq \

2 depends only on A, and

because from [12.61],

A2 = k\ + k
2

q
~ 2kykq COS e [

12 -6g]

we can write [12.67] in the alternative form, using [12.64]

8u
°*i(*i)

=
-gr

Amax
J

Ac
^ XI ?̂i(A)l

2 dA [12.69]

. . ,
, s . A = (b, - b ) When the change of energy of

?e mrgo“to‘m
<

<i, - lofsmaXmpamd with the incident energy (M/2), we

can write
[12.70]

Amax = 2^i and Amin
-

In order to see the connection between cross-sections for ,t™*“nt induced

by electron impact with the radiative transitions, studied in Chapter 4,

introduce a generalised oscillator strength

3V(A) = (£, - E,) 1^'(A)|
2
, q 1 q'

so that

where

4rr

CTqlikx) = ~u
k\ \E,

fAmax dA
^-i(A) X [12.72]

[12.73]
%i(A) = 2

m

From [12.63], by expanding the exponential, we have for small A

ifqqiA) - <*,|1 + *(A *) + ••
'l<M

[12 ' 74
-1

When^ , *f
and *, are orthogonal, and the first term is zero. In the limit of

[2] It may be shown that the first Born JA .
However,

accurate at small values of the momen
small A, the total (integrated) excitation

J—— “—

'

bi!h

energies.
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small A we then have

.%,.(A) = iM%\z\ipq.) [12.75]

where a is the component of r in the direction A. From [12.71] and [12.75] we

can find the form of the generalised oscillator strength for small A

3V(A) - 2{E
q
- E

qmq\z\il>q.)\
2 [12.76a]

- 2(E
q
- E

q
,)\z

qq.\

2 [12.76b]

where we have introduced the notation used in Section 4.6, namely z
qq

- -

The right-hand side of [12.76] is identical with the optical oscillator

strength fqg ' defined in Section 4.6, and we may write

lim 3v(A) = /„• t 12 -77!

A-h»0

This result which we have proved here for atomic hydrogen is in fact true for

any atom, for which the general expression [12.65] for
rJqt/

' is used in the

definition of the generalised oscillator strength [12.71]. Measurements of the

differential cross-section for an inelastic transition as a function of A, dcr^/dA

enable S^-i(A) to be determined for a range of A, since

dPjt _ 4rr/ 1 \ ^i(A)
[12.78]

dA k\ \Eq
- EiJ A

This range does not extend to A = 0, since the minimum value of A is given by

[12.70]. However as the incident energy increases, Amin decreases and the

experimental data can be extrapolated to determine the optical oscillator

strength f-ql = l m fq i
. As an example, the data for the excitation of the 2 P level

of helium from the ground state is shown in Fig. 12.6. The relationship

[12.77] between optical excitation and electron excitation implies that in the

high energy limit the electron impact cross-sections for optically allowed

transitions are much larger than those for optically forbidden transitions.

The high energy behaviour of total inelastic cross sections can be determined

by noticing that (see Fig. 12.6) the generalised oscillator strength, and hence the

differential cross-sectionL
decreases rapidly beyond a certain value of A. If this

value of A is denoted by A, we see from [12.72] that the total cross-section (Tqi is

given approximately by

<r
qi(ki)

4-7T 1
A

^gl(A)
[12.79]

From [12.65] and [12.71] and by expanding the exponential exp(iA • r,), we

have

$.i(A) = 2(E
t
- Ei) iU*

z

2 z
i

i= 1

<Ai )
- —

{
i= i

)
+ [12.80]
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12.6 Generalised oscillator strength in atomic units for excitation of helium to the 2'P level from the

ground state.

In the case of optically allowed transitions the dipole term

does not vanish and is much larger than the quadruple and higher multipole

terms. In this case, ^(A) = ^i(O) and from [12.73J, [12.79] and [12.80]

<Tq\(k\)

Stt „
b ?K \ m

4>a

z

2 *.- i/'i log [12.81]

Using [12.70], we note that the high energy cross-section decreases like

E _1
log E, where E = \k\.

If the dipole term vanishes, as in s —» s or s —* d transitions, we see trom^

[12.73], [12.79] and [12.80] that the high energy cross-section decreases like

E~ l

,
and

77 v
i 2 Uq id •Ai)

\ i= 1 /

A 2 [12.82]

The expressions [12.81] and [12.82] are due to H. A. Bethe, and the Bethe

approximation has been successfully used to analyse the stopping power of

materials [3]. At high energies the dipole transitions dominate (whether for

discrete excitation, or ionisation) and the energy loss per m of an electron of

non-relativistic velocity v passing through a material containing N atoms pier

[3] See for example Richtmyer, Kennard and Cooper (1969).
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m3
, each of atomic number Z, is given approximately (in SI units) by

dE
dx

NZe4

2 2
lQg

4-Treo mv

mV
[12.83]

where C is an empirical constant, which has the significance of a mean excitation

energy.

\

12.4 IONISATION

Experimental studies of ionisation have been carried out with both neutral

atoms and positive ions as targets. The related process of electron detachment

from negative ions has also been measured in some cases, such as for the

reaction

e“ + H" —> H + 26-

In general, ionisation cross-sections increase from the ionisation threshold I,

reach a maximum at an incident energy E from three to seven times I

,

and

finally decrease like E~ l
log E. Two particular cases, the ionisation of Na+

and

of Ne+ are shown in Fig. 12.7. Superimposed on this smooth variation is a fine

structure which is due to the excitation of autoionising levels. For example, in

the case of ionisation of neutral helium from the ground state, as well as direct

ionisation, the reaction can proceed in two steps:

e" + He(ls2
)
—» He(2s2p) + e~

%
He+

(ls) + e"

12.7 The cross-section for ionisation of Na + and Ne+
by electron impact.
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The (2s2p) 'P level of helium is just one of a number of possible doubly excited

SermedSte states. The threshold for exciting this particular level is approx -

matelv 60 eV The doubly excited state is long-lived compared with a character-

on time, aud decays producirrg He' in the ground state and an e,ected

electron with a kinetic energy of about 36 e\

.

Following the production of an inner shell vacancy m a heavy atom, a

radiationless tianskion can occur in which an electron is ejected As we saw

earlier, this process is called the Auger effect and can lead to multiple ionisation.

Consider for example the reaction

e
- + Ar -* Ar£ + e

_
+ e~

Ar
2+ + e

In the first step, one of the L shell electrons is ionised and in the second step

a second electron is ejected through an Auger rearrangement. The simultaneous

direct ionisation of two or more electrons from many-electron atoms is possible,

but the cross-sections are smaller than for the ionisation of a, single

a heavy atom or ion, it is possible to study ionisation in which an electron is

ejectJLn a particular inner shell. This inner shell ionisation is .he

mechanism which produces the vacancies allowing "he
f^ ff0m

X rav tube, but useful ionisation cross-sections cannot be obtained I

observations on such tubes as the targets are thick and complicated mul p

ionisation cross-sections are difficult for several reasons. At

low energies, near to threshold, excitation cross-sections can be computed using

L dos”“oupiing approach, but this cannot be extended in any siraightforwa d

able the Born approximation, in which these electrons are not

eoual footing, is difficult to put on a completely logical basis. Despi

remarks, for sufficiently high energies, the total ionisation cross-section can b

calculated accurately in the Born approximation.
.

"Bom approximation, the amplitude forffie ion*i<Watom

hvdrogen in the ground state is again given by [12.62]. This tune me

function ^ must represent a state of positive energy, and the label , can be

replaced by q where q is the momentum of the ejected ™ '

The wave functions t//q can be normalised so that (see [2.35J)

</'S'(r)i/fq(r) dr = 5(q - q') [12.84]

The scattering amplitude

/

q (fci , 0) depends not only on k, and on the angle 0 of

die scatteredElectron, but’also on the magnitude and direction of q, and the
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Imitation

differential cross-section from ionisation in which the ejected electron has

momentum between q and q + dq is

dO dq ki

Energy conservation requires that

dV =^\Ukuef

1 ,2 , r- _ 1
1.2 .

1
-2- k\ + Ey = - k\ + - q

[12.85]

[ 12 . 86]

[12.87]

2 2
' vq

2

so that the maximum momentum of the ejected electron is

<7max = (k\ + 2E{)'
/2

The total cross-section is obtained by integrating over all the angles and energies

of ejection, as well as the angle of scattering giving

kn*+i *<7max

2tt d(cos 6) q
2 dq

.
-l 0

dfl(q) — |/q(^i, 9)\
2

[12.88]

The evaluation of the cross-section is complicated and we shall not describe it.

The details may be consulted in Bransden (1970). The computed and ex-

perimental cross-sections are shown in Fig. 12.8 and it is seen that above 200

eV the Born approximation agrees with the data.

12.8 The cross-section for ionisation of atomic hydrogen by electron impact.
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12.5 RESONANCE PHENOMENA

In the last section, and earlier in Chapter 6, we have referred to autoionising

levels of atoms, which are metastable excited states and which decay, ejecting an

electron of positive energy. The simplest example of a neutral atom possessing

such levels is helium, and we have seen in Section 6.7 that there is a doubly

excited state of the form ^p^P with an energy of 60.1 eV above the ground

state. This level can decay either by ejecting an electron or through radiation:

He(2s2p) —» He+
(ls) + e

He(2sls) + hv

These processes are in competition, but the probability of radiationless decay or

‘autoionisation’ is much greater than for radiative decay. Because of the finite

lifetime of this level, the energy E r of the level is not sharp, but has a width, in

this case —0.17 eV. .

Although originally doubly excited levels were discovered spectroscopically

by observing emission lines, which because of the competitive radiationless

decay are weak and broad, these levels can be seen most clearly in energy loss

experiments. In such experiments a primary beam of high energy electrons is

passed through a target containing helium and the energy spectrum of the

emerging electrons is measured. In the data of S. M. Silverman and E. N.

Lassettre shown in Fig. 12.9, obtained with a primary beam of 500 eV, two

peaks are seen at 60.0 and 63.5 eV above the helium ground state.

Using perturbation theory or a variational method, it is possible to calculate

the energies of doubly excited states. In helium there are sequences of excited

states of the form (2sns)
1

S, (2sns)
3
S, (2snp)

1
P, (2snp)

3
P. In a sequence of

levels, such as (2sns), as n increases the energy of the system increases until
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12.5 Resonance phenomena

eventually a situation is reached in which one electron occupies the 2s level of

He +
and the other electron is free. It follows that these levels can be found in

electron scattering by He 4
, at incident energies just below the threshold for

exciting the n = 2 level of He +
. Since the lifetime of each level is of the order

10” 14
s or less, the doubly excited atoms occur only as intermediate states in

the elastic scattering process

e + He +
(ls) —» He* —

*

e” + He +
(ls)

We saw in Chapter 11 that in potential scattering if the potential well

possesses metastable levels so that the incident particle is temporarily captured,

then the scattering amplitude shows a resonance behaviour, which can be

represented by the Breit-Wigner. .formula [11.110]. This situation is called a

shape resonance because it depends on the shape of the potential well. The

transient formation of a doubly excited state during an electron-atom collision,

also gives rise to a resonance, called a Feshbach resonance. The (2sns)*S

sequence of levels causes a corresponding sequence of resonances below the

n = 2 threshold in the l = 0 singlet partial wave. In the same way 3
S levels cause

resonances in the triplet l
= 0 partial wave, and I,3P levels cause resonances in

the l — l partial waves. Similar sequences of levels with configurations 3sns,

3snp and so on, give rise to resonances just below then n = 3 threshold. In

general the smooth variation of the elastic scattering cross-section, predicted by

the static-exchange approximation, for example, is interrupted over a narrow

range of energies below each inelastic threshold, where anomalous behaviour

due to the resonant sequences can be expected.

The positions and widths V of some levels in helium are shown in Table 12.1.

The widths are in general very small, and often smaller than the energy

resolution of a detector in an electron scattering experiment. For this reason, it

is difficult to observe a resonant profile in an electron scattering experiment.

Table 12.1 Resonance energies and widths of some doubly excited helium states, based on the

n = 2 level

‘S
3
S

£r(eV) l'(eV) Configuration £r(eV) l'(eV) Configuration

57.84 0.12 2s
2 62.62 2 x 10

4 2s3s

62.13 0.007 V 63.76 7 x 10
6

2p3p

62.97 0.036 2s3s 63.95 9x 10
'

2s4s

*P 3p

£ r(eV) I'(eV) Configuration Sr (eV) l’(eV) Configuration

60.19 4.4 x 10~ 2
2s2p 58.30 1 x 10

2 2s2p

62.82 1.4 x 10
2 2s3p - 2p3s 63.15 3 x 10

3 2s3p t 2p3s

63.88 8.7 x 10~ 3 2s3p + 2p3s 63.94 8 x 10
5 2s3p 2p3»

E, = Energies of the doubly excited levels above the ground state of He.
[' = Level widths.
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When the selection rules allow, the sequence of autoionising levels can be

excited by photon absorption, as we saw in Chapter 6.

Resonances also occur below thresholds in the scattering of electrons by

neutral atoms. The unstable resonant states are states of the corresponding

negative ion. For example, in electron scattering by atomic hydrogen, the

resonant states are doubly excited states of H and these occur m sequences

below the thresholds for excitation of H. A few of these levels, with t e

corresponding widths are given in Table 12.2.

There is no mechanism to produce Feshbach resonances in the static-

exchange or polarisation approximations. However, the resonances occurring

below the n = 2 threshold are predicted by a close-coupling approximation m

which the Is, 2s and 2p levels of the target occur. To obtain the resonances

below the n = 3 threshold, a close-coupling wave function can be employed,

but this time the n = 3 levels of the target must be included. It is easy to see

why this should be the case. Consider the ls+2s+2p close-coupling wave

function, which from [12.37] is explicitly

iMri, r 2 )
= FfCrO'Aioofo) ± Ft(i2)il>100O1)

+ [Ff (j\)>p2oo(r2) ± Fi(r2)ip2oo(*i)
[12.89]

+ 2 {FUuWnJti) ± Ffm(r2)ip2im(r i)}]
m= — l

where ipnim is a hydrogenic function. Below the n = 2 threshold, F f satisfies the

elastic scattering conditions [12.5] and F 2 (r)> F2m(r) —> 0 as r —

*

If the open elastic scattering channel wave function is omitted, retaining t e

terms in square brackets, we obtain a configuration-interaction wave function

describing bound states (since this part of the wave function is bounded). Ihe

configurations that are mixed are all of the form 2snl and 2pnl. In the absence of

the open channel, the equations [12.38] are eigenvalue equations and possess

bounded solutions for Ff and Ffm only at discrete energies, that is for discrete

negative values of kl. (Notice that because of the degeneracy of the 2s and P

levels of hydrogen k\ = k\.) If these discrete negative values are denoted by

Table 12.2

ion H
Resonance energies and widths of some doubly excited states of the hydrogen negative

£r(eV) r(eV)

's 9.56 0.05

10.18 0.002
3
S 10.15 0.2 x 10~ 4

10.20 —

£ r (eV) I’(eV)

'P 10.18 —
10.20 —

3P 9.73 —
10.20 —

E, = Energy of the doubly excited levels in terms of the energy of an

electron scattered from the ground state of H. The threshold tor

excitation of the n — 2 levels of H is 10.24 eV

.

E = Level widths.
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Probltm

-Af, resonances might be expected at incident energies in the open channel of

(y*?)
= + (£2 -El) [12.90]

where Ex = -0.5 a.u. and E2 = -0.125 a.u. are the energies of the n = 1 and

n — 2 levels of H.

When the coupling to the open channel is taken into account by solving the

set of equations [12.38] for all the functions F
} , F2 and Fim ,

resonances indeed

do appear, of Breit Wigner form, in the elastic scattering amplitude. The

coupling to the open channel gives the resonances a finite width, and also

provides level shifts A, so the resonances occur at energies ( 2 &i), + A,, where

A, « (j*:)?.

Resonance phenomena are not confined to the simple two- and three-electron

systems that we have considered, but are found frequently in low-energy

electron scattering both by atoms and by molecules. Because of the strong

overall Coulomb attraction, there are generally many more resonant states in

electron scattering by highly charged ions than by neutral atoms and the

magnitude of the cross-section in certain energy regions can be dominated by

their presence.

PROBLEMS

12.1 By calculating the radial current using [12.9] show that the differential

cross-section for inelastic scattering is given by [12.10].

12.2 Use the variational method with trial functions given by [12. 13] to obtain

[12.15]. Start from the functional / defined by [12.16] and require 81 = 0

under independent variations of Ff and Ff *, subject to the conditions

SF± -» 0 as r —» * and 8(F
±
*) -* 0 as r — (Hint: When Ff and F[ *

are varied independently 8F± and 8(F ± *') are independent arbitrary

quantities of the first order.)

12.3 Show that the direct potential Vn(rj) given by [12.20] can be obtained

from [12.19] using tft(r2) = exp(-r2).

12.4 Evaluate the direct potential Un for electron scattering by helium:

V„(ri) =

where

dr2 dr3 |iAHc(f2, r3 )|
2

12— h

U l

r !
- r2 |

Z3

<Pne(r2 , r3) = exp[~Ze(r2 + r3)], Ze = 27/16

(see [6.70])

12.5

Using the result [12.26], calculate the elastic scattering differential

cross-section for electron scattering by helium at 500 eV in the Born
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\

approximation (a) using Vn as the effective potential (b) using

Vn + Vpoi as the effective potential, where Vp0 ,
is given by [12.53] with

a = 1.38 a.u. and d = 1.0 a.u.

12.6 Show that the total cross-section for elastic scattering of electrons by

the ground state of atomic hydrogen is given in first Born approximation

(in a.u.) by

lk\ + + 12

C7tot " 77

3(1 + k\

)

3

which shows that crtot ~ k\
2

in the limit of high energies. (Start from

[12.33b]).

12.7 Show that [ff
?i(A)|

2 depends only on the magnitude of A, where is

defined by [12.63] in which q' = 1. Treat the case of excitation of atomic

hydrogen where q is an excited state with quantum numbers nlm and 1 is

the ground state (Is).

12.8 Although it is difficult to calculate the Born approximation amplitude for

ionisation of atomic hydrogen using an exact continuum hydrogenic

function, if this function is replaced by the plane wave i/r
9
(r) = (27r)

3/2

exp(tq • r) it is straightforward to obtain the differential cross-section.

Compute the differential cross-section for ionisation of hydrogen in this

approximation using [12.62] and [12.85].
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Atom-atom collisions

In Chapters 9 and 10, we discussed in some detail the properties of diatomic

molecules, which are the bound states of two atoms or ions. We shall now turn

to the case in which one atom is scattered by another. Such processes occur

naturally in an assembly of atoms, such as in a gas, but can also be studied

experimentally by allowing two beams of atoms to interact and studying the

distribution of the reaction products. A schematic diagram of one such

experiment is shown in Fig. 13.1.

Under all conditions elastic scattering occurs, in which atom A is scattered

from atom B, without any change in internal energy of either A or B

A + B^ A + B

Several other processes may also be possible. Indeed, provided enough energy

is available, either or both A and B can be left in an excited state after the

collision,

A + B -*• A' + B

-» A + B'

—» A' + B'

Beam Positive

plate

13.1 A schematic diagram of an apparatus to measure the neutral atoms produced in a reaction

between ions of opposite charge: A* + B“—»A + B. Since low energy beams of charged particles

are difficult to prepare because of space charge and other effects, small relative velocities between the

ions are achieved in this method by merging two beams each at energies of a few keV (see

Problem 13.1)
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Another process is one in which one, or more, electrons are transferred from one

atom to the other. For example,

A + B -> A“ + B+

This is known as charge exchange, or charge transfer. A further possibility is an

ionisation process, in which one or more electrons are ejected. That is,

A + B—»A+ + B + e~

-> A + B + + e“

-» A++ + B + 2eT

,

etc.

A simple system which exhibits several of these phenomena is that composed

of two hydrogen atoms. For example, a typical excitation process is

H(ls) + H(ls) -» H(ls) + H(2p)

and a charge exchange reaction is

H(ls) + H(ls) —* p + H"(ls2
)

Unfortunately, the simplest systems such as (p + H), (H + H), (H + He) are

often the most difficult to study experimentally because hydrogen exists

naturally in molecular form H2 . However, it is now known how to prepare

beams of atomic hydrogen, and this has allowed data to be obtained for these

systems. ., ,

We shall start by discussing elastic scattering, and then go on to describe tne

interesting process of charge exchange, for the p + H (Is) system. In Chapter 9,

we saw that if the Born-Oppenheimer separation is made, the motion of the

nuclei of the two interacting atoms is determined by an effective potential,

which can be represented approximately by the Morse potential [9.25].

Provided the atoms are moving slowly with respect to the electrons we can

continue to make the Born-Oppenheimer separation, and to describe the elastic

scattering by an effective potential. The potential obtained in Chapter 9, while

accurate at small distances of separation of the atoms is not sufficiently accurate

at large distances and we shall see, in the next paragraph, how to calculate

the long-range interactions which determine the elastic scattering at low

velocities.

13.1 LONG-RANGE INTERACTIONS BETWEEN ATOMS

In analysing the most important interactions at large distances between atoms or

ions, there are three cases to be considered. First, if we are dealing with the

scattering of one positive ion by another, the dominant interaction is Coulombic

and, at large r

F(r)
Z\ZBe

2

(4TTE0)r

[13.1a]

where (ZAe) and (ZBe) are the net charges on each ion. In this chapter it is
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13.1 Long-range interactions between atoms

convenient to use atomic units, so that the potential [13.1a] becomes

V(r) ~^ [13.1b]
r

The second case arises in the interaction of a positive ion of net charge ZA and

a neutral atom B. The positive charge induces an electric dipole moment in the

neutral atom, and the interaction at large distances can be calculated as we did in

Chapter 12, when we derived the interaction of an electron with a neutral atom,

using second-order perturbation theory. The potential behaves at large r as

V(r) (in atomic units) [13.2]

where aB is the dipole polarisability of the neutral atom B.

Finally, we consider the forces between two neutral atoms. For simplicity, we

take the example of two hydrogen atoms, the first composed of a proton situated

at A and electron 1 and the second of a proton situated at B and electron 2. The

coordinate system is shown in Fig. 13.2. The internuclear distance AB is R , and

is taken as the Z axis. The distances of electron 1 from A and B are denoted by

r1A , r1B and, similarly, r2A and r2B denote the distances of electron 2 from A and

B, respectively. The distance between the two electrons is r12 . The Flamiltonian

for the system in the adiabatic approximation, in which the internuclear

distance R is fixed, is

H = Ha + Hb + F(l, 2) [13.3]

where H\ is the Hamiltonian of the atom (A + ef), //B is that for the atom

(B + e2 ) and F(l, 2) is the interaction energy between the two atoms. In atomic

units, we have

[13.4a]

[13.4b]

[13.4c]

13.2 A coordinate system for calculating the long-range interaction between two hydrogen atom#.

i
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Two points should be noticed. First, because we are interested in large

distances of separation R, V(l, 2) is small and can be treated as a perturbation.

Second, since exchange effects arising from the identity of the two electrons are

of short range, we can (for large R), ignore the antisymmetry of the wave

function. Although these long-range forces are important for scattering, the

binding forces considered in Chapter 9 are greater in magnitude by a factor ot

10
3

,
which is why, even for states of large vibrational excitation, the long-range

forces play no significant role in the bound state problem. ....
Let the Cartesian coordinates of electron 1 ,

with respect to A as origin be XiA ,

y lA, z1A ,
and of electron 2, with respect to B as origin be x2B,^2b, *2b- Then, as

we are taking the Z direction to be along AB,

r12 = [(x2B “ * 1A)
2 + (^2B - >-lA)

2 + »2B “ * 1A + Rf?'2

riB = [*1A + .Via + (^ia
_ R)2

]
l/2 [13.5]

r2A = [*2B + y
2
2B + (Z2B + ^?)

2
]
1/2

Each of the terms l/r12 ,
l/r1B and l/r2A can be expanded in a Taylor series in

powers of l/R. Thus

1

riB

_1_

R

j_

R

4-

1

R

1 +

1

1 ~
2

2Rz\a

1

x\a + ^lA + ^1A ~ 2-Rzia

x\a + yiA + a
2
A

R 2

- 1/2

R 2

x\a + JViA + z
2a-2Rzia

1 +
ZIA

R

R 2

x\a + ^lA lz
2
1A

2R2
+ [13.6]

In the same way, we have

J_ = J_

r2.A R

and

(^2B
—

^Ia)

2 + V7R 2s2BZ2B _ X2B ~ yiB
1

~R 2R 2

1*12 R
1
-

R

+

(x 2B - Xia)
2 + (^2B Jia)

2
2(g2B Zia)

[13.7]

+
2R2

[13.8]

The expansion of V(l, 2) in powers of l/R is obtained by combining [13.4c]

with [13.6], [13.7] and [13.8]. The terms in 1/R and l/R are seen to cancel, so
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Long-range interactions between atoms 13.1

that for large R

V(l, 2) = -^3 (x1AX2B + ^lA^B - 2z1aZ2b) [13.9]

This long-range interaction has the form of the interaction energy of two

dipoles, the first composed of proton A and electron 1, with electric dipole

moment Di = -riA (in atomic units), and the second of proton B and electron 2

with dipole moment D2 = — r2B- The energy of interaction is

|Dj D 2 -
(Pi • R)(D2 ~ R)

R2
[13.10]

which on taking R as the Z axis, reduces to [13.9].

The perturbation energy

The energy of the unperturbed system in which both hydrogen atoms are in the

ground state is (2E\j), and the unperturbed wave function is </'is(fiA) |/
,is(f2B)5

which satisfies the equation

(Ha + Ha - 2£’
ls)^i s(r 1A)iAi s(r2B)

= 0 [13.11]

The total energy of the system, allowing for the perturbation 1/(1, 2) can be

written as

E = 2E\S + E(1) + Em + • •
• [13.12]

where E (n)
is calculated from nth order perturbation theory, and V(l, 2) is given

by the large-A expression [13.9].

The first-order correction,

Em = dr1A dr2B iA*s(fiA )i/'is(f2B)T(l, 2)(/q 5 (r1A )(/q s (r2B ) [13.13]

is immediately seen to vanish, because the matrix elements of the angular

dependent terms, such as XiA > yiA , s'ia are zero when taken between spherically

symmetric wave functions such as <Ai s(fiA ). The first non-vanishing perturba-

tion correction is E®, which is given by (see [2.319])

£(2) = y {<l>o\V\^i)(4>j\V\'Po)
[13 14]

jfo E0 - Ej

where <//0 = </hs(ri A )<Ais(r2B ) and are the wave functions of the intermediate

states. In our case the are of the form tAn /m (riA)</Vrm'(r2B )5 with n and n / L

The energy denominator is (in atomic units) given by (E o
— E/) — (

—
1 + l/2n

+ l/2n'
2
), with both n and n' greater than 1, so that (E 0 - Ej) is always

negative. The numerator is positive and behaves like l/R ,
so that the

long-range interaction between two hydrogen atoms is

Em(R) = - [ ! 3.15]

531



Atom-atom collisions
13.2

where Cw is a positive constant known as the van der Waals constant. The same

procedure can be carried through for any pair of neutral atoms and [13.15] may

be shown to give the general form of the long-range (van der Waals) interaction,

although of course the quantity Cw varies from system to system.
,

The long-range force is always attractive, but when R-> 0, the force is

ultimately repulsive in character as we saw in Chapter 9. This has suggested the

introduction of empirical potentials to describe atom-atom scattering. One of

the most widely used of these is the Lennard-Jones potential, which has the

form _ , ,, ,
. , n

-
ft

'1V(R) = C [13.16]

where C and R 0 are constants. The constant C can be related to Cw (the van der

Waals constant), but both C and R 0 are usually treated as empirical constants to

be determined from the data on atom—atom scattering.

13.2 THE CLASSICAL APPROXIMATION

With some exceptions, the motion of the nuclei in atom-atom scattering can be

treated by classical Newtonian mechanics. The reason that classical theory can

be employed, rather than the quantum scattering theory we used m Chapter 12

when discussing electron scattering, is that the wavelength associated with a

moving atom is often very small compared with the size of the interaction

region. The potential V(R) is smoothly varying and only changes slowly over

distances of the order ofan atomic unit (a0 = 0.53 X 10 m). Ifthe wavelength

of the atom is small compared with this distance, a well-defined wave packet can

be formed which will follow the classical path. The wavelength of a particle ot

mass M and velocity v is (in the non-relativistic case)

[13.17]A =
Mv

The lightest atom is hydrogen, so that in all cases M > 1836m, where m is the

mass of the electron. Using atomic units with m = 1, h - 1, we see that A < 1

if v > (2it/1836) a.u. Since 1 a.u. of velocity = 2.19 x 10 m s ,
we expect

classical conditions to hold provided the velocity of the scattered atom is

greater than 7.5 x 10
3 m s"

1 which corresponds, for hydrogen, to an energy

°f

A further condition to be satisfied arises from Heisenberg’s uncertainty

principle. If classical mechanics is to hold the uncertainty in the angle through

which the scattered atom is deflected must be small compared with the angle ot

scattering. Let us consider for example the situation illustrated in big. 1 • »

which shows the path of a particle of mass M, scattered by a centre of orce

situated at the origin O. The initial motion of the particle is parallel to the Z

axis, and the initial velocity is v. The classical trajectory is determined by the

impact parameter b, which is defined as the perpendicular distance between the
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13.2 The classical approximation

13.3 The classical path of a particle scattered by a centre of force situated at O.

Z axis and the initial straight line path. The particle has an angular momentum

L about O, given by
L = bMv = bp [13.18]

Looked at from the viewpoint of quantum mechanics, the scattered particle is

represented by a narrow wave packet, which has a certain width Ax in the x

direction and a corresponding uncertainty in the x component of the momentum

Apx . By the uncertainty principle Ax and Apx must satisfy

Ax Apx
2s h [13.19]

Now the impact parameter b will also be uncertain by an amount A b, which is of

the same order as Ax, the width of the wave packet, so we must have

Ab — h/Apx [13.20]

The uncertainty in the transverse momentum in turn gives rise to a correspond-

ing uncertainty A(f> in the angular coordinate 6 of the particle, such that

A <f>
=^ [13.21]

P

Combining [13.20] and [13.21], we have

Ab — h/(p A<f>) [13.22]

The angle of scattering 9 will also be uncertain by the quantity A<b, and if the

scattering angle is to be well defined we must ensure that

6> Ad> [13.23]

and simultaneously, for the impact parameter to be well defined, we must

ensure that b > Ab.

Combining the two conditions gives

6 > Mv Ab Mvb
[13.24]

i
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or since Mvb = L, we must have

e>ec = T

13.3

[13.25]

where 9 C is referred to as the critical angle.

Even at thermal velocities (» = 10
s cm/s), the important values ot L are ot

the order of 10
3
h, and it follows that classical conditions apply, provided the

angle of scattering is greater than a few milliradians. At higher energies, the

critical angle is correspondingly smaller. In contrast, for electron scattering,

because the mass of the electron is ~ (1/1836) of the proton mass, for given

values of b and v, the angular momentum of an electron is (1/1836) times the

angular momentum of a proton. It follows that small values of L are important

in electron scattering and the conditions for classical mechanics to be va l are

not satisfied.

13.3 THE ELASTIC SCATTERING OF ATOMS AT LOW VELOCITIES

Except at very small angles, and apart from some small interference effects that

we will discuss briefly later, the considerations of the previous paragraph show

that the elastic scattering of one atom by another can be determined by purely

Newtonian mechanics. We have derived in Appendix 1 the classical cross-

section for the scattering of a beam of particles. Using the results [A1.11J and

[A 1.12] and working in the centre of mass system, the angle of deflection is

given by
- _ -> n _ i n

dr [13.26]
’* L '

2 T 2

© = TT ~ 2
r

~M?
r0

where r0 is the distance of closest approach, L is the angular momentum, and

E = Mv 2
/2, M being the reduced mass of the two colliding atoms. The angle of

scattering 9 is defined to lie in the interval 0 =s 0 « it . If 0 already lies in this

interval we have 9 =
\
0

1

otherwise we take 6 to be given by

6 = | © |

— lirm
0r

6 = — {|0| - 2irm}

where m is an integer chosen so that 9 lies in the correct interval. The

relationship [13.26] can be inverted so L can be expressed as a function of 6.

The differential cross-section is then

dL

He

[13.27]

1dcr _
dO Mzv

2
sin 6

[13.28]

Although there is one value of 9 corresponding to a given value of L, there

may be several values of L, corresponding to a given value of 0. If these values

are L,, i
= 1,2,... the cross-section is obtained by summing the different
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13.3 Elastic featuring of atoms at low vtfocitiis

contributions:

dcr

dO
_J_y J±_ dL;

M2
v
2

i
sin 0 dd r do

[13.29]

When contributions to one scattering angle arise from different classical

paths, quantum effects may be exhibited in the differential cross-section, which

arise from interference between the wave packets of the particles following the

different paths. It can be shown that the correct expression under these

circumstances is

dtr

diT

1/2 2

[13.30]

where \i is the phase associated with the ith path. This phase can be calculated

using semi-classical methods.

Deflection functions corresponding to potentials like the Lennard-Jones

potential [13.16], have the general form shown in Fig. 13.4. At large values of

the impact parameter (large L), the scattered particle is influenced by the outer

part of the potential which is attractive. These glancing collisions contribute to

the small angle scattering. We see from Fig. 13.4 that several values of L con-

tribute to particular values of 0. For example, at the angle 0O the three values

L u L 2 and L 3 all contribute. Another interesting feature is that at the point

where 0 has a minimum, d@/dL vanishes, and dcr/dfl becomes unbounded.

The angle at which this occurs is known as the rainbow angle. Among the

13.4 Schematic diagram of the deflection angle © as a function of angular momentum for a particle

scattered by a Lennard-Jones potential. Note that the deflection angle © can be positive or negative,

but that the angle of scattering 9 is always positive (0 6 tt).

535



... . 13.3
Atom-atom collisions

various phenomena that can happen we shall describe two: the behaviour of

the small angle cross-section, and the behaviour of the cross-section close to the

rainbow angle.

Small angle scattering

Let us discuss the scattering at small angles from a potential of the form

V(r) - -A/rs

, A > 0 [13.31]

From [13.26], we write the expression for 0 in the form,

dr

0 = tt — 2b
l ro

r
2

b
2

1
- -T

V(f)
1/2

[13.32]

where b = L/Mv is the impact parameter and E - Mv 2
/2, v being the

magnitude of the incident velocity. It is convenient to change the variable of

integration to x = r0 /r, so that

dx
[13.33]b

ri

0 = TT
— 2

to
.21.2

1
- V(r0/x) x

2
b

rl

1/2

The equation which determines the distance of closest approach is (see

equation [A1.10] of Appendix 1)

'

V(r0)

rl E

and we can use this to eliminate b
2

,
so that

1 - V(r0/x)/E]

[13.34]

0 =

'1

if

.
0 1

- 1/2

dx [13.35]

1 - V{r0)/E j

For small angle scattering b is large, V(r) = Virjx) is small and r0 = A.

Expanding the expression in curly brackets to lowest order in l ,
using the

result

dx 7T

0 (I

and setting r0 - b, we obtain

1

0 = _
n V(b) - V(b/x)

dx [13.36]

jo (1-x 2
)
3 / 2

With the potential [13.31], the result [13.36] can be expressed as

0 =
—

4

[13J7a]

E
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TmTtmtr

where

F(s) =
1 - x!

dx
Jo (1 - x

2
)
3/2

The corresponding differential cross-section is given by

dcr

dIT
= S(s) 1 )

A \
2/s

1

where 0 =
1 0 1

and

k
E0 ) 6 sin 6 ’

g(s) = 5-‘[F(5)]
2/l

ll.lllji;

[13.37b]

[13.38a]

[13.38b]

For the important cases where 5 = 4 and r = 6, we have F(4) = 3 tt/4 and

F(6)= 15 7t/ 16, respectively.

The condition for the validity of the result [13.38] is 0 1 rad. On the other

hand for classical conditions to apply we see from [13.25] that we must also have

d> 0C ,
where the critical angle dc is of the order of a few milliradians.

Experiments can be analysed to determine s and A by plotting log [6 sin 6

dcr/dfl] against log 0. An example of such a plot is shown in Fig. 13.5.

Generally the experiments verify the van der Waals 1/r
6 law for the interaction

at large distances between neutral atoms.

13.5 Log-log plot of 6 sin 8 dcr/dfl vs 6 for the elastic scattering of potassium atoms by xenon

atoms. The straight line corresponds to the classical cross-section for the potential V(r) = -A It'

with s = 6. The experimental data of Helbing and Pauly deviate from the classical result at very

small angles (6 < 0 C ) as expected (see text). For 6 < 0 C
agreement can be obtained with the data by

calculating the cross-section using quantum methods. Notice from [13.38] that the shape of the

classical cross-section is independent of the velocity of the atoms in the beams.
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Rainbow scattering

Rainbow scattering takes its name from the corresponding optical phenomenon.

Referring to Fig. 13.4, we see that at the angle -6m the quantity dL/dO

Angular In the region near -flL the deflection function can be expanded as

- T ^ I

d©
@ — — 4- (L — LJ +

i
(L

r.„ L
Lj, d

20
dL2

+

Since d©/dL = 0 at L = Lm ,
we find that

0 = -em + B(L - LJ2

where B is a constant.

[13.39]

[13.40]

[13.41]

It
"

where /o(0) is a smooth function arising from small values of L correspond-

Z to positive values of 0, with 0 = 0 (see Fig. 13.4). For 9 < there -fl

be additional contributions to the differential cross-section arising f

L 2 = L m - x and L 3 = Lm + x. These contributions are evaluated by noting

from [13.40] that

— = 2B(L - LJ
dL

[13.42]

538



13.3 Elastic scattering of atoms at low velocities

so that for 0 < 6m the differential cross-section is given by

dtr _ 1

dfl
0

“‘i M2
v
2

sin 6„

1

1

2

B(L, - LJ

Using [13.40] this expression can also be written as

dcr 1 Lm
dfl M 2

v
2

sin 6„

1

B(0m - 6)

1/2

0 < 0„

[13.43]

[13.44]

The general shape of the cross-section is shown in Fig. 13.6.

Measurement of the position of the rainbow angle provides further informa-

tion about the shape of the interatomic potential. Since the rainbow effect is due

to contributions from two classical trajectories, with L = Lm ± x, interference

phenomena are predicted by quantum theory.

In practice the cross-section oscillates for 9 < 9m , and tends smoothly to Iq{9)

for 9 >9m and the singularity at 6 = 6m is removed. An example of rainbow

scattering observed in the experiments of Barwig et al. is shown in Fig. 13.7.

13.7 The differential cross-section for the elastic scattering of sodium atoms by krypton atomi

measured by Barwig, Buck, Hundhausen and Pauly for relative velocities of (A), 767 m/s (B)

817 m/s (C) 870 m/s. Quantum mechanical interference effects are seen in the region of the rainbow

angle. At smaller angles (0 < 2°), the cross-section follows the 6 7/3 law, for scattering by the

potential V(r) - -A/r6
(see equation [13.38]). nn
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13.4 ELECTRONIC EXCITATION AND CHARGE EXCHANGE

In this section we will discuss the processes in which an atom is excited during a

collision, or in which an electron is transferred from one atom to another We

will treat the case in which the kinetic energy of the relative motion of two atoms

is very large compared with the change in electronic energy of either atom.

Under these circumstances the motion of the nuclei of the atom is unaltered by

the changes in the atomic wave functions. This motion is determined by a

classical trajectory, as we have discussed in the previous pariagljph- *

motion of the electrons cannot be treated classically, but must be found from the

solution of a Schrodinger equation. To make these remarks more definite let us

consider a system containing just one electron and two protons, as we did m

Chapter 9, when we discussed the ion H 2
+

. When the two protons (labelled A

and B) are a great distance apart, each of them will be following an undeflected

rectilinear path, as shown in Fig. 13.8. We take a system of coordinates in

which the centre of mass, the mid-point of AB, is at rest. The relative velocity of

A and B will be taken to be v, and the initial motion is parallel to the Z axis

is defined by the impact parameter b.

The position vector of A relative to B is denoted by R. Knowing the effective

potential VMR) between the two protons, Newton’s equations of motion can be

solved to obtain R as a function of time, for each value of the impact parameter

R = R(b, t)
[13.45]

As the energy of the scattered particle increases, the angle of deflection, for a

gi,t value of the impact parameter, gets smaller and smalle.Thts can be seen

from [13.26]. In practice, at proton energies above ~1 keV, this means tha

departure of the paths of A and B from straight lines can be ignored, excep

nearly head-on collisions (b - 0). Since the most important contributions to

excitation, or charge transfer, arise from values of b of order a0 ,
we rani make t

straight line approximation. In this case the Cartesian components of R,

Yr> Zr) are

X* = b

Yr = 0

ZR = VI

[13.46]

The zero time is chosen so that t = 0 at the point of closest approach (R - b).

When the velocity of a proton (in the laboratory

(2 19 x 10
6 m/s) it possesses a kinetic energy E - 25 ke\ . For energie

smaller than this, the velocity of the incident proton is less than the velocity of

the electron in the ground state of hydrogen. As the

adiabatic conditions described in Chapter 9 are approached. On the other hand

for E > 25 keV, the incident proton has a velocity greater than the orbital

vdocity of the target electron and the collision is said to be fast. It should be
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13,4 Electronic excitation and charge exchange

remembered that if we consider the scattering of an ion of massM atomic mass

units, a velocity of one atomic unit corresponds to E = 25M keV . It follows that

the heavy ions produced at MeV energies in electrostatic accelerators may still

have small velocities, given by v = (E/25M)l/1
a.u. where E is in keV.

To discuss the motion of the electron we can introduce the coordinates of

Fig. 13.9, similar to those we used to describe the hydrogen molecular ion H 2
*

13.9 A coordinate system for the discussion of an H+ + H collision. Note that the position vector f

of the electron can be in any direction whereas the vector R lies in the plane of motion of A and B >

which has been taken to be the XZ plane (see Fig. 13.8).
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in Chapter 9. The Hamiltonian operator for the electron is (in atomic units)

1

It is time-dependent since

rA = -iR + r

rB = +tR + r

[13.47]

[13.48]

and R is a function of t through equations [13.46]. The time-dependent

Schrodinger equation for the electron reads

"(*) -
a?

^(r, t) = 0 [13.49]

Consider the capture process into the ground state. The reaction is

p + H(ls) H(ls) + p

so that before the collision has taken place (/--*>) the wave function must be

of the form

T(r, t) ~ «/'is(rB)e
'
£ls< L13 ‘ 50]

while after the collision (f - +*) T must contain a mixture of in which

the electron remains attached to B, and ^ls(rA), in which it emerges bound to A.

If only these two possibilities are taken into account, then for large positive t,

we expect that

T(r, 0 ~ a(b, t)4> i s(rB)e
,E "' + c{b, t)4> is(rA) e [13-51]

The asymptotic forms [13.50] and [13.51] do not allow for the change in

momentum of the electron when it is transferred from B to A. This wil e

d

1r
e

a

d

m
b

^u
W
des «(*, 0 and c(ft, 0 depend on the and the impact

parameter. With a normalised hydrogen atom wave function <A ls ,
the probabil

ity of elastic scattering is

Pei = W(b, t = oc)|
2 [13.52]

and that of charge exchange is given by

PCE =
|

c(b, t = ~)|
2

The total cross-section for charge exchange scattering is obtained by integrat-

ing over all impact parameters. Since the system is axially symmetric about th

[13.53]
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13.4 Electronic excitation and charge exchange

Z axis, the number of incident particles with impact parameter between b and

b + db is N2irb db, where N is the number of particles crossing unit area per

unit time in the incident beam. The total number of particles captured per

second is

”oo

N2nb |c(i, t = °o)|
2 db

.0

and by definition this is the product of the cross-section crCE and the incident

flux N. We have then

erCE = 277
|

|

c(b, t = °°)|
2
b db [ 13 . 54]

Actually at large t the wave functions [13.50] and [13.51] are only correct at

low velocities. This is because an electron bound to the proton A(B) has

momentum p = v/2(p = — v/2) relative to the origin and a kinetic energy

E = m(v/l)
2
/2. A free electron with this momentum and energy would have

the wave function

4/ = e,p 'r &~ iEt [13.55]

The proper forms of the unperturbed wave function at large |i| are therefore

given by

T ~ *,,(rB)e"
,

'BuV <v - ,/2e-”
,
‘/*

and

T ~ a(fe,0<Ais(rB)e-
i£,s

‘e-
,v -r/2e--

2
‘/8

+ c(b, t)ibu(rA)e-'
E^+iv 'r/2e-

,v2'/8 [13.56]

These extra factors are very important at all except the smallest velocities, and

should be included certainly above energies of 10 keV. Since the additional

factors are of unit modulus, the coefficients a and c have the same significance as

before, and the cross-section is given by [13.54].

Slow collisions

When the relative velocity of the protons is small we can try to construct an

approximate wave function out of the adiabatic molecular orbitals, discussed in

Chapter 9. The two orbitals of lowest energy for the molecular ion are the

crg Is and a* Is, with wave functions r) and 4>u (f?; r) respectively. As we

pointed out in Chapter 9, these functions can be calculated exactly, although we

confined our discussion to the LCAO approximation. Thus at large distances of
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separation R we have

[<&„(/?; r) + $>„(/?; r)]- * ls(rA)

-j= [^g(-R; r) - r)] -> iAis(rB)

[13.57a]

[13.57b]

so that at large R the combination 2
1/2

[<J>g + <3>u] leads to a situation in which

the electron is attached to proton A, and the combination 2~ 1/2
[<f>g

- <l>u] to the

situation in which the electron is attached to B.

If the velocity is so low that the momentum of the electron relative to the

origin O can be ignored, the exponential factors [13.55] can be replaced by

unity. A wave function T(r, t) can be formed in this approximation by taking a

linear combination of the terms (a) and (b) in (13.57). That is

1

3T(r, t) — —/= [<DgGR; r) - $>»(/?; r t)

+~ [<Dg(K; r) + <!>„(*; r)]e~
iE'Mb, t) [13.58]

V 2

This wave function can be written as the sum of two terms each of which has a

definite parity under the reflection r—* -r, namely

¥(r, t) = 'k
+
(r, t) + T“(r, t) [13.59a]

where

T+
(r, t) = r)e~ ,Eu,A +

(b, t)

*~(r, t) = <I>U (7?; t)t~
iEl%lA~{b, t)

and A ±
(b, t) are new amplitudes defined as

A ±
(b, t) = ±—j= [a(b, t) ± c(b, t)]

Because the operation r —* — r commutes with the operator (H — id/dt), the

states of definite parity propagate independently, and, just as in the bound state

case, the functions containing <hg and <J\, do not mix. Since T * and T are only

approximations, they do not satisfy the equations

H ~
' = 0 [13.61]

[13.59b]

[13.60]

exactly, but we can impose the conditions that

[4>g0R; r)e-
l£ "']* ¥ +

(r, t) dr = 0 [13.62a]
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and

j
[<!>„(/?; r)e-*"*]* \H -

The adiabatic functions <hgjU satisfy

H%,u = EgyU(R)<t>e ,u [13.63]

where EgyU(R) are the electronic potentials, discussed in Chapter 9. In addition,

these functions are normalised, so that

1

if;’'

W"(r, Odr = 0 [13.62b]

r

I

<&g,uCR; r)|
2 dr = 1

.

Using [13.63] and [13.64], the equations [13.62] reduce to

iA
+
(b, t) = (Eg

(R) - Eu)A +
(b, t)

iA-(b,t) =
(EU(R )

- Eu)A~(b, t)

where we have made the approximation that

can be ignored. As

[<£>* U(R; r) - %JR; r)]dr

[13.64]

[13.65]

[13.66]

and dR/dt = vt/R, this is consistent with the small velocity approximation.

To satisfy the boundary conditions a(b, t
- -=») = 1 and c(b, t

= -*) ~ 0

we must take from [13.60]

A ±
(b, t = -oc) = [13.67]

The solutions of [13.65] satisfying these conditons are

[£g ,uCR)
- £ ls] dt'j [13.68]

where E
g

is associated with A +
, and Eu with A ~

.

The probability amplitude for

charge exchange c(b, t = +oo) is then

A~(b, t) = ±—
7
= exp

<b, t = +oo) =—
[A

+
{b , t = +») + A (b, t = +“)]

exp i [EJR) - E lt\ dt

(1
- exp i [EU(R) - E x%

~\ dt [13.69]
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and the probability of charge exchange is given by

PCB = \c(b, t = +=°)|
2 = sin

2

We see that for a fixed impact parameter, \c{b, t
= +°°)|

2
will oscillate between 0

and 1, as the incident energy is varied.

To obtain the probability Pce( 0) of charge exchange as a function of the

scattering angle 9 we have to relax the assumption that the trajectory of

the protons is a straight line. If we assume an effective potential between the

incident proton and the target, for example the average of the potentials

(EgCR) - E is ) and (Ea(R )
- Eu ), the classical trajectory on which the protons

move can be calculated. The impact parameter b is then a function of the

scattering angle 6, b = b(9), and

Pce(0) = \c(b(ff), t = +sc)| 2
[13.71]

In terms of the differential cross-sections for elastic scattering, dorei/dfl and

charge exchange, docE/df!, we may also write

d(T(3E/dn
Pce(0) ~

dtre|/dfl + dacE/dn
[13.72]

where

da
-
da

' - +“^ [13.73a]

d

da
E

'd
d

a^' 1 = +")|2 [13.73b]

and dcr/dfi is the classical differential cross-section for scattering by the effective

potential. The expressions [13.71] and [13.72] are in fact identical because of the

relation

|

a(b, t = +=c)| 2 + \c(b, t = +=°)|
2 = 1 [13.74]

which can be verified from [13.60] and [13.68] and simply expresses the

conservation of probability.

The experiments of Lockwood and Everhart demonstrate the oscillation of

PCE(0) as a function of energy and are shown in Fig. 13.10. The maximum and

minimum of the oscillations are near 0.8 and 0.2, rather than 1 and 0, as

predicted by the simple two-state model. This is because more than just the cr
g
ls

and crjls levels of HJ are important and there is, even at the lower energies,

strong coupling to the level 7ru2p. This is not surprising because in the united

atom limit, the crjls level approaches the 2p0 level of He +
and the 7ru2p level

approaches the 2p± i level of He + and both levels have the same energy in this

limit. When the approximate function [13.58] is improved to account for the

[Eg(R)
- Eu(R)]dt\ [13.70]
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13.10 The probability of charge exchange in the collision of 250 eV protons with hydrogen atom*,

measured as a function of scattering angle by Lockwood and Everhart. The dashed line show*

the results of a theoretical coupled channel calculation retaining the <r8 ls, cru ls and 7t„2p levels of the

HJ system. If only the <rg ls
and cru ls levels are employed in a two-channel calculation, the

theoretical results oscillate between 0 and 1 (see text).

7ru2p and other channels, very satisfactory agreement can be obtained with the

experimental results [1]. From the calculated amplitudes for the 7r u2p level, the

probability of direct excitation of the 2p level of the atom (B + e ) can be

calculated and also the probability of capture into the 2p level of (A + e ).

The homonuclear case is particularly simple because the equations divide into

two classes, one for each parity state of the system. However, the technique of

representing the wave function approximately by combinations of adiabatic

molecular orbitals has been applied successfully to heteronuclear systems, such

as p + He, He + H, etc.

Heavy ion excitation

The simple theory of the last paragraph has had an unexpected and surprising

success in interpreting what at first glance would seem to be very complicated

processes concerning the slow collisions of heavy ions, such as Ne + Nc '

.

In

collisions of this kind, it is found that excitation of an inner K shell electron,

producing a vacancy, can be detected by the subsequent emission of X-rays

when an outer shell electron makes a transition into the vacant level, or by the

[1] See McDowell and Coleman (1970) or Bransden (1983).
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emission of ‘Auger electrons’. The latter process is a radiationless mechanism in

which an outer electron fills the K shell vacancy, giving up its energy to a second

electron which is ejected. Fano and Litchen realised that because of the large

nuclear charge in a heavy ion, the K shell electrons could be considered as

moving in the field of the two nuclei only, hardly influenced by the remaining

electrons. The correlation diagram for the homonuclear system, composed of a

K shell electron and the two nuclei, is the same as for H 2 , and the system before

the collision is composed of equal proportions of the cr*ls and cr
g
ls molecular

orbitals. The crjls orbital becomes degenerate with the rru2p orbital in the

united atom limit and at small separations the electron can be promoted easily

from the cr* Is to the iru2p orbital. The cross-section for this excitation process

can be calculated by scaling the corresponding cross-section for the proton-

hydrogen atom system. This is possible because the Schrodinger equation for an

electron moving in the field of two identical charges Z, is (in atomic units)

ly»_ g—
2 |r - R/2

1

+ R/2

1

V(r, t) = i— T(r, t ) [13.75]
ot

If we make the substitutions

r' = Zr, R'(f) = ZR(r), t' = Z2
t [13.76]

we regain the equation for the p-H system, namely

1 _ 1
\

2 |r' - R'/2| |r' + R'/2|
T(r', t') = t

— ¥(r', r') [13.77]
ot

In fact all lengths scale from [13.76] as

1' Zl

and the velocities scale as

v' vIZ [13.78b]

The cross-section cr(Z, v) for excitation of a particular level, for a system with

nuclear charge Z, is related to that for excitation of the corresponding level in

the p-H system, by

cr(Z, v) = Z~M 1, v/Z)
[13.79]

In fact, for the heavier systems, Z may be replaced by an effective charge to

allow for the partial screening of the nuclear charge by the other electrons.

In Fig. 13.11 it is shown how the measured X-ray emission probability as

function of impact parameter is correlated with the computed oijls —» rru2p

transition probability, using the one-electron model.

{43.78a]
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13.11 The data points show the measured probability of X-ray emission in a Ne +-Ne collision of

363 keV as a function of impact parameter. The solid curve shows the probability for excitation of

the K shell electron into a 2p level calculated using the theory outlined in the text. (The data is due

to Sackmann, Lutz and Briggs)

Atom-atom collisions at high velocities

When the velocity of the incident atom or ion is large compared with the orbital

velocities of the electrons in the target atom, excitation cross-sections can be

obtained from the first Born approximation, along the lines discussed for

electron scattering in Chapter 12. We can use the classical description of the

heavy particle motion, as in the previous paragraphs of this chapter, and the

resulting total cross-sections for excitation are the same as those found from

the usual full wave-mechanical treatment of the first Born approximation.

Unfortunately, charge exchange processes cannot be evaluated by first-order

perturbation theory at high velocities. This is because in the high velocity limit,

the total cross-section is given by the second, rather than the first, Born

approximation, and at most velocities of experimental interest, it is likely that

several higher order terms are important. The methods that have been evolved

for discussing such processes are beyond the scope of this book. Above energies

of -100 keV in the case of proton impact, the charge exchange cross-section

decreases like v~u (at still higher energies like r>

-11
), and charge exchange

becomes very small compared with excitation, which decreases like v log v for

an s -*• p transition, and like v
2

for an s ^ s transition.

To illustrate the calculation of an excitation cross-section at high velocities,

we shall again take the simple example of the proton-hydrogen atom system.

The wave function for the electron satisfies the time-dependent Schrodinger

equation [13.49], and the Hamiltonian is given by [13.47], Since we are going to
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Atom-atom collisions 13.4

omit the rearrangement channel, in which the electron is bound to the incident

proton A, it is convenient to fix the origin of the coordinate system at the proton

B, and to take rB and t (see Fig. 13.9) as independent variables, with rA given by

rA(0 = rB - R« [13.80]

where R(t) is again determined (in the straight line approximation) by [13.46].

The wave function ^(rg , 0 can be expanded in terms of a complete set of

hydrogenic wave functions centred on proton B:

^(rg, 0 = 2 aj<b > *M(rB)e
-tE>

' [13.81]

3

Equations for the amplitudes a, which are functions of the impact parameter b as

well as the time t, can be obtained by inserting the expansion [13.81] into the

Schrodinger equation [13.49]. We find that

2 OKI*-*' = 2 (1 - [13-82]

where we have made use of the Schrodinger equation satisfied by the hydrogenic

wave functions, namely

(-y Vr

2

e - ^
- E^/rg) = 0 [13-83]

Multiplying by <//* (rg), integrating over rg, and using the orthonormality

property

<//*(rB) lA/rBXdrB = 8kj [13.84]

we find the set of coupled equations (compare with equations [2.336])

iak(b, 0 = 2 Vkj(ty
(Ek-Ei»aj(b, t) [13.85]

where

Vk] (t) 0f(«b)(4
- —

)
<A;(rg) drB

r.\
j

[13.86]

A coupled channel approximation can be obtained by retaining a number of

terms on the right-hand side of [13.85] and solving the resulting equations

numerically. A first-order perturbation solution is found as follows. If the

system was originally in the state labelled i, then

a
j
(b,t)^8lj

as r-» -» [13.87]

If the perturbation is small, all the a
i
apart from a

t
will remain small as time

evolves, and a, will remain close to 1. The coupled equations [13.85] can then

be approximated by

iak(b, t )
= VuityV'S* [13.88]
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Electronic excitation and charge excfuMgi

with the solution (for k f i)

ak(b, t)
= -i Vkt(t')e'

(E'-E'y df [13.89]

The probability of finding the system after the collision in the state k is given by

Pk = |

ak(b, t = + “)|
2

[13.90]

and the corresponding cross-section is found by integrating over all impact

parameters, namely

o* 2v
|

ak(b, t = +oo)|2& di> [13.91]

As an example, let us consider the excitation of the 2s level of atomic

hydrogen from the Is level by proton impact. Then

V2s,u(t) <Als(rB) dfB [13.92]

The term in l/R vanishes because of the orthogonality of the functions ipH and

tp2s , and the result of the integration is (Problem 13.5)

?3/2

P2Ms(0
= - (2 + m)^R'2 [B -93]

where R = (b
2 + v

2
t
2
)
1/2

. Since V2s,is(0 is even in t, we find that

j 5/2 r*

a2s(& ; t = +oe) = -i —— [2 + 3R(t)]e
3R(t)/2

cos(3t/8) dt [13.94]

27 Jo

The integral over t can be done analytically in terms of Bessel functions, but the

final integration over b to obtain the cross-section must be done numerically.

The cross-section for the excitation of the sum of the 2s and 2p levels of

atomic hydrogen has been measured and the experimental data are shown in

Fig. 13.12, together with the results of the first Born approximation and those

of a more elaborate coupled channel calculation. The experimental data are not

absolute, but have been normalised to the coupled channel calculation at

200 keV. It is seen that the first Born approximation gives a fair representation

of the data above 100 keV, and becomes quite accurate above 200 keV.

It is straightforward to generalise the above results for excitation in any atom

(ion)-atom collision. The equation [13.89] still holds and we have

ak(b, t = +*>) = -i Vkt(t)e‘
(Ek ^ df [13.95]

where E, and Ek are the unperturbed atomic energies in the initial and final
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13.12 The cross-section for the excitation of the sum of the 2s and 2p levels of atomic hydrogen by
proton impact measured by Park, Alday and George. The solid line shows the results of a coupled
channel calculation and the dashed line is the Born approximation. The coupled channel calculation
did not allow for charge exchange, and as this process becomes important at energies less than
60 keV, this calculation fails at low energies.

state, respectively, and

Vki(t) dr, dr2
•

•
• drN

J

" [13.96]

Here V is the full interaction potential between the two colliding systems, t,p t

and ijjk are the unperturbed atomic wave functions and the integration is over
the coordinates of all the N electrons in the system. Such calculations have
been carried out for a variety of atom (ion)-atom excitation collisions.

PROBLEMS

13.1 The relative energy of ions, in two beams inclined at an angle 0, travelling

at speeds v x and v2 , is ER = where fx is the reduced mass and vR is

the relative velocity, with

VR = (Vl + Vi - 2v xv2 cos &)
l/2

In the merged beam experiment illustrated in Fig. 13.1, 0 = 0. If the

ions in each beam have the same mass M, show that the relative energy is

approximately (A£)2
/8£, where AE = E x

- E2 , E = \{E X + E2 ) and
E{ = (M/2)vj. If Ei = 5.1 keV and E2 = 5.0 keV, find £R and calculate

z>R in metres per second, for the case that the ions concerned are protons.
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13.2 An approximation to the long-range interaction between two neutnl
hydrogen atoms can be obtained by neglecting the energies Ej(j ^ 0) in

|I!P
the denominator of the expression [ 1 3

.

1 4] for E(2\R). Show that if thi« ia

done, and if V is given by [13.9], then the long-range interaction is given
by [13.15], where Cw has the approximate value of 6 a.u.

13.3 If classical mechanics is employed, the total cross-section for elastic

scattering does not exist if the potential is of the form V(r) = -A/r
If s > 1, an effective total cross-section can be defined as

13.4

erx = 2 tt sin 6 d 8,

where 6o is some lower limit, determined by the geometry of the

particular experiment in view. Using the small angle approximation

[13.38], find aT for the inverse sixth power potential (s = 6).

In Section 13.4, the probability for charge exchange in the reaction

p + H(ls) -» H(ls) + p

was calculated using a two-state approximation based on molecular
orbitals. At higher energies an atomic expansion is more appropriate and
in a two-state approximation (see [13.56])

¥(r, 0 = a(b, t)il/ls(rB)e~
iB,s

‘e~
iv 'T/2

e~ iv2'/8

+ c(b, t)<f/ls(rA)e~
iEl ‘te

+iv 'l/ze~ iv2t/s

By writing down equations analogous to [13.62], find the equations
which are satisfied by a(b, t) and c(b, t

)

and obtain the charge exchange
probability PCe = \c(b, t - + 30

)!

2
.

13.5 By using the explicit forms of the hydrogenic Is and 2s wave functions,

obtain the result [13.93] for V2s ,i s starting from [13.92], Generalise this

expression to the case in which a fully stripped ion of charge ZA is

incident on a one-electron ion of nuclear charge ZB .
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Some applications of atomic physics

The importance of atomic and molecular physics to other branches of science

and to modern technology scarcely needs emphasis. Almost the whole of

astrophysics is based upon the interpretation of the spectrum of electromagnetic

radiation reaching the earth from other parts of space, and this interpretation

rests on our fundamental knowledge of atomic and molecular structure outlined

in earlier parts of this book. Among the many offshoots of the subject are the

development of laser technology on the one hand, and of quantum chemistry on

the other. In another direction, a knowledge of the cross-sections for many

atomic processes is critical in assessing the feasibility of many of the proposed

methods of power generation using nuclear fusion. Clearly anything like a

survey of these many topics would be impossible within the confines of a single

volume; but in this chapter, the elementary principles behind a few important

techniques and applications of atomic physics will be discussed.

14.1 MAGNETIC RESONANCE AND THE MEASUREMENT OF

THE GYROMAGNETIC RATIOS

The overall angular momentum of an atom, arising irom both the orbital and

the spin angular momenta of the electrons, can either be zero as for closed shell

atoms, or non-zero, as for the ground state of atomic hydrogen (j — s — 2 >

/ = 0). When the total angular momentum J is non-zero, an atom possesses a

permanent magnetic dipole moment M. given by (see Chapters 1 and 5)

jU = - giiK <J/fi> [14.1]

where is the Bohr magneton, and g is the gyromagnetic ratio. The magnetic

moment can be measured in a Stern—Gerlach experiment. An important

consequence of the existence of permanent magnetic dipole moments is the

paramagnetism observed when the magnetic moments of the atoms in a solid are

partially aligned by a magnetic field.

If a single atom is placed in a uniform, constant, magnetic field directed along

the Z axis, of magnitude 3&„ the system has stationary states, which are

eigenstates of J
2 and Jz and which have energies,

Em = p-Bgm^z > t 14 ' 2]
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Magnetic resonance and gyromagnetic ratios

We denote byj(j + 1 )h
2
the eigenvalues ofJ

2 and by mh those can take

any one of the (2j +1) values -j, The nuclear magnetic

moments also contribute, in principle, to the total magnetic energy; but since

the nuclear moments are several orders of magnitude smaller than the atomic

moments, this contribution is entirely unimportant.

The time dependence of the wave function in one of the stationary states is, as

usual,

Vm(i) = A exp{-iEmt/h) [14.3]

which can be written as

^m(!) = A exp(-iw0mO [14.4]

where w 0 is given by

w0 = gtx^Jh = gwL = g2TTvL [14.5]

vl being the Larmor frequency defined in [5.53]. Classically, a magnetic dipole

placed in a constant magnetic field precesses about the direction of the field

with the angular frequency w0 .

We now consider the response of the system to an additional weak oscillating

magnetic field, 2ftx cos wt, directed along theX axis. It will be shown that when

the angular frequency w of this second field is close to the angular frequency w0l

the system is strongly disturbed and there is a large probability of a transition

from the initial state. This is called paramagnetic resonance (or electron spin

resonance, ESR) and detection of the resonant frequency affords an accurate

method of measuring gyromagnetic ratios.

In the presence of both components of the magnetic field, the Schrodinger

equation is,

HV{t) = ih — •'l'(t), [14.6]

where

H = -M. • & = ^(3

A

+ J&x cos cot) [14.7]
n

To simplify the discussion, consider a case (such as atomic hydrogen) for which

j = j ,
so that J can be written in terms of the Pauli spin matrices crx , <ry , <x2 with

J = | o’
.

[14.8]

The wave function is now a two-component spinor,

- (::«)
ti4 -9]
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Some applications of atomic physics 14.

1

where |a+(t)|
2
is proportional to the probability of finding the system in the state

with m = + 2 , and |a_(0|
2
to the corresponding probability that the system is

in the state with m - Since the system must be found in one of these two

states the wave function can be normalised so that, for all t,

|a+(t)|
2 + \a-(t)\

2 = 1

When the perturbation cos cot is absent, the unperturbed eigenfunctions are

¥1/2 =
exp (-ioj0t/2)\ ^- 1/2 =

exp (iio0t/2)
[14.10]

If the system was originally in the m = \ state, and the perturbation was

switched on at time t
— 0, we can calculate the probability of finding the system

in the m = state at some later time t. Since we shall be interested in large

values of t, we cannot use the perturbation theory described in Chapter 2 and

employed in Chapters 4 and 5. Instead, we shall proceed by using the explicit

forms of the Pauli matrices to write the Schrodinger equation as a pair of

coupled equations for a ± (t). That is.

l

3ix cos cot = ih
dt \a_

a.
[14.11]

In terms of oj„ = /j.Bg3i z/h and «30 = fxBg'3lx/h, we have,

ia+ =
2 «o a + + 2«o cos (cot) a~

ia_ = —
2

" o)q a_ + jcoq cos (cot) a+
[14.12]

A phase transformation

A + = a + e'"°'
/2

,
= a_e~ ,wo '/2

[14.13]

removes the secular terms in ±i«0 giving

iA+ = cos(a>t) e
+, "°!A_

= -jwq cos (cot) e
_
’"°'A +

[14.14]

These equations cannot be solved exactly, but an accurate approximation can be

obtained by recognising that in the products cos (cot) exp(±iw0 f) terms

in exp[±i(aj — a>0 )t\ will be much more important than those in

exp[±i(« + oj 0 )t]. This is because the latter terms oscillate extremely rapidly

and on the average make little contribution to A + or A _ . Dropping these terms,

we find the approximate equations:

iA + = 4 &j0 exp[i(«o - co)t] A_

iA_ = 4«0 exp[-i(w0
_ a>)t]A +

[14.15]
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14.1 Magnetic resonance and gyromagnetic ratios

Exact resonance

It is easy to verify that in the case of exact resonance a> = w0 , the equations

[14.15] have the general solution,

A+ = A cos(w0t/4) + i± sin(dj0t/4)

A _ = ip. cos(a»0t/4) — t'A sin(w0//4)
[14.16]

where A and p. are constants, which are determined by the initial conditions.

Suppose that at t = 0 the system is in the state with m = then

A + (0) = a + (0) = 1; A_(0) = a_(0) = 0 so that A = 1 and p = 0. Thus the

probabilities P(+ -* +) and P(H—> -) for finding the system in levels with

m = +2 or m = —
2 at time t, are

P(H—

*

+) = \A + {i)\
2 = cos

2(w0t/4) ^
P(+ -* -) = \A^(t)\

2 = sin
2(w0t/4)

Both P( 4

—

* +) and P(+ —* -) range between 0 and 1; but

P(H—* +) + P(H—> -) = 1 , always.

In the same way, if at t
= 0, the system is the state with m = so that

A+(0) = a+(0) = 0; A_(0) = a_(0) =1, the probabilities P( * +) and

P( > -) for finding the system in the levels with m = +\ and m = —

\

after

time t are

P( > +) = sin
2
(dj0 t/4)

P( * -) = cos
2
(w0t/4)

[14.18]

It should be noticed that, in conformity with time reversal invariance,

P(_ -* +) = P(+ -) [14.19]

General solution

It is possible to solve equations [14.15] exactly, even when w / a>0 . The general

solution is (see Problem 14.1)

A + = pe'
v+t + qe' v

^

[14.20]

A_ = [pr,+e
,7)+ ‘ + ?T7__e

tTM
] e‘

<-°'“ "o) '

w0

where p and q are constants of integration (different from A and p!) and 17+ are

given by

17+ = 2 [(«o ~ <o) ± J(co0 - «)
2 + (w0)

2
/4] [14.21]

With the initial conditions at t = 0, 2l +(0) = 1; /1_(0) = 0, we find that

[14.22]
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The probabilities P (H—* +) and P (+ —* — ) become

(wo — w)
2

P(+ —* +) = cos
2
(toRf/2) +

P(+ -) =
to0/4

(to0 - to)
2 + (wo

)

2
/4

sin
2
(toRt/2).

sin
2
(toRt/2)

[14.23]

(to0 — to)
2 + too/4

The frequency &>R is known as the Rabi ‘flopping frequency’ and is

wR = ( 17 +- - tj_) = V(wo
_ w)

2 + “o/4 [14.24]

Under the conditions in which < 38 j, and w 0 ^ to0 , the probability that

the system will be found in the second state with m = -\ will remain small

unless to is close to to0 . If the oscillating magnetic field 38 x cos wt is applied for a

time T which is short (to0T <1 1), equations [14.15] can be solved by first-order

perturbation theory and it is left as an exercise (Problem 14.2) to obtain this

solution and compare it with [14.20].

Resonance occurs when the frequency of the oscillating field u> is such that ha>

is equal to the difference in energy of the two Zeeman levels of the system, AE

.

In our spin-i case:

AE = hco0 = /u.Bg382 . [14.25]

In general, for atoms with non-zero angular momentum, resonance can be

produced by matching the frequency of the applied field to the frequency of a

transition between particular Zeeman sublevels, and the theory can be general-

ised to treat a system of (2j + .1) equations rather than the pair of equations

treated here.

The Rabi molecular beam apparatus

A molecular beam experiment, which is much more accurate than the Stern-

Gerlach experiment discussed in Chapter 1 has been devised by Rabi to measure

magnetic moments of atoms, based on paramagnetic resonance. A schematic

diagram is shown in Fig. 14.1. A beam of atoms from an oven is passed through

a system of three magnets Ml, M2 and M3. We shall suppose that the atoms

have total angular momentum one-half (examples of which are silver, the

alkalis, or copper), although the principle of the experiment is the same for

other non-zero values of the angular momentum. The magnets Ml and M3
produce inhomogeneous fields as in the Stern-Gerlach experiment, identical in

magnitude but opposite in sign. If the field gradient in Ml is positive upwards,

those atoms with Jz
= +\h will be deflected downwards, and those with

Jz = -\h will be deflected upwards. If a slit S2 is placed, as shown, only two

trajectories are possible from the source (slit SI) into the region to the right of

S2. The trajectory B1 will contain atoms with Jz = +\h and B2 will contain
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14.1 Schematic diagram of a molecular beam resonance apparatus.

I!!!!

1

those withJz = ~\h. Since the magnet M3 has an equal and opposite effect on

the two trajectories, the atoms in B1 and B2 will be brought together at the slit

S3 and detected at D. Now let us see what happens if the magnet M2 is switched

on, which produces a large uniform static field in the Z direction, 28 2 , and a

small oscillating field, cos wt, in the X direction. When io is close to the

resonance angular frequency co0 , some of the atoms in the beam B1 will have

their spin direction changed fromJz = \h toJz = —\h. These atoms will now
be deflected downwards in the magnet M3 and miss the slit S3. Similarly, atoms

in the beam B2 which make transitions from Jz = -\hioJz
= +jh will also

miss the slit. The net effect is that as w approaches the resonant angular

frequency, the intensity of the beam entering the detector drops sharply. Under

the condition w0 S> <w0 , the resonance region is very narrow and well defined,

and since frequencies can be measured very accurately, this method can provide

correspondingly accurate values for atomic magnetic moments and gyromag-

netic ratios.

Paramagnetic resonance and nuclear magnetic resonance in

bulk samples

It is also possible to detect resonance phenomena in bulk samples of materials.

Let us consider the case of a material composed of atoms of total angular

momentum one-half. In the absence of a magnetic field, the two states of each

atom with Jz = mfi, m = ± \ have the same energy, and in a bulk sample as

many atoms have m = | as have m = —
7 . If the sample is placed in a uniform

magnetic field directed along the Z axis, then those atoms with m - \

possess energy (see [14.2])

E+ = \LKg.‘kJ2 [14.26J

and those with m = —\ have the lower energy,

£_ = [14.27]
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Some applications of atomic physics 141

In thermal equilibrium, the ratio of the number of atoms per unit volume with

m =
2 , N+ , to the number with m = -i > N-> is

N+ _ exp[~E+/kT]

N- exp[-E-/kT\
[14.28]

Let N - N+ + N- be the number of atoms per unit volume. Then

=
exp[-

<
uBg^J2kT]

+
exp[/jiBg

,

3iz/2kT] + exp[ - ixBg2Mz/2kT ]

_ exp[-t-fj.Bg'3lz/2kT]N- ~ N
cxp[ixBg3iJ2kT] + exp[-/tB«a./2Ar]

[14.29]

The atoms with m = \ contribute a magnetic moment in the Z direction of

magnitude (-/u,Bg/2) and those with m = -\ contribute a magnetic moment

(+fjtBg/2) , so that the magnitude of the net magnetic moment per unit volume

is

M, = N+(- /±Bg/2) + N-itLsg/2)

(^ggVy
exp[nng^z/lkT] - exp[~tiBg®>J2kT] r

14 30j

\ 2 j exp\fjLBg'3hJ2kT ] + exp[~ ^iBg'3iz/2kT]

Now if a small field 2ft x cos cot is applied in theX direction, when w is close to

the resonant frequency transitions are induced between the two states with

m = 2 and m = -£. If these two levels were equally populated, these transi-

tions could not be detected, but since the number of atoms in the state of lower

energy is greater than the number in the state of higher energy, more transitions

occur which absorb energy from the external field than transitions which feed

energy into the external field. This net loss of energy at resonance is small, but

can be detected in various ways. For example the oscillating magnetic field may

be produced by a coil which is placed in a bridge circuit (see Fig. 14.2). At

resonance, the energy loss to the medium gives rise to an apparent change in the

self-induction of the coil, which can be detected by the bridge.

The technique of paramagnetic resonance is important to industry and

research, to give information about the constituents of a sample. If these are

known, the apparatus can serve as a magnetometer to measure small fields 2ft *.

Although the magnetic moments of nuclei are smaller than those of atoms by

a factor of the order of m/Mp (where m is the mass of the electron, and Mp that

of the proton) and nuclear paramagnetism is too small to be observed directly,

nuclear magnetic resonance experiments are perfectly possible and are, in tact,

of great importance. A substance is chosen for which the total angular

momentum due to the electrons is zero, for otherwise the nuclear effect would

be completely masked. The experiment can then be performed in exactly the
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14.1 Magnetic resonance and gyromagnetic ratios

14.2 Paramagnetic resonance apparatus. The specimen S is placed between the poles M of a magnet

producing a uniform static field in the Z direction. A small oscillating field in the X direction is

produced by the coil C.

same way as for paramagnetic substances, with the resonant frequency being

determined by the strength of the static field 2/L ,
where now (see [14.5])

«o = g/J- [14.31]

and /uN is the nuclear magneton

Mn = /jLBm/Mp = eh/2Mp [14.32]

For a field of strength 0.5 T, the resonant frequency of a proton {g
= 5.588) is

21.3 MHz, which is in the radio-frequency region. The frequencies associated

with paramagnetic resonance are about 2000 times higher and are in the

microwave region, for which wave guide techniques must be employed.

Chemical shifts

Nuclear magnetic resonance has proved to be an important tool in the structural

analysis of molecules. This is possible because there is a small dependence of

resonant frequency on the local environment of a nucleus in a molecule. The

effect of the external magnetic field on the electrons in a molecule is to induce

currents which themselves create a magnetic field in opposition to the applied

field. The effective magnetic field at the nucleus 3i[' is less than the applied field

382 ,
and correspondingly the observed resonance frequency cog is slightly less

than oj0 . This shielding effect is small, the resonance frequency changing in

many cases by only a few parts in a million, but it is specific to the local

environment of a nucleus. For example, the resonant frequency for a proton in

an OH group is different from that of a proton in an NH 2 group, which is in

turn different from that of a proton in a CH 3 group. These chemical shifts offer

an excellent method of chemical analysis of a sample. Still more information can

be obtained by examining the relative intensity of the resonant lines and from

fine structure effects, which arise from the interactions between neighbouring

nuclei in a molecule.
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14.2

14.2 MASERS AND LASERS

In this section, we shall examine in outline how the phenomenon of stimulated

emission, discussed in Chapter 4, can be used to construct amplifiers or

generators of electromagnetic radiation. Suppose 1 and 2 are two levels, with

energies Eu E2 (E2 > E{), out of the infinite number of levels of a particular

material. Consider a beam of electromagnetic radiation of intensity I and

angular frequency co = {E2 - £,)/ft passing through this material. The rate of

change of the energy density because of absorption from the beam is

= -Nfhw)W2X
[14.33]

dt

where N x
is the number of atoms in the lower energy level per unit volume and

W21 is the transition rate per atom for absorption. Similarly, the rate of change

of the energy density because of stimulated emission is

^ = N2(ha>)Wu [14-34]

d t

whereN2 is the number of atoms in the upper energy level per unit volume, and

Wx2 is the transition rate per atom for stimulated emission. In Chapter 4, it was

shown that Wn and W2i are equal and both are proportional to the intensity I of

the incident radiation. The cross-section cr, defined as

cr = (;h(0)W12/I [14-35]

is characteristic of the particular pair of levels, (see [4.39]), but independent of

the intensity of the beam of radiation. In terms of cr, we can write the net rate of

change of energy per unit volume traversed by the beam as

= o/(jv2 - N x )
[14.36]

d t

If the beam is of cross-sectional area A, and is travelling parallel to the z axis,

this relation can be written in the form (see [4.11])

— = crI(N2 - Ni) [14-37]

da

We see that ifN x > N2 the incident radiation is absorbed as it traverses the

material, but if N2 > A/fi the radiation is amplified. Spontaneous emission will

also increase the number of transitions from the upper level 2 to the lower level

1, but the corresponding transition rate is independent of the intensity I, and

provided I is sufficiently large this contribution can be ignored

Under thermal equilibrium, we know that for non-degenerate levels

^ = exp[-(£ 2 - E x)/m [14-38]

N i
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where k is Boltzmann’s constant and T the temperature. Since E2 > E
x it

follows that N2 < Ni and the material acts as an absorber. To achieve

amplification a population inversion must be arranged with N2 > N i , and the

substance cannot be in thermal equilibrium.

When amplification is achieved in the microwave region, we speak of a maser

(microwave amplification by stimulated emission of radiation) and for radiation

of higher frequencies we use the term laser (light amplification by stimulated

emission of radiation).

To increase the gain of the amplifier and to act as a generator, the material can

be placed between two plane mirrors (see Fig. 14.3), or in the case of a maser

inside a resonant cavity. If one of the mirrors is partially transparent, an output

beam can be formed. If the power generated within the material, by stimulated

emission, is greater than the sum of the power output and the power losses, then

the laser acts as an oscillator and the intensity of the radiation between the

mirrors increases exponentially. This increase in intensity will be limited finally

by the ability of the ‘pumping’ mechanism producing the inverted population to

keep up the number of atoms in the upper level. The laser oscillations can be

started by a single photon resulting from spontaneous emission from the upper

to the lower level. In applications, masers are frequently used as amplifiers, but.

more usually lasers are employed as oscillators generating radiation.

The characteristic properties of a beam generated by a laser are (a) monochro-

maticity (b) directionality (c) spatial coherence (d) brightness (e) temporal

coherence. The monochromaticity is a consequence of the fact that only light

arising from a transition between a single pair of levels is amplified. The output

of a laser is a parallel beam which emerges perpendicular to the plane of the

mirrors in an arrangement such as that illustrated in Fig. 14.3. This is because

only electromagnetic waves propagating in this direction will be reflected back

and forth between the mirrors. Waves with any other direction of propagation

will be lost to the system. This directionality also accounts for the brightness of

a laser beam. The power output of a normal light source is usually spread out

into a large solid angle, but in a laser it is concentrated into a narrow

unidirectional beam.

In Chapter 4 we saw that, in stimulated emission, at each transition one

photon is added to a mode containing N photons. The extra photon is

completely in phase with the incident photons and has the same polarisation. It

Mirror

(totally reflecting)

Mirror

(partially

transparent)

Output

14.3 Schematic diagram of a laser in which the active material is confined between plane parallel

mirrors.
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follows that if laser action is initiated by a single photon, at each transition one

extra photon will be produced and after N transitions, all (N + 1) photons will

be in phase and contribute to the same mode of the electromagnetic radiation.

This is in contrast to a normal light source, where the dominant process is

spontaneous emission, so that the phases and polarisations associated with each

photon are different. There are two independent concepts of coherence - spatial

coherence and temporal coherence. If the phase difference between two points

on a wave front, normal to the direction of propagation, is zero at all tunes, the

wave is said to exhibit perfect spatial coherence. If the active material in a laser

is homogeneous, the output beam exhibits spatial coherence over its whole

cross-sectional area. It is in fact effectively a single plane wave of the form

% = sin (k • r - cot), with a single angular frequency and with all points on

the wave front in phase. Temporal coherence relates to the duration of the

output wave, and the coherence time is the interval over which the output is

represented by the same plane wave. The stability of the laser determines the

coherence time; it can be extremely long compared with the periodic time of

the radiation. Coherence times of up to 10
3
s can be achieved, which allows the

observation of interference effects between the beams of light originating from

two different lasers. In contrast, using conventional sources, interference can

only be observed by splitting and recombining the light from one source.

Methods for obtaining a population inversion

We have seen that the key to laser (or maser) action is to obtain a population

inversion between two levels of energy £1 and E2 ,
with E2 > E i , so that more

atoms are in the level 2! than in the level 1. Historically, the first method was

beam separation which was used by C. H. Townes in 1954 in the ammonia maser.

We shall describe this in some detail below. The technique used is analogous to

the Stern-Gerlach method for separating beams of atoms possessing magnetic

dipole moments, but in this case it is a separation of electric dipoles that is

achieved. An alternative is to use a ‘pumping’ technique. In the three-level laser

(Fig 14.4) we look for three levels in an atom such that E 3 > E2 > E x ,
with a

fast decay between levels 3 and 2 and a slow decay between 2 and 1. Incident

radiation of angular frequency w3 i
= (E 3 - EJ/h is used to raise as many

E ,

E2

Pumping
between

levels 1 and 3:

E,

, Fast decay

Laser action

between levels 2 and 1
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atoms as possible from the level 1 to the level 3 [1]. If level 3 decays rapidly to

level 2 , a population inversion can be obtained between levels 2 and 1 . An
example is the ruby laser. A ruby is a crystalline alumina (AI2O3), which

contains Cr3+ ions. These Cr3+ ions are excited by green light (A = 5500 A) to a

number of closely spaced levels. Interaction, with the crystal lattice, de-excites

these levels by a non-radiative process to a metastable level 2 , which possesses a

particularly long life of the order of 10
3
s. Laser action can be initiated between

the levels 2 and 1 , resulting in red light (A = 6943 A).

Except in special cases, such as the ruby, it is difficult to produce a population

inversion between a ground state and an excited state, because initially all the

atoms are likely to be in the ground state, and we have to get more than half the

atoms into level 2 before a population inversion can be achieved. An easier

approach is to use a four-level system (see Fig. 14.5) and attempt to create a

population inversion between two excited levels. We start with all the atoms in

the ground state 1, and none in the excited states 2, 3 and 4 (£2 < £3 < £4).

Level 4 is chosen so that it has a fast decay to level 3, and pumping between

levels 1 and 4 immediately produces a population inversion between levels 3

and 2. As level 2 begins to fill up by stimulated emission at the frequency

(£3 - E 2)/h, the population inversion will decrease. To minimise this, level 2 is

chosen so that it has a fast decay to the ground state.

A gas laser presents an example of a multi-level system, which can be pumped

by an electrical discharge, rather than by incident radiation. An important case

is the He-Ne laser, in which the active material is a mixture of helium and neon

gases at low pressure. The energy levels concerned are shown in Fig. 14.6. In an

electrical discharge, the helium atoms are raised to the 2
1

S and 2
3
S levels which

are metastable. The ground state of neon has the configuration (ls)
2
(2s)

2
(2p )

6

and the lowest excited states are of the form (Is)
2
(2s)

2
(2p)

5
(n/). Of these, the

nl = 4s and nl - 5s are coincident in energy with the 2
3
S and 2*S helium levels

[1] Note that a population inversion cannot be obtained between levels 3 and 1, because when the

number of atoms N} in level 3 equals the number .Vj in level 1 ,
absorption will be balanced by

stimulated emission and the material will become transparent at the frequency <d„.
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14.6 The energy levels of the He-Ne laser. The neon configuration concerned is (ls)
2
(2s)

2
(2p)

5
nZ;

each configuration giving rise to a number of levels within the shaded regions. Note that in many

textbooks, the (3s), (4s) and (5s) level are labelled (Is), (2s) and (3s), while the (3p) and (4p) levels

are labelled (2p) and (3p). This alternative notation is due to Paschen.

respectively. Because of this, in collisions between the excited helium atoms and

ground state neon atoms, there is a high probability that neon atoms will be

excited to these levels, the helium atoms reverting to the ground state. The

selection rules allow transitions to the lower lying neon 3p and 4p levels.

Furthermore, the lifetimes of the 4s and 5s neon levels are of the order 10 s

which is about ten times longer than the lifetimes of the 3p and 4p levels. The

He-Ne mixture forms a four-level system, which can show laser action between

the 4s or 5s levels and the 3p and 4p levels of neon. Each of the neon levels

consists of several sublevels, and out of the various possible transitions the

strongest are: (a) between the 5s and 4p levels at A = 33 900 A; (b) between the

5s and 3p levels at A = 6330 A; and (c) between the 4s and 3p levels at

11 500 A. The wavelength of the light generated in a He-Ne laser depends on

the reflectivity of the mirrors between which the gas is placed (see Fig. 14.7).

Oscillation will take place at the wavelength for which this reflectivity is a

maximum.
A great many systems can be devised to show maser or laser action, in some

desired region of the spectrum. Space does not permit us to describe the

technical details of these devices, nor the important applications of laser light,

those interested should consult the specialised literature for example the books

by Svelto (1976) or Thorp (1969).
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Brewster’s angle

window

P
Plane mirror

100% reflecting

Brewster’s

angle

window

He - Ne mixture

Electrodes to excite

discharge in the gas

(»)

Plane mirror

99% reflecting

(b)

14.7 (a) Schematic diagram of a He-Ne laser. Notice the ends of the glass tube containing the gas

are inclined at Brewster’s angle (tan(d) = n). The wave with the polarisation vector in the place

of incidence is then transmitted through the ends of the tube without partial reflection and the

output beam is consequently polarised in this plane.

(b) A photograph of an actual He-Ne laser.

The ammonia maser

It is of interest to discuss in a little more detail the concepts behind the first

maser to be constructed: the ammonia maser built by Townes in 1954. In

Chapter 10, we saw that the ammonia molecule NH 3 has two configurations, one

in which the nitrogen atom is above the plane containing the three hydrogen

atoms, and one in which it is on the other side. If the plane of the hydrogen

atoms is the (XY ) plane, then the wave function for the configuration when the

nitrogen atom is above this plane (positive z coordinate) will be denoted by i//„

and the wave function when the nitrogen atom is below the plane will be

denoted by ipd . Because the potential barrier between the two configurations is

finite, i//u and <//d are not energy eigenfunctions, but there are two closely spaced

levels, with energies Ei,Ez and corresponding eigenfunctions and ip2 ,
such

that

1

<Ai y= (<AU + V'd)
• V ^

1

^2 (i^u - 4>d) [14.39J

The energy splitting is given by

AE = E2 - Ei = 9.84 x 10“ 5 eV [14.40J

corresponding to a frequency of 23 800 MHz which is in the microwave region.

Of course the ammonia molecule has many other levels, but maser action is
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sought between just these two particular levels. The necessary coupling with the

electromagnetic field takes place because the molecule possesses an electric

dipole moment. In the configuration u(up) this moment is of magnitude D and

is directed in the negative * direction, while in the configuration d(down), it is of

the same magnitude but in the opposite direction.

Because the energy separation of the levels is so small a normal population in

thermal equilibrium contains very nearly equal numbers of ammonia mo e-

cules in each of the energy eigenstates labelled E 1
and E2 . However, by

passing a beam of ammonia molecules through an inhomogeneous electric

field (see Fig. 14.8) a separation of the molecules in the two levels can be

achieved, just as in a Stern-Gerlach magnet a separation is achieved between

levels with different components of a magnetic dipole. To see this consider a

static electric field directed in the positive * direction of magnitude Ihe

additional energy in configuration cK, is +D% and in configuration iPd is •

This additional interaction alters the eigenenergies of the E, and h 2 levels

slightly, which become (see Problem 14.3)

E[ = E\ - (D%)Z/AE
[14.41]

E'2 = E 2 + (D%)
2/AE

The force on the molecule in the a direction Fz depends on which of the states 1

or 2 is concerned, since

(F,)u -— CEu) = «(Jg)*
[14.42]

In a uniform field, th^ force vanishes but in an inhomogeneous field wit

d%/dz > 0 the molecules in the 2 level are deflected in the negative z direction

and those in the 1 level in the positive z direction.

Having obtained a population entirely in the state of higher energy E2 ,
maser

action is obtained by stimulated emission of the transition from the level 2 to the

level 1 [2], which is reinforced by passing the beam through a cavity tuned to t e

t Wave guide

output

Collimator

Oven

14.8 The ammonia maser. Molecules produced by the oven are collimated, selected into the upper

level 2 by the inhomogeneous focusing field, and then passed through the maser cavi y.

apparatus is placed in an evacuated vessel.

[2] Remember that the transition probability for spontaneous emission is proportional to oi
3

, and is

negligible at microwave and radio-frequencies.
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required frequency. In the cavity, let us assume the electric field is varying with

time like

% = %Q cos (cot) [14.43]

and is directed in the z direction. The wave function of an individual molecule

under the influence of this field will be a time-dependent mixture of the

stationary levels if/i and </f2 and we can write

T(t) = il 1(0^1e
_<B,,/ * + A2(i)^ lElt/tl

[14.44]

From the time-dependent Schrodinger equation, we find in a manner with

which we are now familiar, that the amplitudes satisfy the equations

ihA x (t) = (4>\ \H'
| {fj2 )t

i(
'El~E^t/hA 2 (t)

ri4 451
ihA2 (t) = <*2 |tf'|to>e“

<(B,_®2),/%(*)

Since

<«/r1
|//"|i/f2 )

= (4>2 \H'\<}>y)
= D% = D%0 cos (cot) [14.46]

we can write [14.45] in the form

iAi(t) = jw0 cos (cot) zxp(-iw0t)A 2(t)

iA 2 (t) = 4 w0 cos (cot) exp(ia>0tMi(0

where

and

fuoo = E 2 - E l
= AE

hwQ — 2D%0

[ 14 .47 ]

[14.48]

[14.49]

These equations are precisely of the form [14.14] and provided is small, and

the molecules enter the cavity in the upper level, the solution [14.23] will apply,

and at resonance we find the solution [14.17], which in the present case reads

p2-*i(t)
=

I

^ i (<)|
2 = sin

2
(«0 f/4)

P2—

>

2(0 = \A 2(t)\
2 = cos

2(w0 f/4)

From [14.50] we see that every ammonia molecule will make the transition

from the upper to the lower level, giving up energy to the microwave field, if the

time of transit of the cavity T is given by

WqT 7T~
4

~ ~ 1 [ 14 . 51 ]

Of course not all the molecules entering the cavity will have the same velocity,

but if the most probable velocity in the direction of motion is v, then the length
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of the cavity L, should be adjusted so that

L-vT [>4.52]

o>o

More generally if P2-»i<T) is the probability that the transition 2 1 occurs

while a molecule transverses the cavity, the power supplied to the microwave

field is

W = N A£P2— i(T) [14.53]

where N is the number of molecules entering the cavity per second. The power

lost from the microwave field in the cavity is

Wl = ITout + WAB [
14 - 54^

where WOVT is the power output and WAB is the power absorbed by the walls:

(O0E
W'ab =

Q ‘

[14.55]

Here E is the total energy of the field and Q is a constant known as the cavity

quality factor. The power output can similarly be written as

tooE
U^OUT ;

14.56]

where Q v is a quality factor determined by the coupling between the cavity and

the output wave guide.

The total energy in the field within the cavity is given by

E = ho(%o)
2V [14-57]

where V is the cavity volume. If ITout ^ ITab , the condition for the system to

act as an oscillator is

from which we see that

W = - WAB

f-:owo(7-o)
2T

N =
8QA£P2_i(T)

[14.58]

[14.59]

If (wo T) is small, so that from [14.50] P 2^i(T) ~ (w0T/4)
2

this condition

becomes

N =
hv2

eoV

2D2L2Q
[14.60]

The mean velocity of molecules from an oven of temperature 0, is

(3k@\ 1/2

v =
l M )

[14.61]
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whereM is the mass of the molecule and k is Boltzmann’s constant. For an oven

temperature of 300 K, v — 10
3 m/s and with typical values of the other

parameters, N is required to be about 10
13 molecules per second, which can be

achieved easily.

The actual magnitude of the field in the cavity can be obtained from

[14.59] if the Rabi flopping formula [14.23] is used forP2-+i(T), rather than the

small T approximation. In this case, we find

SND 2

h wr
sin

eqV

Q

where o>R is given by

Wr — (wo w)
2 +

[14.62]

[14.63]

This is an equation which can be solved numerically to find %q , both in the case

of resonance co — a>o and for frequencies u> away from resonance.

Power outputs of about 10“ 10
watts can be obtained with a line width as small

as 10
-2

Hz, which makes the ammonia maser an excellent frequency standard.

For more details of construction and performance reference may be made to

Thorp (1969).

Lasers and spectroscopy

The decades since the discovery of the laser have witnessed a revolution in

spectroscopy. Unlike other sources of light, laser light is coherent and very nearly

monochromatic. The line width which can be achieved is often smaller than the

line widths of the atomic or molecular system to be investigated, and this allows

studies with a much higher resolution than could be obtained with a conven-

tional spectrometer using a diffraction grating technique. In the simple exam-

ples we discussed, the laser light was produced at certain fixed frequencies.

Many thousands of such frequencies extending from the far ultra-violet to the

microwave region are now available. However, to be really useful as a

spectroscopic light source the laser must be tunable in some region of the

spectrum.

Two methods of tuning have been developed. In the first, the frequency of

the line can be altered by changing the physical conditions of the material. In

the case of gas lasers this can be achieved by using the Zeeman effect, and for

solid-state lasers by placing the active material under pressure. In the second

method, an active material is chosen which has many closely spaced energy

levels acting effectively as a continuum. The frequency at which the laser action

takes place is then determined within a certain range by the characteristics of the

optical resonators, which can be tuned. In particular, the active medium of dye

lasers consists of solutions of certain organic dye compounds in liquids such at

methyl alcohol or water. Electronic states of dye molecules are made up of
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vibrational levels and rotational levels, the resulting rotational lines being

unresolved because of the Doppler broadening. Thus the rotational levels act as

a continuum of levels between the vibrational levels. Laser action can occur at a

fluorescent frequency, and dye lasers, pumped for example by light from a ruby

laser, can be tuned over a large part of the visible spectrum.

Although the total power emitted from a laser is not high, the light is

produced in a narrow beam and at one frequency, and the brightness of the light

at that frequency is many orders of magnitude greater than can be obtained from

a conventional source. In fact, it is easy to obtain power densities of the order of

10
20 W/m2

,
which is high enough to ionise any material on to which light is

focused.

Because of the strong fields which can be attained, non-linear optical effects

can be studied which are due to processes in which two or more photons are

simultaneously emitted or absorbed. The material studied can be in the form of

an atomic or molecular beam, since the high power density of the laser beam

produces a sufficiently large number of transitions. This has the great advantage

that the Doppler broadening can be eliminated by making the atomic or

molecular beam intersect the laser beam at right angles. In two-photon

spectroscopy the linear Doppler broadening

v —
vx

vo — +V0—
c

[14.64]

discussed in Chapter 4 (see [4.142]) can also be eliminated in the fol-

lowing way. If two photons of the same frequency, but travelling in opposite

directions are absorbed in a single process by a moving gas atom or molecule,

the linear Doppler shift of one photon, as seen from the atom, is equal and

opposite to that of the second photon. The net linear Doppler shift in this case

therefore vanishes, and measurements can be made with a resolution down to

the natural line widths.

As one of the many examples which illustrate the power of laser techniques,

let us consider a particularly interesting measurement ol the excitation of the 2s

leyebof atomic hydrogen from the ground state carried out in 1978 by Hansch,

£ee, Wallenstein and Wieman. They succeeded in detecting the Doppler-free

two-photon ls-2s line and in resolving the hyperfine doublet for the F = 1 1

and F = 0 —» 0 transitions. They also compared the frequency ol the ls-2s

transition in hydrogen and deuterium to that of the Balmer (3 line

(n = 4 n = 2) at 4861 A in order to obtain a value of the Lamb shift for the

Is state.

14.3 CONTROLLED THERMONUCLEAR FUSION

According to Einstein’s law of equivalence of mass and energy, E = me 2
,
the

release of energy in an exothermic reaction implies a reduction of mass of the

system. For example, a reduction of mass of 1 amu corresponds to a release of
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Trmjm

energy of 931.5 MeV. In exothermic chemical reactions (such as burning wood

or fossil fuels) the mass reduction is tiny, and the energies released never exceed

a few electron-volts per reaction. In contrast, in exothermic nuclear reactions

the reduction in mass, and hence the energy released per reaction, is much larger,

so that despite high capital cost nuclear reactors provide a competitive source of

energy.

As seen from Fig. 14.9 the binding energy per nucleon in a nucleus, plotted

as a function of the mass number A, has a maximum near A = 60 (in the region

of iron and nickel). This means that the energy can be obtained either by

splitting heavy nuclei (fission) or by compounding light nuclei (fusion).

Present-day nuclear reactors are based on the fission of heavy nuclei such as
235U

and have the well-publicised disadvantages that the supplies of the nuclear fuel

are limited and that the fission products are radioactive, presenting a safety

hazard. For this reason, over the last few’ decades, much effort has been spent in

trying to develop alternative energy sources without such severe disadvantages,

and in particular nuclear reactors based on fusion reactions [3].

The main obstacle to producing a fusion reaction is overcoming the Coulomb

barrier arising from the electrostatic interaction between the two nuclei. To

bring two nuclei of charge ZAe and ZBe close enough for a nuclear fusion

reaction to take place with a sizable probability, that is to a separation of the

order R - 5 X 10“ 15 m, requires a kinetic energy E larger that the Coulomb

14.9 The binding energy per nucleon as a function of mass number A.

[3] An introduction to the subject of controlled thermonuclear fusion can be found in the book by

Hagler and Kristiansen (1977).
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barrier £B >
where

14.3

P -
g2

B
4ireo R

= 150 ZAZB keV [14.65]

In fact, this estimate is too conservative, since the reaction can take place at

much lower energies with sufficient probability by quantum mechanical tunnel-

ling through the barrier. Because of this dependence on charge, the only

practicable fusion reactions are those involving isotopes of hydrogen

(ZA = ZB = 1). In addition, we see from Fig. 14.9 that the nuclei having small

values of A release the most energy per nucleon. Possible reactions are

D + D -» T (1.01 MeV) + p(3.03 MeV) [14.66a]

D + D -*• 3He (0.82 MeV) + n(2.45 MeV) [14.66b]

D + T -> 4He(3.52 MeV) + n (14.06 MeV) [14.66c]

where p denotes a proton, n a neutron, D (deuterium) is the isotope of hydrogen

with A = 2 and T (tritium) the hydrogen isotope with A — 3. Deuterium

occurs naturally in water, with an abundance of about 1 part in 6500, and so

constitutes a fuel available in virtually unlimited amounts, at little cost. For this

reason, the first two reactions [14.66] would appear to be promising, but this is

outweighed by the much higher cross-section of the D-T reaction [14.66c] at

low relative kinetic energies (see Fig. 14.10). Moreover, the D-T process
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[14.66c] produces more energy per reaction. Unfortunately, tritium is not

naturally occurring, being radioactive with a half-life of about 12.4 years; it

must be produced artificially and carefully controlled.

The concept of a fusion reactor

In a fusion reactor based on the D-T reaction [14.66c], energy released in the

form of the kinetic energy of neutrons must be converted to heat, used to raise

steam to drive the turbines of a power station (see Fig. 14.11). This can be

achieved by absorbing the neutrons in a lithium blanket, with the advantage of

breeding tritium through the exothermic reaction

n + 6Li —> T(2.7 MeV) + 4He(2.1 MeV) [14.67]

The isotope
6Li constitutes about 7.5 per cent of natural lithium, which is

readily available from commonly occurring minerals.

To obtain the energy output necessary to drive a power station of 100 MW,
about 10

21 D-T reactions are required per second. Such reaction rates require

average kinetic energies of the order of 10 keV, corresponding to temperatures

T = 10
8 K. At such temperatures, the D-T mixture is completely ionised and

forms a plasma containing D and T nuclei and electrons. No reactor vessel could

withstand direct contact with a plasma at 10
8 K, so that means must be devised

to keep the plasma away from the walls of the reactor . The thermonuclear power

density produced in such a plasma is given by

Pth = nnnT (<rv)E [14.68]

where nD and nT denote the density of the deuterium and tritium ions,

respectively, a is the D-T cross-section at the relative velocity v, E is the energy

output per reaction (17.58 MeV) and the symbol < ) denotes an average over the

Maxwellian distribution of velocities in the plasma.

Unfortunately, even if completely thermally insulated from the walls of the

reactor vessel, a plasma heated to such temperatures will loose energy, mainly

through bremsstrahlung

,

This is the radiation that occurs because the electrons in

14.11 Conceptual design of a fusion reactor power station.
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the plasma are accelerated in the Coulomb field of the nuclei. The bremsstrahlung

power radiated per unit volume is

Pbr
= 1.7 x 10“ 38 n 2

Tl
/z W/m3

[14.69]

where n = nD + nT is the ion density (which is equal to the electron density ne) *

and Te is the electron temperature, expressed in eV (that is, the electron kinetic

temperature, with 1 eV = 1.2 x 10
4 K, see Appendix 11). For the fuel to burn,

the thermonuclear power density P th must be larger than the power density Pbr

of the radiation loss. Since Pth increases much more rapidly with temperature

than Phr ,
there is an ignition temperature Tign which is about 4 keV for the

D-T reaction.

Thus far we have assumed that the plasma is in a steady-state condition, and

remains perfectly confined. In practice, it is only possible to confine the plasma

for a certain time interval r, during which sufficient energy must be produced to

(i) heat the plasma, (ii) overcome the energy losses and (iii) supply heat to a

power station. These requirements impose a condition on both the confinement

time r and the ion density n. Assuming that the fusion energy produced can be

utilised with an efficiency of about 30 per cent, this condition is

nr > 10
20 m“ 3

s [14.70]

at a kinetic temperature T — 10 keV. This relation is called the Lawson

criterion.

Magnetic and inertial confinement

Two main approaches to the problem of producing a D—T plasma satisfying the

Lawson criterion are being investigated. In the first, called magnetic confinement,

a low-density plasma with n - 10
20 m~ 3 occupying a volume V = 10 m is

contained by magnetic fields. To satisfy the Lawson criterion, the confinement

time should be at least r ~ 1 s. Promising results have been obtained by using

Tokamak machines (see Fig. 14.12), in which the plasma is contained within a

torus by a combination of poloidal and toroidal magnetic fields. The toroidal

field is produced by external coil windings, while the poloidal field is due to a

current, maintained in the plasma by making the torus the secondary winding of

a transformer. The experiment starts by introducing a mixture of neutral

deuterium and tritium gas, which is then ionised by a radio-frequency

discharge. The plasma so formed is a good conductor and can be heated by the

same current used to generate the poloidal magnetic field. The parameters of

some existing and future Tokamak machines are given in Table 14.1.

In the second method, known as inertial confinement, it is hoped to use a D-T

pellet of high density n = 10
30 m~ 3

,
contained in a metal casing of a few

millimetres diameter. This pellet must then be heated to fusion temperatures in

such a short time that the nuclei can fuse and release energy before the plasma

expands appreciably. Thus, in this approach, the plasma is confined by the

inertia of the nuclei. According to the Lawson criterion [14.70], the confine-
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14.3 Controlled thermonuclear fusion

Toroidal field coils wound around torus

to produce toroidal magnetic field

14.12 A schematic diagram of a Tokamak machine.

Table 14.1 Basic parameters of various Tokamak machines

Device Country Rim) r(m) a,(T) /(MA)

DITE UK
Existing

1.12 0.23 2.8 0.2

PLT USA 1.30 0.40 3.5 0.6

T-10 USSR 1.50 0.37 3.5 0.4

TFTR USA
Under construction

2.48 0.85 5.2 2.5

JET EEC 2.96 1.25* 2.8 3.8

2.10

R : major radius of the torus

r : minor radius of the torus

33 ,: toroidal magnetic field

I
:
plasma current

* The JET machine will have a toroid with an elliptical cross-section; the lengths of the semi-minor

and semi-major axes are given in the table.

ment time has to be of the order of t — 10“ 10
s. It is envisaged that the pellets

will be dropped one at a time into the reactor vessel, where they will be heated

by pulses of intense electromagnetic radiation or high-energy particles. Experi-

ments are in progress in which the intense radiation is produced by numbers ol

high powered lasers acting simultaneously (laser fusion). Alternative design

studies are based on current accelerator technology. It is suggested that heavy

ions (e.g. Cs ‘

, Xe
+

, U +
) could be accelerated to high energy (=20 GeV) and

accumulated in a storage ring. Subsequently, the stored ions could be bunched

and split into a number of beams which are fired simultaneously at the pellet.
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Atomic processes

Although atomic and molecular processes play an important role in both the

magnetic and inertial confinement approaches, we shall only discuss here by

way of illustration some of the processes which are important in Tokamak

experiments. In this case, atomic and molecular phenomena play an important

role in various domains, such as the energy balance in the plasma, the

interactions between the plasma and the wall of the reactor vessel, the heating o

the plasma, and plasma diagnostics. A few of these phenomena will now be

discussed.

Energy balance and impurities

In a fusion reactor the fundamental energy producing reaction rates are

characterised by cross-sections which are of the order of 10 m . In contrast,

the cross-sections for atomic collision processes, such as those discussed in

Chapters 12 and 13, are of the order of 10“ 21 m2
. This implies that although the

energies involved in atomic processes are much smaller than those of nuclear

reactions, great care must be exercised if the atomic processes are not to

dominate. A striking example of the importance of reducing energy losses

through atomic mechanisms was provided by the early experiments with the

Zeta machine in England in the 1950s. It was found that most of the energy

input designed to heat the plasma was lost by ionising and exciting impurity

atoms such as oxygen, followed by the emission of radiation from these

impurities. .
-

.

In a Tokamak machine it is necessary to keep the proportion of impurity

ions - particularly those of high nuclear charge Z - as small as possible. This is

because the power loss through bremsstrahlung radiation in electron-ion scatter-

ing is proportional to Z 2
. If nz is the density of impurity ions of nuclear charge

Z, the power density radiated from a D-T plasma by bremsstrahlung due to

impurities is (compare with [14.69])

Pi = 1.7 x 1(T
38 n enzZ

2
Tl

/z W/m3 [14.71]

inhere ne is the electron density and Te is the electron kinetic temperature,

expressed in eV. Not all this power is lost to the plasma since radiation at the

higher wavelengths is reabsorbed. However, the dimensions of the plasmas

formed in the present machines are such that the plasma is transparent to

radiation of wavelength A < 10 A, and the major part of the radiated power I br

will be precisely in this wavelength region.

In considering the energy balance of a Tokamak machine the power density

Pi lost because of bremsstrahlung due to impurities must be added to the power

density loss Pbr arising from electron-hydrogen ion scattering. An ideally

confined plasma will ignite ifPth > Pbr + Pir- This is illustrated in Fig. 14.13,

where the conditions for ignition are shown assuming the addition to the

hydrogen plasma of 0.1 per cent and 1 per cent of completely ionised iron
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14.3 Controlled thermonuclear fusion

14.13 Conditions for ignition in a fusion reactor:

P:h
= Power density produced by fusion.

Pb[
= Power density lost by bremsstrahlung from the D-T plasma.

(PL) j
= pb[ + Plx 1 per cent) = Total power density lost when 1 per cent impurity ions of

Fe are present in the plasma.

(PL)2 = Pbr + P‘br(0 . 1 per cent) = Total power density lost when 0.1 per cent impurity ions

of Fe are present in the plasma

For ignition the plasma must be in the region in which P^ > PL ,
where PL = Pbr + P'h, is

the total power lost.

atoms. It is seen that in the first case the temperature for ignition is raised only

slightly, but with 1 per cent of iron impurities the ignition temperature will be

approximately doubled.

The presence of impurities can alter the conditions for ignition in other ways.

During the heating process, when the plasma is still cold, the impurity atoms

may become excited rather than ionised, and in this case power loss through line

radiation will occur. Indeed, as we saw, the line radiation was responsible for

the failure of the earlier machines to achieve the desired temperatures. It is also

worth mentioning that in obtaining the Lawson criterion [14.70] it is assumed

that the D-T plasma is ‘clean’. The presence of impurities which significantly

contribute to the energy loss will have the effect of changing the Lawson

criterion for both the temperature and the value of nr.
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How do the impurities arise? Because of the confining magnetic field the

plasma does not touch the wall of the torus and is therefore thermally insulated

from the surroundings. However, there will be certainly some un-ionised

hydrogen molecules near the torus wall. At the edge of the plasma, these

molecules become ionised by electron impact,

e“ + H2 -»• H 2
+ + 2e~

and further collisions between the ions and electrons lead to dissociation,

e" + HJ -»> H + H + + e“

producing neutral hydrogen atoms with kinetic energies which are typically

larger than 5 eV. Being neutral these atoms escape from the plasma and on

impact with the torus wall cause sputtering of the materials (for example Fe and

Mo used in the construction). In addition, the wall surface may contain

occluded impurity gases such as 02 or CO which will also be released in the

plasma region.

Since the impurities originate near the edge of the plasma, methods have been

devised to ‘scrape’ the edge to remove the unwanted ions. In the divertor

concept, the outer edge of the plasma is diverted through a special chamber by

means of a perturbing magnetic field. The plasma which enters the divertor is

neutralised by collision with a solid target, and the neutralised atoms are

pumped out of the machine. This method is expensive and the divertor is

difficult to construct, so that alternative methods are being sought. One of these

is to interpose a layer of cool (~20 eV) plasma between the hot plasma and the

wall. Because the energy of particles in the cool plasma is small, sputtering at

the wall should be reduced. Those heavy atoms which are sputtered into the

cool plasma will help to keep it at a low temperature by losing radiative energy.

The success of this concept depends critically on the cross-sections for various

atomic collisions, some of which have not yet been measured. A particular

process of interest is charge exchange (see Chapter 13) between hydrogen ions

and partially ionised Fe, and also with ions of other materials used in the

construction of the reactor vessel.

\

Plasma heating and neutral beam injection

As we mentioned earlier, the cold plasma formed by ionising neutral hydrogen

with a radio-frequency discharge is heated by generating a large axial current

along the torus. Unfortunately the resistivity of the plasma decreases with

temperature, so that the maximum practical temperature that can be reached by

this ‘ohmic heating’ is limited, perhaps to 3 keV . The electric current generated

when the torus forms the secondary winding of a transformer is in the first place

due to the motion of the light particles — the electrons. The slowly moving ions

are then heated by elastic collisions with the rapidly moving electrons. Because

elastic scattering cross-sections are Z-dependent, the presence of impurity ions

increases the resistivity of the plasma and so enhances the ohmic heating power.
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14.3 Controlled thermonuclear fusion

However, since the stored energy in the transformer is limited, the decrease in

current due to an increase in resistivity outweighs the increased heating

efficiency and overall the presence of even light ion (C"
+
and O" f

) impurities is

harmful.

To raise the temperature of the plasma to the ignition point some form of

additional heating must be provided. Among several suggestions, we shall

consider heating by injecting fast neutral atoms of deuterium. To heat the

plasma it is clear that the injected atoms must have more energy than the

particles of the plasma. Neutral atoms must be employed so that the confining

magnetic field can be penetrated, and the energy deposited in the central region

of the plasma. Once the neutral atoms have entered the plasma, ionisation must

occur so that the fast ions are trapped in the confining field long enough for a

transfer of energy to take place by collisions between the injected particles and

those of the plasma.

Ions

Neutral
1

Ion
*

:

j

Ions
Gas

c

A I

B

Neutral

atomic

beam

D

14.14 Neutral beam injection. The ions produced in the source A are partially neutralised by charge

exchange in the chamber B. The remaining charged ions are removed by a field at C and the neutral

beam D enters the plasma.

To produce the injected beam, an ion source capable of yielding pulses of D

'

ions at 100 keV is first constructed. The D + beam is neutralised by passing it

through a gas target containing molecular deuterium (D 2) where charge

exchange takes place (see Fig. 14.14)

D + + D2 D + DJ

The cross-section for this reaction is small at 100 keV, and this makes the

neutralisation rather inefficient. Another suggestion is to form the negative ion

D and use the ‘detachment’ reaction

D + D2
—

*

D + e + D2

to form a neutral beam. This reaction has a large cross-section, but the

formation of a beam containing a large current of D is difficult.

Inside the plasma, the neutral atoms are ionised through the processes

D + D“ —» D+ + D
D + T+ —» D + + T

D + D + —* D+ + D+ + e
-

D + T + —> D + + T + + e

e~ + D —» D + + 2e

[14.72aJ

[14.72b]

[14.72c]
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As we saw in Chapters 12 and 13, the cross-sections for these processes have

been measured for H and H +
, and the cross-sections for D or T are the same at

the same relative velocity. The charge exchange cross-sections for [14.72a] are

of the order of 10“ 19 m2
at beam energies of 10 keV and at this energy are by far

the most important processes. At 100 keV, the cross-section for charge ex-

change has dropped to 10” 21 m2 and the cross-section for the ionisation

processes [14.72b] are ten times larger. The electron ionisation reaction [14.72c]

is of little importance at these energies.

An important limitation to the efficiency of neutral beam heating arises from

the presence of fully ionised carbon and oxygen impurities, which as we have

seen arise from occluded gas in the torus walls and which are present in

concentrations of up to 1 per cent. Charge exchange between the neutral beam
and those impurities produces carbon and oxygen ions in highly excited states.

Because the energy of C5+
in the n = 6 level is the same as that of atomic

hydrogen in the ground state, there is an energy balance between the electronic

energies in the reaction

C6+ + D(ls) —* C5+
(n = 6) + D+

which enhances the cross-section for this reaction. Similarly, there is an

electronic energy balance in the reaction

Os+ + D(ls) — 07+
(n = 8) + D+

Detailed dynamical factors make the most likely level into which capture takes

place rather lower than those required for energy balance (n = 4 or 5 for C5

1

and n = 5, 6, or 7 for O 7 1

), but nevertheless, the carbon and oxygen ions are

formed in highly excited states from which line radiation takes place, impairing

the heating efficiency.

Diagnostics

An important area of application of atomic physics is in providing diagnostic

information about the plasma parameters, such as the density and temperature

of the plasma, the concentration of impurity ions, and the depth of penetration

of the neutral beam injected for heating. For instance, we have seen that a

neutral beam of atomic deuterium D can produce O 7 * ions in levels with say

n = 6. Other processes in which 0 7 ~ ions are formed typically lead to low states

of excitation, n = 2 or 3. Locating the depth of the plasma from which radiation

characteristic of the n = 6 level of 0 7 “ arises then shows how far in the plasma

the neutral beam penetrates before being ionised.

While information on the energy levels of neutral atoms is plentiful, the

spectra of ionised species are often not so well known. This constitutes a

limitation to both diagnostic procedures in reactors and in astrophysics, where a

knowledge of the fine structure of transitions in multiply ionised species is

frequently required. A recently developed technique, called beam foil spectro-

scopy has greatly added to our understanding of these spectra. It makes use of
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the fact that if a high energy beam of singly ionised particles, produced by an

accelerator, is passed through a thin foil (often of carbon), the emerging beam

contains a mixture of atoms in many different states of excitation and ionisation.

The observation of the line radiation along the emerging beam provides a

powerful source of spectroscopic and lifetime information for multiply charged

ions, which would be otherwise unavailable.

Fusion technology

Despite huge efforts in several countries the success of the quest for controlled

thermonuclear energy is still far from assured, although the progress achieved

has been significant. Further development of both the magnetic confinement

and inertial confinement approaches requires the integration of techniques

drawn from both nuclear and atomic physics with those of plasma physics and of

large-scale engineering. As we have seen, nearly all aspects of atomic physics are

concerned, including spectroscopy, collision physics and laser physics.

14.4 ASTROPHYSICS

Our knowledge of celestial objects such as the sun, the comets, the stars and the

galaxies is mainly based on the analysis of the electromagnetic radiation [4]

which arrives to us from these objects. At most wavelengths, the electroma-

gnetic radiation coming from outer space is absorbed by the earth’s atmosphere,

except for three windows, or wavelength bands, through which ground-based

astronomers can look at the universe.

The first window covers the optical or visible region (between 4000 and

7000 A) and has been the source of most astronomical knowledge until recent

times. The second window, in the radio-frequency region, extends from

wavelengths of a few millimetres up to 100 m. Its existence was revealed in 1931

by K. Jansky, who discovered radio waves coming from the Milky Way. This

discovery opened up the new field of radioastronomy, where many remarkable

discoveries about the universe - such as pulsars, quasars and the universal

block body radiation at 3 K - have been made during the past few decades. The

third window is located in the infra-red region, between the long wavelength

(red) end of the visible spectrum, at approximately 7000 A, to about 1 mm.

However, in contrast to the visible and the radio-frequency windows, the

infra-red window is only partially transparent; it is opaque at many

wavelengths, but contains a few transparent bands which have yielded interest-

ing information about objects from which the radiation of visible wavelengths is

absorbed by dust.

Astronomers began to be liberated from the difficulties of ground-based

observation when instruments were first flown to high altitudes aboard balloons

[4] The cosmic ray particles, meteorites, etc. entering the earth’s atmosphere also provide

astronomical information.
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and aircraft. More recently, instruments aboard artificial satellites have been

able to record the emissions of celestial objects in all regions of the electro-

magnetic spectrum. For example, an ultra-violet telescope satellite, called

Copernicus, was launched in 1968 and provided the first observations of

extra-terrestrial objects in the far ultra-violet region, while the Einstein X-ray

Observatory’, launched in 1978, has yielded exciting new data about violent

processes occurring in the Universe, such as supernovae explosions.

We shall now discuss briefly a few topics closely connected with the

phenomena studied in this book [5].

Stellar spectra

The first spectroscopic study of a star was made in 1802 by W. H. Wollaston,

who observed that the sun emitted a continuous spectrum interrupted by dark

lines. In 1811, J. von Fraunhofer, using a diffraction grating, counted about six

hundred of these lines, now called Fraunhofer lines, in the solar spectrum. The

origin of the dark lines remained unexplained until G. R. Kirchhoff and R. G.

Bunsen discovered that heated gas vapours emit spectra composed of bright

lines characteristic of the elements from which the spectrum is emitted.

Furthermore, Kirchhoff also showed that when continuum light is transmitted

through a gas vapour, dark lines are observed at precisely the same wavelengths

as the bright emission lines from the same gas (see Chapter 1). For example,

sunlight passing through sodium vapour yields two dark lines at the same

wavelengths at which heated sodium vapour emits two characteristic bright lines

(the D lines). From these observations, Kirchhoff deduced that the gas vapour

had absorbed its characteristic wavelengths, and in this way he could interpret

the Fraunhofer lines of the solar spectrum as absorption lines of elements present

in the atmosphere of the sun. Since that time, thousands of dark absorption

lines have been catalogued in the sun’s spectrum. By comparing them with the

spectral lines emitted by chemical elements in laboratory experiments on earth,

more than sixty elements have been identified in the sun [6].

More generally, stellar spectra mainly consist of dark absorption lines

superimposed on a continuous spectrum. In the interior of the star, where

temperatures are very high, the atoms and ions undergo violent collisions, thus

emitting many spectral lines which overlap because of collision broadening. The

radiation emitted from the star’s opaque surface, or photosphere is therefore

continuous. The atoms present in the cooler atmosphere of the star absorb their

characteristic wavelengths, thus giving rise to the observed dark lines. The

chertiical composition of the star’s atmosphere can therefore be deduced by

analysing the dark lines in the star s spectrum.

[5] A general introduction to modern astronomy can be found in the book by Jastrow and

Thompson (1977). . ... , , ,
.. .

[6] It is interesting to note that helium was discovered in 1868 through an unidentified dark line in

the solar spectrum, before being discovered on earth in 1895.
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Spectral classes. The Harvard classification system

When the absorption spectra of stars were first studied, it was soon realised that

stars could be categorised into several different types, called spectral classes. At

the beginning of the century, the ‘Harvard classification system’ was proposed,

in which the stars were classified according to the strength of the hydrogen lines

in their spectra. Letters of the alphabet were used to identify the classes, with

class A corresponding to the stars having the strongest hydrogen lines, class B

the next strongest, and so on. At that time it was thought that the amount of

hydrogen in the star decreased from class A to B, and so on. Today we know

that the stars are nearly uniform in composition, being composed mainly of

hydrogen and helium. As we shall see below the differences in their absorption

spectra are due primarily to their surface temperature so that the spectral classes

correspond in fact to different surface temperatures. However, the Harvard

identification has been kept, and when the classes are arranged in order of

decreasing temperature, the letters that designate each group form the sequence

O B A F G K M. Astronomy students remember this sequence by using the

mnemonic ‘Oh Be A Fine Girl (Guy) Kiss Me . Table 14.2 relates this

classification to the range of temperatures involved, and also describes the main

characteristics of the spectra. Each class is subdivided into 10 subclasses, for

instance B is divided into BO, Bl, . . . B9 corresponding to smaller distinctions

which do not merit the creation of a separate class.

Table 14.2 Characteristics of the spectral classes of stars

Spectral class

(.Harvard classification)

Temperature

range (K) Main characteristics of the spectrum

0 30000-50000 Lines of ionised helium

B 10000-30000 Lines of neutral helium

A 7500-10000 Very strong hydrogen lines

F 6000-7500 Ionised calcium lines. Many metal lines

(manganese, iron, titanium, strontium)

G 4500-6000 Very large number of metal lines.

Strong ionised calcium lines,

ionised and neutral iron

K 3500-4500 Large number of neutral metal lines

M 2000-3500 Band spectra of molecules, particularly <>l

the tightly bound titanium oxide molecule

The differences between the various stellar spectra can be understood in

terms of ordinary atomic physics. The strength of a particular absorption line of

a given element depends on the number of atoms of this element which arc

present in the required initial level a. This number will be depleted by inelastic

and ionising collisions with electrons, and on the other hand will be enhanced by

recombination between ions and electrons. Both of these processes depend on

the temperature and on the electron and atom densities in the atmosphere of
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star. Assuming that the stellar atmosphere is in a steady state, N. M. Saha

obtained, in 1920, an equation relating the rate coefficients for ionisation with

that for recombination, from which the line strengths can be deduced and

expressed as a function of temperature and density. The temperatures and

densities at which line strengths are at a maximum vary from element to

element. Table 14.3 lists the temperature at which the absorption lines of

various elements are most prominent. At high temperatures, (O stars), most

atoms are heavily ionised (that is, their outer electrons are missing) and only the

lines of systems such as He*, which is tightly bound, are seen. As the

temperature decreases, the lines of metal atoms appear (F, G, K stars), and

finally at still lower temperatures, molecular band spectra can be identified.

Table 14.3 The temperature at which lines of certain elements have maximum strength

Atomic species r(K)

He + 35000

He 14000

H 10000

Fe 7000

Ca* 5500

Na 4000

Stellar abundances

Making a reasonable initial guess about the surface temperature of a particular

star, and with a knowledge of the relative intensities of absorption lines, the

relative abundances of the elements can be deduced. From these values of the

temperature and abundances, a theoretical spectrum can be calculated and

compared with the observed spectrum. The initial values can then be adjusted

until consistency is obtained. It is found that the relative abundances of the

elements in most stars are nearly the same and the values that have been

determined are shown in Table 14.4.

Colour and spectral type

Assuming that stars radiate like black bodies, the spectral distribution of the

energy emitted is given by Planck’s distribution law [1.30], the wavelength Amax

at which the distribution has a maximum being given by Wien’s law [1.19]. The

hottest stars (O and B stars) radiate most energy in the ultra-violet region, and

only a small fraction in the visible region, mostly towards the blue end of the

spectrum. As a result these stars appear blue-white. The A-type stars radiate a

bigger fraction of energy in the visible part of the spectrum, and so appear

white. Stars of lower temperature radiate more energy at lower frequencies.

Thus F stars appear yellow—white, G stars appear yellow, K stars orange, and
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Table 14.4 Relative abundance of various elements in normal star atmospheres

Relative abundance (per cent)

Element by number of atoms by mass

H
He

Na
Mg
A1

Si

Ca
Fe

90.8' 70

9 27

~ 0.1 ~2

- 0.01 ~1

finally M stars have a reddish hue. Our sun, being a G star having a surface

temperature of about 6000 K, has a spectral distribution peaking at approxi-

mately Amax - 4800 A (see Problem 14.4) as shown in Fig. 14.15.

Intensity

of radiation

14.15 The spectral distribution of radiation from the sun corresponding to a surface temperature of

about 6000 K.

Doppler shift and radial velocities

From the analysis of the spectrum of a star, its radial velocity, that is its velocity

along the line of sight, can be inferred. Indeed, by comparing the stellar spectral

lines of a given element with those of a reference spectrum taken in the

laboratory, the Doppler shift can be determined, which in turn provides the

value of the radial velocity. If a star is moving towards the observer lines are
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shifted towards the shorter wavelengths (blue shift) while if a star is moving

away from the observer the wavelengths are longer (red shift).

Line shapes

Additional information about the state of the stellar atmosphere can be obtained

by analysing the shape of the observed spectral lines. As we saw in Chapter 4 , all

spectral lines have finite widths. Apart from the natural line width, we discussed

Doppler broadening and collisional broadening (also known as pressure broadening).

Natural line widths are very small and are entirely outweighed in stellar spectra

by collisional and Doppler broadening. In the stellar atmosphere, the Doppler

broadening is caused by the random thermal motion of the atoms or ions, and in

this context the effect is often called thermal broadening. While this effect

depends entirely on temperature, collisional broadening also depends on the

density. Each effect can be distinguished because, as we saw in Chapter 4,

collision broadening determines the wings of a spectral line, while Doppler

broadening determines the central region. This allows separate information to

be obtained about the density and the temperature.

Another source of Doppler broadening arises from the rotation of a star about

its axis. This produces an effect called rotational broadening, which can be

distinguished from other Doppler broadening mechanisms and which can yield

an estimate of the frequency of rotation.

Finally, in some stars the magnetic field is sufficiently large for the Zeeman

effect to produce detectable changes in the appearance of the lines. Since the

magnetic field varies from point to point on the stellar surface, the Zeeman

components usually cannot be resolved, but produce a characteristic magnetic

broadening. However, for some stars having a very large field (of the order of

several tesla), the lines can be resolved and the magnetic field strengths

determined accurately.

The 21 cm line of atomic hydrogen

In Chapter 5, we learned that a hydrogen atom in the ground state exhibits

hyperfine structure, splitting the two levels with F = 0 and F = 1 . The

difference imeflergy between these levels corresponds to a frequency of about

1420 MHz (see [5.162]) or a wavelength of A — 21 cm. Radiation of this

frequency can be detected by radio-frequency techniques and its observation

can be used to map the concentration of atomic hydrogen in our galaxy. It is

found that the spiral arms of the galaxy contain the greatest concentration of

hydrogen atoms and the different arms can be identified by making use of the

Doppler shift, since each arm possesses a different radial velocity with respect to

the earth. In contrast to atomic hydrogen, molecular hydrogen does not emit

21 cm radiation and the technique fails to reveal regions in which the

concentration of hydrogen is so large that the formation of molecules is

appreciable. Fortunately in these regions of high density, there exist concentra-
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dons of CO molecules which have a characteristic emission line at the shorter

wavelength of 2.6 mm and this, too, can be detected and used in mapping the

galaxy.

The interstellar medium and collision processes

In these few brief paragraphs, we have explained how a whole range of

spectroscopic measurements from the ultra-violet region to the radio-frequency

region provides the basic information about the structure of both stars and the

interstellar medium. New information is now coming from the X-ray and y-ray

parts of the spectrum as a result of high altitude and satellite measurements. In

order to interpret the results obtained, mathematical models must be built

which describe the physical processes occurring in various layers of a star, or in

the clouds of the interstellar medium. For this purpose, a new range of atomic

and molecular physics is required, and in particular the collision physics

discussed in previous chapters. For example, it has been discovered that the

interstellar medium contains many molecules (in small concentrations) of

surprising complexity. In dense interstellar clouds containing particle densities

of about 10
10

particles/m
3
, typical molecular abundances are (relative to

hydrogen) CH4 - 10
6

; CH - 10“ 8
; CN - 10“ 8

;
OH - 10~ 6

, CO - 10“ 4
,
while

of the more complicated systems the concentration of CHjOH is 10
7

,

that ofCH 3HCO is 10

"

9
, and so on. These molecules are presumably formed in

collision processes, some radiative, such as

C+ + H -> CH+ + hv

and many of a radiationless character, for example

CH + O -> HCO + + e

or CH + O -*• H + CO

Dozens or even hundreds of possible reactions must be evaluated before a

proper understanding of the physical conditions allowing the formation of large

molecules can be understood.

In general the solution of the problems posed by the wealth of spectral

information from outer space gathered by modern instrumentation requires the

astrophysicist to apply all the principles of atomic and molecular physics that we

have studied in this book to systems with physical conditions far removed from

those that can be created in terrestrial laboratories, and this can be done with

great success.

PROBLEMS

14.1 Obtain the general solution [14.20] of equations [14.15], by eliminating

A _ from the coupled equations to form a single second-order differential

equation for A+.
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Problems

Solve equations [14.15] in first-order perturbation theory by taking

A+(t) — 1 for all t and integrating the equation for A_(t) for times

0 < t < T, where T is the duration of the perturbation. Find the

probability P(T) that a transition has occurred from the level with m = \

to that with m = —

Obtain the result [14.41] for the shifted eigenenergies of the ammonia

molecule in a static electric field. Use the fact that with the electric fields

generated in the laboratory, one always has D% < AE.
The surface temperature of the sun, assumed to be a black body, is

approximately 6000 K.

(a) At what wavelength Amax does the spectral distribution of the sun

peak?

(b) What fraction of the sun’s energy is radiated in the visible range of

the electromagnetic spectrum (4000 A < A < 7000 A) (Hint: use the

result

x 3
7

r

4

and integrate Planck’s distribution law numerically.)

1







Classical scattering by a central potential

In this appendix we show how particles are scattered from a central potential

V(r) using classical Newtonian mechanics, and we obtain the Rutherford

scattering formula [1.58] for the scattering of a beam of particles by a repulsive

Coulomb potential.

The path of a particle in the field of a central potential is confined to a plane

(see Goldstein, 1962), which we can take to be the (XZ) plane. Let us introduce

plane polar coordinates (r, 4>), defined by (see Fig. Al.l)

= + z
2

r cos 4> = z
[Al.l]

In the scattering problem we are considering r is arbitrarily large before and

after the collision event.

The kinetic energy of the particle which is being scattered is given by

T = }m(r2 + r
2
<j>

2
) [A1.2]

where m is the mass of the particle and we have used the notation r = dr/df and

c
l
) = d(b/dt. When the particle is at any position, the component of its velocity

Al.l The scattering of a particle in the field of a repulsive central potential whose origin is at O.
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perpendicular to r is rep and its angular momentum about the centre of force at

O is therefore

L = mr2
<f>

[A1.3]

Because the potential is central the angular momentum must remain constant

along any trajectory. In particular, we have

L = mvb [A1.4]

where b is the impact parameter of the particle (see Fig. Al.l) and v the

magnitude of its initial velocity. The total energy E is also constant, and is equal

to mv 1
12. Thus, since E - T + V, we have

E = im(r
2 + r

2
<j>

2
) + V(r)

= jm I r
2 + XT I

+ v(r) = 2mv
2

m

r

and we note that

(2 n
L2

1
1/2

r = ± |— [E - F(r)] - —tjm r

To find an equation for the trajectory, or orbit, we write

dep d(p dt

dr dt dr

[A1.5]

[A1.6]

mr \m m r

- 1/2

[A1.7]

from which, upon integrating over r, we have

<t>
- 4>o

~ f
T L

mr m
—j \-[E- V(r)] - l 2 r i/2

2 2m r
dr [A1.8]

where we have chosen the constant of integration so that = (po r ~ ro- The

value of ro is conveniently taken to be the distance of closest approach, which is

found from the equation

r = 0 [A1.9]

It is therefore the largest root of the equation

E - V(r) -
2mr

= 0 [A1.10]

Having obtained r0 from [A 1.10], the orbit can be found by performing the

integral in [A1.8].
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The deflection function

Let us consider a particle incident upon a centre of force. We assume that the

central force acting on it falls to zero at large distances. Thus, when the particle

is very far from the centre of force, it will move along a straight line trajectory.

As it approaches the centre of force, it experiences an attractive or repulsive

interaction and is therefore deflected from its original straight line path. After

the particle has passed the centre of force, the force acting on it will ultimately

vanish, so that its orbit will again approach a straight line (see Fig- Al.l). In

general the final direction of motion is different from the incident one, and the

particle is said to have been scattered by the centre of force. Because of- the

symmetry of the orbit about the point (r = r0 , = 4>o)> the angle between

the asymptotes to the orbit (see Fig. Al.l) is given by

a = 20(r = oo) - <£(r = r0)]

= 2
mr m—t - IE - V(r)] -

mr

- 1/2

dr [Al.ll]

The deflection function 0 is then defined as

© = tt — a [A1.12]

For central potentials, there is axial symmetry about the Z axis, and it is

convenient to introduce an angle of scattering 9, which is defined so that

0 9 ss 7r. To obtain 9, we first form the quantity

d> = |0|
- 2tm [A1.13]

where n is 0 or an integer, chosen so that 0 *£ 2 tt. Then

9 = d> if d> *£ 77

= 2 rr — if v <J> 2tt [A1.141

Cross-sections

Let us now consider a uniform beam of non-interacting, monoenergetic particles

incident upon a target made of n scattering centres. We shall assume that the

target particles are far enough apart so that each collision process involves only

one of them. We also suppose that the target is sufficiently thin so that multiple

scattering by several scatterers may be neglected. The beam particles, of mass

m, approach the target from infinity with an initial velocity of magnitude v and

whose direction is parallel to the Z axis (see Fig. A1.2). Let AT be the number of

incident particles crossing per unit time a unit area perpendicular to the beam,

so that N represents the flux of incident particles. Let dN' be the number of

incident particles scattered per unit time in a small solid angle dfl centred about

a direction fl = (9 , <f>)
having polar angles ( 9, <f>)

with respect to the Z axis.

Under the experimental conditions described above the number dN oi

incident particles emerging per unit time in the solid angle dfl is proportional to
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A1.2 The number of particles scattered with impact parameters between b and b + db is equal to

2-nbdbN where N is the incident flux. These particles are scattered with scattering angles between 0

and 0 + d0.

N, n and dfl, so that one can write

dN' = Nna{6, <p) dfl [A1.15]

The proportionality factor a(9, 4>), which is also often written as

(P)
^~ (dycff [A1.16]

is called the differential scattering cross-section. From this definition we see that

da/dfl is the ratio of the number diV' of particles scattered into the solid angle

dfl per unit time per unit scatterer and per unit solid angle, to the flux of

incident particles with respect to the target. It is also clear from [A1.15] that

a(d, (f>)
dfl has the dimensions of an area.

The total scattering cross-section is obtained by integrating the differential

cross-section over all scattering angles. That is

(0, 4>) dfl
dll

r2lT
(
w da

d<t> dd sin 9-— (6, <j>)

o Jo dfl
[A1.17]

It is worth noting that in defining the above cross-sections we have considered

the simple case of elastic collisions of particles with scattering centres. A general

definition of cross-sections, which applies to elastic collisions as well as other

types of collisions is given in Chapter 11.

Let us now consider the classical scattering of a beam of particles by a centre

of force, assuming that the force is central and vanishes for large r. The position

of each incident particle can then be specified by giving its cylindrical

coordinates (b, <b, z), where b is the impact parameter and 4> the azimuthal

angle. Since the particles do not all have the same impact parameter b or angular
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momentum L = mvb, they will in general be scattered differently. Indeed, each

value of L (or b) defines a deflection function 0 and a corresponding angle of

scattering 0. Thus the particles scattered at angles between 9 and 6 + dd,

independently of <j>, are those having an angular momentum between L and

L + dL or an impact parameter between b and b + db. In other words they are

the particles falling on the ring of area 2irb db shown on Fig. A1.2. Now, since

N is the flux of incident particles, the number of particles passing per unit time

through the ring is N2Trb db, and the number of particles per unit time having

angular momentum between L and L + dL is NlirLdL/

m

2
v
2

. This is the same

as the number dN' of particles scattered per unit time within the solid angle dfl,

so that

N2-nLdL
dN' = N2-rrb db =

5
-
5— [A1.18]

m v

The differential scattering cross-section has been defined above (see [A1.15])

to be the ratio dN'/(Nn dfl), where n is the number of scattering centres. Since

n — 1 and dfl = 277 sin 6 dd in the present case, we have

or

do- b db

dfl sin 9 d6
[A1.19]

dcr 1 L dL

dfl
=
m2v 2

sin 8 ~d0
[A 1.20]

If more than one value of b (or L ) contributes to a given value of 0, the

differential cross-section is the sum over all values of b (or L) that contribute,

namely

or

do- „ bi db,

dfl
i

sin 9 d 9

dcr

dfl

1 y Li

m 2
v

2

i
sin 0

dL,\

dO

[A 1.21]

[A1.22J

In order to use the above formulae [A1 . 19]—[A1 .22] one must first find b (or

L) as a function of 0 from [A1.8] and [A1.11]-[A1.14]. There are only a few

potentials for which this can be done analytically; in the other cases numerical

methods must be employed.

Rutherford scattering

The most famous example of a potential for which an exact solution can be

obtained is the Coulomb potential. As shown in Chapter 1 , the solution for this

case helped Rutherford to interpret his experiments, which established the

existence of the nucleus and therefore provided the evidence for the nuclear

model of the atom.
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The scattering potential is that produced by a fixed charge qB acting on

incident particles having a charge qA ,
namely

V(r)
?A?B

[A1.23]
(4 Tre0)r

and we shall treat the repulsive case for which qAqB > 0. According to [A1 .10],

the distance of closest approach r0 is the largest root of the equation

L2

E - ffAgB

(4t7£0> 2tnr"

= 0

Setting

we find that

A = ffAgB

{Atte0)2E
’

B =
2mE

r0 = A + (A
2 + BL 2

?
/z

= A + (A
2 + b

2
)

l/2

From [Al.ll] and [A1.12] the deflection function is given by

0 = ir - 2
mr m

L2 1- 1/2

dr

[A 1.24]

[A1.25]

[A 1.26]

[A1.27]

which we may also write as

U

0 = 7T — 2 -T 1
- 2A

- 1/2

dr

— tt — 2
^ — [r

2 — 2Ar — b
2]~ 1/2 dr

r

[A1.28]

The integral on the right-hand side of this equation is a standard one (see for

example Dwight, 1961) and we have

0 = 2 cos
[1 + 4A 2

/i>
2
]
1/2

= 2 tan
1 — [A 1.29]

rhis relation can be inverted to obtain b in terms of the deflection function 0 or,

using [A1.13]-[A1.14], in terms of the scattering angle 0. That is

[A 1.30]b = A cot —

We note that the trajectory of the particle may be readily obtained by

performing the required (indefinite) integral in [A 1.8] by a method similar to
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the one we have used to calculate the definite integral in [A1 .27]. One finds that

— = ~2 (e cos 0-1) [A1.31]
r b

where e = (1 + b
2/A 2

)
1/2

. This is the equation of a hyperbola, with the centre

of force being at the exterior focus.

The treatment of the attractive case (qAqB < 0) is similar to the one given

above for the repulsive case. The quantity A is now negative, and one finds for

the same value of \A\ a deflection angle © having the opposite sign of the one

obtained above. The trajectory is then a hyperbola with the centre of force at the

interior focus.

Let us now return to [A1 .30], Since we know the relation between b and 0, we

may directly obtain the differential cross-section dcr/dfl. Thus, using [A1.19]

and [A 1.30], we find that

d crc = /

dfi \

or (see [A1.25])

do-g = / qAqB

dll WTTfH)

2 / sin
4
(0/2)

[A1.32]

1

16 E2
sin

4
(0/2)

[A1.33]

where the subscript c refers to the Coulomb potential. This is the Rutherford

formula for the differential cross-section corresponding to Coulomb scattering.

The result [A 1.33] is identical to that obtained from the quantum theory of

Coulomb scattering. This coincidence is confined to the Coulomb potential and

no other potential provides exactly the same cross-section in quantum theory

and in classical theory.

The Rutherford formula [A 1.3 3] for scattering by a Coulomb potential

exhibits other remarkable features. Indeed, the differential cross-section

[A 1.33] does not depend on the sign of the potential. Moreover, since the energy

E and the scattering angle 0 enter into separate factors, dcrc/dll is scaled at all

angles by the factor (<7a9b/ I^ttsqE

)

2
, so that the angular distribution is

independent of the energy. ^OC^e also note that at fixed 0 the differential

cross-section is proportional to E • Finally, dcrc/dfl is infinite in the forward

direction (0 = 0), where it diverges like 0
-4

. As a result, the total cross-section

J(dcrc/dfl) dO is not defined for pure Coulomb scattering. When considering

real scattering processes, we must remember that all Coulomb potentials will be

modified at large distances because of the screening effect of the charges in other

atoms and molecules. As a result of this screening, the quantum mechanical

differential cross-section becomes finite in the forward direction, and the

corresponding total cross-section is then defined. It is worth noting that in

classical mechanics the total cross-section does not exist for any potential that

does not vanish strictly beyond a certain distance.
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The laboratory and centre of mass systems

Let us consider a non-relativistic collision between a ‘beam’ particle A of mass

mA and a ‘target’ particle B of mass mB . The laboratory system (L) is the

framework in which the target particle B is at rest before the collision. In what

follows we shall use the subscript L to denote quantities in the laboratory

system. The centre of mass (CM) system is the coordinate system in which the

centre of mass of the composite system (A + B) is at rest. Denoting by vA and

vB the velocities of particles A and B in the CM system, and by pA = %vA and

Pb = mBvB their CM momenta, we have

Pa + Pb = 0 [A2.1]

Observations are often [1] made in the laboratory system, while calculations are

frequently performed in the CM system, since the three degrees of freedom

attached to the centre of mass of the system (A/4 B) may then be ignored. In

this appendix we shall study the kinematical problem of passing from one frame

of reference to the other.

Let us choose the incident direction as our Z axis in both laboratory and CM
systems. Calling z the unit vector along this axis, we write the velocity of the

centre of mass in the laboratory system as

VL = VLz [A2.2]

We suppose that no external forces are present, so that the centre of mass keeps

its uniform rectilinear motion and the laboratory and CM systems are in

uniform translational motion of velocity Vl with respect to each other. Since the

collision is non-relativistic, the velocity vL of a particle in the laboratory system

is therefore related to its velocity v in the CM system by

vL = v + VL [A2.3]

We shall choose the X and Y axes of the CM system to be parallel to the

corresponding axes in the laboratory system. Then, if v points in the direction

( 6 , 4>) in the CM system and vL in the direction (0l, in the laboratory system

[1] Important exceptions are crossed beam, colliding beam or merged beam experiments, in which

the ‘target’ consists of a beam of particles B.
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(see Fig, A2.1) we have

uL cos Oi = v cos 6 + UL
z>l sin 0L = v sin 0

d>L =
<t>

Eliminating vL from the first two of these equations, we find that

tan #L
sin 6

cos 9 + T

[A2.4]

[A2 . 5}

where

[A2.6]

Since the particle B is at rest before the collision in the laboratory system, the

total momentum PL in that system is equal to the momentum (pa)l of the

incident particle A,

Pl = (Pa)l [A2.7]

and the initial kinetic energy (70L in the laboratory system is given by

(P/di Pi
(TdL =

2mji 2m a

[A2.8]

The corresponding initial kinetic energy Ty
available in the CM system is

obtained by subtracting from (7i)L the kinetic energy of the centre of mass in

the laboratory system. Using the fact that the centre of mass moves in the

laboratory system as a free particle of mass M = mA + m^, momentum Pl and

A2.1 Illustration of the velocities v, vL and VL and the angles (6, <t>) and (0L , d>L)-
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energy Pi/2M, we have

T, = (T,)l
Pi
2

M

(TdL [A2.9]
mA + mB

and we also note that the centre of mass velocity UL in the laboratory system is

given by

(Pa)l ™a
V, =

mA + mB mA + mB
(Va)l

2mATi
1/2

mB(mA + mB)

[A2.10]

It is also clear that before the collision the magnitudes of the CM velocities of the

particles A and B are given by

VA = Oa)l - Vl =
,

B—'

- (»a)l [A2.11a]
mA + mB

vB = VL = — (2>a)l
[A2.11b]

mA + tnB

We remark that since the centre of mass dlways moves as a free particle,

‘unaffected’ by the collision process, it is the initial kinetic energy available m
the CM system, Tn which physically characterises the collision. For example, in

electron-atom scattering, where mA , the electron mass, is much smaller than

mB ,
the mass of the atom, we deduce from [A2.9] and [A2.10] that 7’i - (F,)i.

and VL ~ 0. Thus in this case the laboratory and CM systems nearly coincide

and almost all the initial kinetic energy in the laboratory system is available in

the centre of mass system. On the contrary if we consider a collision between

two atoms having the same mass (mA = mB) we see that = (va)iJ2 and

7’i = (7Y)l/2, so that only one-half of the initial laboratory kinetic energy (Tj L.

is transformed into CM kinetic energy, the second half being dissipated in the

motion of the centre of mass.

A useful expression of T
l
may be obtained in the following way. We first

define the relative momentum p of two particles 1 and 2 having masses m\ and mj

and momenta pi and P2 by the relation

P =
m 2pi - m ip2

m x + m2

[A2.12]

Using this definition, and evaluating the momenta of the colliding particles A

and B successively in the centre of mass and in the laboratory system, we find

that the initial relative momentum of the two particles A and B is given by

Pi = Pa - _Pb [A2.13]
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or

Pi
=

mB
mA + mB

(Pa)l [A2.14]

As a result, the initial kinetic energy T
l
available in the CM system may be

written as

Ti =
pi

2mA
+

Pb

2mB 2jx
[A2.15]

where

mAmB
mA + mB

[A2.16]

is the reduced mass of the two particles A and B, v, = (vA)L is the initial relative

velocity, of magnitude v^, and we have used the fact that pi = /t(vA)L = P*i

Elastic scattering

Thus far we have focused our attention on the initial situation, before the

collision has occurred. The above analysis may also be repeated to obtain the

relationships between the final centre of mass and laboratory quantities, that is

after the collision has taken place. As an example, we shall consider the case of

an elastic scattering process

A + B —> A + B [A2.17]

in which the particles are simply scattered without any change in their internal

structure [2]. This process is represented in Fig. A2.2(a) in the laboratory

system,while in Fig. A2.2(b) it is described in the centre of mass system.

Let vA and Vb be respectively the CM velocities of particles A and B after the

collision, while pA = mAvA and ps = mBVB are the corresponding CM momen-

ta. Similarly, we shall write the final laboratory velocities as (vA)L and (vb)l, the

corresponding momenta being (pa)l — tnA(y'A)]_ and (Pb)l = ikb(vb)l- From

momentum conservation we have in the laboratory system

Pl = (Pa)l = (Pa)l + (Pb)l [A2.18]

while in the centre of mass system

Pa + Pb = Pa + Pb = 0 [A2.19]

We also note from [A2.12] that the final relative momentum is

Pf = Pa = -Pb [A2.20]

[2] The generalisation to inelastic collisions A + B —

*

A' + B' or reactions A + B —> C + D (»e*

Problem 11.1) is straightforward; it may be found for example in Joachain (1983), where the

case of relativistic collisions is also discussed.
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where p. is the reduced mass [A2.16]. Conservation of energy implies that for

the elastic scattering event considered here we must have

Ti = Tf or pi = pf [A2.24]

Let us now consider the velocities of the particles. We see from [A2.13],

[A2.20] and [A2.24] that for an elastic collision

V'A = ®A

»B =
[A2.25]

so that the magnitude of the CM velocities is unchanged. The initial and final

velocities of the two particles are given in Table A2. 1 in both the laboratory and

centre of mass system.

From the definition [A 1.1 5] of the differential cross-section, given in

Appendix 1, we know that the same number dN'A of particles A are emitted into

the solid angle dff about the direction (ft, <p) in the CM system as are emitted

into dflL about (ftL , <b\) in the laboratory system. Thus the laboratory and CM
differential cross-sections are related by

or

($l> <£l) dflL — -rpr (ft, 4>) df!
d£l dfl

“- (ftL) 4>l.) sin ftL dftL dd>L =™ (ft, <f>)
sin ft dft deb [A2.26]

dflL dll

Using the last of equations [A2.4], we have immediately d d>L = d<b. Moreover,

using [A2.5] and [A2.6] we have

where

tan ftL
sin ft

cos ft + ta
[A2.27]

Vl _ mA
vA mB

[A2.28]

for the elastic scattering case considered here. We may also write

cos ftL =
cos ft + ta

[A2.29]
(1 + 2ta cos ft + t

2
a)

1/2

so that the elastic laboratory and CM differential cross-sections are related by

do-

($L> <Al)
— (1 + rA + 2ta cos ft)

3/2
do-

(ft, <b) [A2.30]
dflL |1 + ta cos ft| dfl

Finally, by integrating the differential cross-section over all scattering angles,

605



Appendix 2

606



Appendix 2

we obtain the total cross-section crtot . Using [A2.26] we see that

^"tot

dcr

dflL
(^L) <I>l) dflL

dcr

dfT
(0, <f>)

dfi [A2.31]

so that the total cross-section, is independent of the reference frame.

In Appendix 1 we discussed the scattering of a beam of particles A by fixed

scattering centres B, or in other words by infinitely massive target scatterers B.

These results can easily be extended to the realistic case of target scatterers B

which have a finite mass m%, and hence can recoil. Indeed, it is shown in

Section 2.7 that the problem of two particles interacting through a potential

V(r) which depends only on their relative coordinate is entirely equivalent, in

the CM system, to the problem of a ‘relative’ particle moving in the potential

V(r), the mass of the ‘relative’ particle being the reduced mass /x of the two

particles. This reduction of a two-body problem to an equivalent one-body

problem in the CM system is valid in both classical and quantum mechanics. In

particular, the results obtained in Appendix 1 for classical scattering of a beam

of particles by a central potential can be used directly for the classical scattering

of two particles A and B interacting via a central force, provided the mass m is

replaced by the reduced mass /x = mAmB/(mA + mK) and the scattering angle 0,

energy E, velocities, etc. are understood to be the centre of mass quantities. For

example, since the initial kinetic energy available in the CM system is given by

vj/2, the Rutherford differential cross-section [A1.33] becomes

dcrc _ /Wb\ 2

_J 1

dll \4ire0/ 4/x
2
v^ sin

4
(0/2)

[A2.32]

where v
{ = (vA )L is the initial relative velocity of the two colliding particles.

The result [A2.32] is the Rutherford differential cross-section for Coulomb

scattering of a particle A of charge qA by a particle B of charge qn, written

in the CM system. The corresponding laboratory differential cross-section may

be obtained by using the relation [A2.30].



Evaluation of integrals by using

generating functions

*

In this appendix we shall show how generating functions may be used to

evaluate various integrals involving harmonic oscillator or hydrogenic wave

functions.

Harmonic oscillator

We have seen in Section 2.4 that the Hermite polynomials H„(g) can be

expressed in terms of a generating function G(£, s') as

G(£5)=e- s2+2sf =i [A3.1]

n= 0 n -

This generating function is useful in many calculations, and in particular for the

evaluation of various integrals involving the harmonic oscillator wave functions

iA„(x) = Nne
~ a2xl/2Hn{ax) [A3. 2]

As a first example, we shall normalise the wave functions i//„(x), i.e. find the

normalisation constant Nn such that

j" i«,)p a, =^
where we have set £ = ax. For this purpose, we consider the two generating

functions G(£, s) and

G(£, t) = e
-d+2if = 2^ i" [A3. 4]

m=0 m -

'+ oo

z-?H2M) d£ = 1 [A3. 3]

and use [A3.1] and [A3.4] to write

+oo x. oo n
t
m f

e-«
2

G(^, s)G(£, t) d| = 2 E -j-T d£
n=0 m= 0 niml J-oo

Using the fact that

2 *
2

dx = yfrr

[A3. 5]

[A3. 6]
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we see that the integral on the left-hand side of [A3. 5] is simply

e_f e“
s +2l ^e~

! +2,f d£ = Tire
2st

-2
n~0

(25t)"

w!
[A3. 7]

Equating the coefficients of equal powers of s and i on the right-hand sides of

[A3. 5] and [A3. 7], we find that

•+ =e

e
“eH2M) d£ = 2"n

!
[A3 . 8]

— oo

and
*+ oc

df = 0, n + m [A3.9]

From [A3. 3] and [A3. 8] we see that apart from an arbitrary phase factor the

normalisation constant Nn is given by

* {-J^T
[A3 ' 101

The second result [A3. 9] implies that

f >pm(x)tf/n(x) dx = 0, n =£ m [A3. 11]

so that the (real) harmonic oscillator wave functions i/»„(x) and il>m(x) are

orthogonal if n m, in agreement with the fact that they correspond to

non-degenerate energy eigenvalues E„ f Em
As a second example, we calculate the integral

xnm

*+ oc

ijj„(x)xiljm(x) dx
— oc

NnN„
d£ [A3. 12]

Using again the two generating functions G(f, s') and G(£, t) given respectively

by [A3.1] and [A3. 4], we now look at the quantity

r

+

30

e-^G(£ s)G(£ f) df = 2 2 '

n=0 m=

0

The integral on the left-hand side is simply

e-s £Hn(OHm(t) df

[A3. 13]

e ^e sl+2s
^e (2+2r ^d£ = J~ir (s + t)e'

1st

= 2 ~T 0” +1 «" + s
n
t
n+1

) [A3. 14]
n=0 n
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Upon comparison of the coefficients of equal powers of s and t on the right-hand

sides of [A3. 13] and [A3.14], and using our previous result [A3.10], we find that

(

0

1 (n + 1

2

i/n' :1/2

la \2

1/2

m n ± 1

to = n + 1

to = n - 1

[A3. 15]

Hydrogenic atom

A similar method may be used to evaluate certain integrals involving the radial

hydrogenic wave functions (see [3.47])

R nI(r)
= Nnle-

p/2p‘L
2
n
‘:

tXp), P
=

2

Z

na„
[A3. 16]

Suppose, for example, that we want to evaluate integrals of the type

/P“,PV = f e- pp“L£(p)L£(p) dp [A3. 17]

Using the generating function [3.45] for the associated Laguerre polynomials.

Up(P , s)
=

(-s)pe
- ps/Cl'-s)-=2 K(P)

(i - s
ye+i - q\

and a similar expression for UP’(p, t), we have

°° “ sqt
q

e~ p
p
aUp(p,

s)Up(p , t) dp = 2 2 ji/fl'M
Ipq>p '

Q

q=p q'=p' H’W /•

The integral on the left-hand side is just

[A3. 18]

[A3. 19]

o

e p
(1 - s)

p+1
(1 - tf

'+i dp

(-1)P+P S
P
t
P

.(1 - s)
p+1

(l - t)
p

' +l

(-1 )
p+p

's
p
t
p

'

(1 - s)
p+1

(l - t)
p

' +1

;
-p[l+j/(l-0+t/(l-')]p« dp

r(a + 1)

s t

1 + +
i+i

[A3.20]

1 - s 1-1/

where T is Euler’s gamma function and we have used the fact that

r” „ T(a + 1)

e~^x a dx =
0 p

a+1
[A3.21]
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The required integral lpq,P
’

q
- may therefore be obtained by expanding the result

[A3. 20] as a power series in s and t and comparing the coefficients with those of

the series on the right of [A3. 19].

As a simple illustration of the method, we shall normalise the radial

hydrogenic eigenfunctions. We see from [3.51] that for this purpose we need the

integral

PptU = f e' p
P
p+Wp)]

2 dp [A3.22]

with p = 21 + 1 and q = n + l. Using the generating functions Up(p, s) and

Up(p, t) we therefore have in this case

e~ p
p
p+lUp(p, s)Up(p, t) dp = 2 2

j»

and also

c~ p
p
p+1Up(p, s)Up(p, t) dp

s9t9
f>+l

q% fiP q'W
Pqm ’

(sty

[A3.23]

(1 - s)
p+1

(l - t)
p+1

x f e
- p[l+j/(l-*)+«/Q-0] pP+l jp

(p + i)! (sty (i - jxi - o

(1 - st)
p+2

= (p + 1)!(1 - s - t + st)

4,wr (s'r‘
[A3.24]

where we have used the binomial theorem to expand the quantity (1 — st)
p 2

.

Upon comparison of the right-hand sides of [A3.23] and [A3.24], we see that the

required integral Ip
q,pq

is equal to (q\)
2 times the coefficient of (st)

9 in the series

[A3. 24]. Thus

IpPq!Pq = (?0
2
(P + D!

(q + D!
+

(q - p)\(p +1)! (q ~ p
~

!)!(/> + 1)1

= (g!)
3
(2g - p + 1)

(q - p)\

and remembering that p = 21 + 1 and q = n + l, we finally have

_ 2n[(» + /)!]
3

e- p
p
2U 2

tV(p)]
2
P
2 dp

which is the result quoted in [3.52].

(n-l~ 1)!

[A3.25]

[A3.26]

611



Angular momentum - useful formulae

and results

Angular momentum operators

sssssSSsi
SuT^cuCaisuch .ha,£ »nE„lar .nomen,urn is pure,, of orbna.

“mteXs J„ J

,

and J, arc defined as linear sdf-adiom, operators

satisfying the commutation relations

[Jx , Jy]
= ihjz (and cyclicly)

[A4
/
1]

c . T z _ 7i
. 72 + j2 commutes with each component, simultaneous

JZlLnsV.5e i/one convene say can be found, wrth

J
2
<A>m = Kj + LA4.2]

*/" ~rjrn

3A,m =

We may normalise the *,m to unity, in which case the orthonormality relations

('Pj'm'l'l'jm)
~ % ^ ^

are satisfied, and J2 is represented by a diagonal matrix with elements

[A4 '4]

In this matrix representation, the eigenfunctions *jm are, in fact, column

vectors.
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Apptndix 4

The eigenvalues, which we have written for later convenience in the form

j(j + 1 )h
2 and mh, are real as J

2 andJs are self-adjoint. They can be determined

by the following argument, which we give in outline only.

Let us define the raising and lowering operators J± as

J± =J*± ijy [
A4 -5]

where J+ = j\ We note the relations

= [A4 ' 6]

[J
2
,J±]=0 [A4.7J

J+J- =J2 -Jl + hjz -, J_ J+ = ]
2 ~ Jl ~ hjz [

A4-8]

From the commutation relation [A4.6], we have

J, {J ]̂m } = JJ^jm ±

= (m ± l)h{J± ipjm} [A4.9]

so that are eigenfunctions of Jz belonging to the eigenvalues (m d* 1).

Because of [A4.7], these functions are simultaneously eigenfunctions of J
2
,

belonging to the eigenvalue ;'(;' + 1 )h
2

.

For any wave function <f>, (</>|J
2
ld>) === , and setting d> = \pjm ,

we find

j(j + 1) 5= mj [A4.10]

By operating with/- orJ- repeatedly, sequences of eigenfunctions ofJz can be

constructed, namely C7+)>>m , C7-)”>,m, with eigenvalues (m + n)h and

(m — n')h respectively. In view of [A4.10], for each; there must be a maximum

eigenvalue of Jz , say Ah, and also a minimum eigenvalue, say \'h, such that

A — A' = an integer (or zero). IfJL is applied to t we must have^+i/'jA = 0,

for otherwise the sequence would not terminate and Ah would not be the

maximum eigenvalue. Using [A4.8], we have

A = UU + 1 )
- A

2 - \}h
2^ = 0 [A4.nl

with the solution A = ;. In the same way J_^A - = 0, from which we find

A' = -;. Since (A - A') is an integer (or zero), (2;) is an integer (or zero) and;

must be one of the integers or half-integers, ;
= 0, i, 1, 3/2, 2, . . . . For a

given value of ;, m can take the (2; +1) values — + 1, . . . ;
~ 1, /

To find the matrix elements of Jx and Jy , or equivalently ofjL and , we

note that

J+^jm — Nilfjm+ i
[A4.12]

where N is a constant. Since both 4>]m and 4>jm+1 are normalised to unity, we

have from [A4.3]

N2 = = (lp]m\7-J+ \>Pjm)

= h2
(j(j + 1) - m(m + 1)) [A4.13]
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where we have used [A4.8]. Adopting the convention thatN is real and positive,

we then obtain

N = h JjU + 1) - m(m + 1) [A4.14J

From [A4.12], the matrix representing J+ in the basis of eigenfunctions ipjm is

= Jjti + 1) - m(m + 8
Ji'

8”'"'+x [A4J5]

In a similar way, we find

[A4.16]
(ipfJJ- ItfsJ

= + 1)
- ~ Yh s

if
8Wra— 1

As we saw in Chapter 2, if J is a pure orbital angular momentum (L), the wave

function must be single valued as a function of position, and this excludes e

half-integral values of j. For a spin angular momentum or when J is the sum

an orbital and a spin angular momentum, both the integral and half-integral

values are allowed.

Spherical harmonics and Legendre polynomials

In Chapter 2 we introduced the spherical harmonics Ylm(6, 4>), which are the

simultaneous eigenfunctions of the orbital angular momentum operators L and

L2 ,

LzYim = Z(Z + l)h
2Ylm ,

LzYlm ^rnhYlm [A4.17]

where Z = 0, 1, 2, ... .and m = -Z, -Z +1, - Z - 1, Z. They satisfy the

orthonormality relation

<f>)Ylm(6, <t>) dO = 8,r 8mm ‘, = sin 9 d9 d
<f>)

[A4.18]

and the closure relation

30 l

where

i s w = 5(0 ft,)

1=0 m=—l

5(0 - O') = —
a 8(6 - 9') 8(<f> - 4>')

v
sin 9

[A4.19]

If the operators L ± are defined as L ± - Lx ± iLy (see [A4.5J) we have

L-h = Zie
±i(f>

d .
d

± 1- i cot 6 —

-

66 d<p

and

L ±Ylm = hjl(l + 1) - m(m ± 1) Ylm±l

in agreement with the general results of [A4.15] and [A4.16].

[A4.20]

[A4.21]
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In the special case m = 0, the spherical harmonics are given by

Y, o = . F~r— Pi(cos V
4tt

[A4.22]

where the functions P,(cos 6) are the Legendre polynomials defined in

Action 2.5^
b£ twQ yectors having polar angles (6lj <£,) and (02 , d>2)

respectively, and let 6 be the angle between them. It can be shown that

(cos0) = _^ 2 YU(h, [
A4 -23^

which is known as the addition (or biaxial) theorem of the spherical harmonics.

From the generating function [2.168] of the Legendre polynomials, we see that

1 rt (r<) T-> k /i\ [A4.24]- 2 «
|ri - r2

|
/=o (r>)‘

which, using [A4.23], may also be written as

i -is 41 w'

\l+l
YUOuMYaei,^) [A4.25]

|ri
- r2 |

i=o m= — /
2/ + 1 (r>)

It can also be shown (Mathews and Walker, 1973) that

exp[tfe|ri - fzjj = ik ^ (2i + \ );,(fer<) [;';(fer>) + m/
(^r>)]P/

(cos 0)

Iri
- r2 |

,=0

[A4.26]

where i and n, are spherical Bessel and Neumann functions respectively.

Finally, we quote the formula giving the expansion of a plane wave in Legendre

polynomials, namely

e
,kr = 2 (21 + lyy/WCcos 9) [A4.27]

1=0

where 9 is the angle between the vectors k and r.

Addition of angular momenta. The Clebsch-Gordan coefficients

Consider a svstem described by two angular momenta Ji and J2 ,
such that the

components of Ji
commute with the components of J2 For example, J, and J 2

could be the angular momenta of different particles, or the orbital and spin
c°u

,

*
of a single particle. The normalised simultaneous eigenfunc-

angular momenta oi a single pen i.

4. n*2 and m.A will be
firms nf T? and corresponding to eigenvalues nOi + 1 )n and m xn will I

M

denoted bv tp
and similarly, the normalised eigenfunctions of J 2 and Ju

corresponding
J

to eigenvaluesj2(j2 + \)h
2 and m2h will be denoted by C

',^”0“ of arc then g.vc„ by the product
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functions

x [A4.28]

and for a given 71 and j2 ,
there are (2/i + 1) x (272 + 1) of these functions.

Now consider the total angular momentum

J = Ji + h [A4.29]

Since J
2

, Jz , J
2 and ]2 all commute, these operators possess a set of simultaneous

eigenfunctions, which we shall write as where

[A4.30]

For a given 7, there are (2/ + 1) values of in with 7 ^ tn ^ 7 and 7 can take any

of the values \ji
-

jr'2 | , \ji
~ ii\ + 1, • - • (7 i + ji)- Again there are (271 + 1) x

(Zj2 + 1) of the functions which can be related to the function [A4.28] by a

unitary transformation:

7i«i5 kmi

[A4.31]

The coefficients are called Clebsch-Gordan coefficients. These

coefficients vanish unless m = m, + m2 and \j2 - 72 1
^j^ji + 32 >

an<i

possess the following important properties:

Orthonormality relations

2 < 7 ihm 1
w2 17™} O', } 2mri2 \j'm

'

)
= 67' &mm'

2 Oi

J

2m 1m2 17m)Oi72w I

W

2 1

7^n) = 5mim;5„ [A4.32]

Symmetry properties

(jij2mim2\jm) = (-ly^2-2
(j2i xm2m x

\jm)

= (-iy,+>w <7 i72
- tn, - m2 |;

~ ™)

/ 2 ? + 1 \
1/2

= (-iyi-Bn
f

+ J (him - m\h - ™i) [A4.33]

In Table A4.1, the coefficients {jij2m xm2\jm) are tabulated for the cases j2 = 2

and 72 = 1. By using the symmetry relations, all the coefficients with any one of

7 i ,72 or 7 equal to 2, or to 1, can be found.

(jdm \
- ™\h - m2) [A4.33]

Useful notations

When adding two orbital angular momenta L, and L2 , we shall write [A4.31] in

the explicit position representation as

Qifc)
= 2 Y

!imt(6i, <pi)Yhm2(e2 , J>2 ) [A4.34]
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Table A4.1 Clebsch-Gordan coefficients for j2 = 7 and >2 = 1

UAm,m2 \jm)

j m2 = i m2
= -i

lh + m + i\
1/2

Of - «i + i\
1/2

J 1 + T
l 2}l + 1 J l 2>, + 1 /

i Of - m + 4 \
1/2

Of + rn + 40
Ji - 2

l 2;i + i

'

V 2/j + 1 !

0'ilm,m2|;m>

j m2 = 1 m2 = 0 m2 - 1

"Of + "OOf + m + i;
1/2

Of - « + l)Oi + *» + D"
1/2

’Of - "OOf
- m + 1)

(2/i + l)(2y, + 2) (2;, + !)(>, + 1) j C27 ,
+ 1X27, + 2)

’(7, + "OOf - m + 1)' 1/2
r m 2

1
1/2

Of - "OOf + m + 1)

2>,(y1 + i) [/'.O'. + i). 27,(7, + 1)

in

1/2

’Oi - "OOf - w + 1>
1/2

Of - "OOf + "O’
1/2

"Of + m + l)0f + "0
1/2

27,(27, + 1) >.(27. + 1) 27,(27. + 1)

where is a simultaneous eigenfunction of Lf, L2 ,
L2 and Lz , and

L = Lj + L2 . Similarly, when adding an orbital angular momentum L with a

spin angular momentum S, so that J = L + S we shall often write

(6, 4>) = 2 (f>) Xsm, [A4.35]

m
l
m

5

where Xsm, is a spin wave function.

When taking matrix elements of operators with respect to the eigenfunctions

<J>
,m

, , we shall frequently use the Dirac notation in which eigenvec-

tors are written in the form —
* \jij2jm). We then write

= (jij2jm\A |
j'J'd'm') [A4.36]

and

dfi!

j
dn2 02 <t>2)A<*)

l

;&6 ,<!>!, 6 2 <t> 2 )

= {hl2lm\A\l[r2l'm') [A4.37J

where A is an operator. The defining relation of the Clebsch-Gordan coef-

ficients [A4.31] can then be written as

\jij2jm) = 2 <A72»i»H2|y»»>Ui»»i> x l>2tw 2) [A4.38]

m
i
m2
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Integrals of products of spherical harmonics

I, can be shown chat the product ,„,<«> *) «n •» “Pres“d as a

series by

Yhmi{e, 4>)Yi
2m2

(e, 4>)

l\+h

l=\h~ l
i\
m=-l

1 r
(2h + l)(2/2 + 1)

477(2/ + 1)

1/2

x </ 1Z2OO|ZO)<ZiZ2Wim2^>«)yfal(0, d>)
[A4.39]

This enables us to evaluate the integral of a product of sphe”C3
j

harmonics. Using [2.181b] and the orthonormality property [A4.18] we have

Yl>mi(6, <t>)Yh„2
(0, <b)Yltmt(0, 4>) dn

b/2

= (-Ditnj
(2Zi + 1) (2

Z

2 + 1)]

477(2/3 + 1)

<Z !

Z

200|

z

30) <Zi/2w*im2 |

/

3 - m) [A4.40]

Scalar and vector operators

A scalar operator if is one for which the expectation values (4>\-l'\ <t>) are unaltered

by a rotation of the coordinate system. It can be shown (Powell and Crasemann,

1962; Merzbacher, 1970) that for an operator to be scalar it must commute with

all components of the total angular momentum operator J:

[(f,J] = 0 [A4.41]

from which it follows that if ipjm is a simultaneous eigenfunction of J
2 and J

belonging to the quantum numbers j and m, then vanishes unless

j = j' and m = m '

,
and

Wjm = A«Ay,Jjm
[A4.42]

where A is an eigenvalue of if. SinceJ+ ipjm
-

1
and as V3+ >

we

must also have

'jm+ 1
[A4.43]

so the eigenvalue A is independent of m (but it does depend on j).

In general, wave functions depend on other quantum numbers in addition to

angular momentum quantum numbers (for example, principal quantum num-

bers). Denoting these other quantum numbers collectively by a, we see that

= {ajm\if\a'j'm') = A
y„a.S;>

-Smm - [A4.44]

This is the simplest example of the fact that matrix elements of operators having

well-defined properties under rotations depend upon the magnetic quantum

numbers through a ‘geometrical’ factor (equal in the present case to 8mm0 whic

is independent of the dynamics of the system.
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In this book, we are mainly concerned with vector operators, of which the

components transform like the components of a vector under rotations. The

condition for an operator V with components Vx , Vy> Vz to be a vector operator

is that it satisfies the commutation relations [5.71]. It is useful to define the

spherical components of V as

V\ = —7= (Vj. + iVy); Vo .= Vz , V-i = — (Vx — iVy) [A4.45]

The set of three operators V
q (q

= —1, 0, +1) satisfies the commutation

relations (which follow from [5.71])

L7„ V9] = qhV
t

[.7+ , VJ = [(1 - ?)(2 + q)]
l/2hVq+1 [A4.46]

[J-, VJ = [(1 + ?)(2 - q)f
/2hVrl

where V
q
= 0 if q f 0, ±1. The operators V

q
are special cases of irreducible

tensor operators T
q
of rank k, which form a set of (2k +1) operators with q

running over the values —k, —k + 1, ... k — 1, k, and satisfying the

commutation relations

17., T
k

q] = qhTk

q

[J+ , T*\ = [(* - q)(k + q + l)]'
/2hTk

q+l
'

[A4.47]

[J-, T>] = [(k + q)(k - q + l)]
l/2hTk

q^

For such operators, the matrix elements between eigenfunctions ipjm and m

depend on m and m' only through a factor which can be shown to be equal to

the Clebsch-Gordan coefficient (jkmq\j'm '). Thus

(a'j'm'\T
q
\ajm) = ,

*

(jkmq\j'm')(a'j'\\T
k
\\aj ) [A4.48]

where the reduced matrix element (a 'j
'

||
Tk

|j
aj ) is a number depending on aa 'jj

but not on m and m' . This result is called the Wigner-Eckart theorem. It should

be noticed that the appearance of the factor (2j' + 1)
1/" on the right-hand side

of [A4.48] is conventional; it could be absorbed into the reduced matrix

element.

The application of the Wigner-Eckart theorem to a scalar operator if = T®

reproduces the result [A4.44], For vector operators we have Vq = T\. As an

example of a vector operator we can take the total angular momentum, J . Then

definining Jq
by using [A4.45] with J in place of V we have,

(a'j'm'\Jq\ajm)
= ,

1

(j\mq\j'm')(a'j'\\Jq \\aj)
[A4.49]

v2] + 1

Setting q
= 0 and noting that J0 = Jz , we find by using Table A4. 1 that

(a'j'\\J\\aj) = JjU + l)h Saa ' [A4.50]
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It follows from [A4.48] that if V is any vector operator then
,i

(a'j'm'\\\ajm) = C(a'j'm'\J\ajm) [A4.51]

where C is independent of m and m'

.

For the case;' = j, a' = a, C can be

found by writing

(ajm\V J|ajm) = 2 (ajm\V\ajm') {ajm'\J\ajm )
[A4.52]

m'

where we have used the closure property

2 \ajm')(ajm'\ = 1 [A4.53]

m'

Thus

(ajm\\ J|ajm) = C^ (am\]\ajm') • (ajm’\J\ajm)
m'

= C (ajm\J
2\ajm)

= Cj(j + 1 )h
2 [A4.54]

Using [A4.51], we then obtain the useful equation

j(j + \)h
2(ajm'\\\ajm) = {ajm\\ • }\ajm)(ajm'\J\ajm)

= {ajm' |(V • DJIajm) [A4.55]

which relates the expectation values of the components of V to those of the

components of J.



Hydrogenic wave functions

in momentum space

We have seen in Section 2.1 that the wave function in momentum space, <Kp),

is defined as the Fourier transform of the ordinary wave function i/»(r) in

position space. That is,

d>(p) = (2TThT i/2
f e“'p

r/
V(r) dr [A5.1]

The wave function i/^(r) may be deduced from <t>(p) by the inverse Fourier

transform

<Kr) = (277-6)
3/2

e
,p r/

V(p) dp [A5.2]

In what follows we shall use atomic units (see Appendix 11), the unit of length

being a0 and the unit of momentum being p0 - h/a0 . In these units equations

[A5.1] and [A5.2] become simply

<HP) = (2tr)
-3/2 r

i//(r) dr

and

[A5.3J

<Kr) = (2 tt)-
3/2

e,p
r
<6(P) dp

We note that if i>(r) is normalised to unity, i.e.

[A5.4J

|iKr)|
2
dr = 1 [A5.5]

we have from [A5.4]

r r

dr </7*(r)i//(r) = (27r)“
3

dr dp dp'e,(p
^ p Vr

d>*(p’)d,(p) =
1 [A5.6]

J J J
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and since

we see that

(2 ir)- dr e
,(p"p) ' r = S(p - P')

[A5.7]

[A5.8]
dp dp' S(p - p')d>*(p')d>(p)

- 1

Using the definition [2.28] of the Dirac 5-function, this last equation reduces to

|<Kp)|
2 dP = 1

[A5.9]

that the wave function <b(p) is also normalised to unity.

Before using [A5.3] for a direct calculation of hydrogenic wave functions in

momentum spie, it is ins,motive to rewrite the

momentum snace, namely as an equation involving 4>(p) directly. JNegiecung

for the^moment the reduced mass effect, we begin by cohering ane^ron^

mass m = 1 in a.u.) in an arbitrary real potential V(r). The corresponding

time-independent Schrbdinger equation in position space reads

+ V(r) <A(r) = EMf) [A5.10]

y d>(P) + (27r)
3/2

Making use of [A5.4] and introducing the quantity

We assume that E < 0, so that we are considering only the bound states

Sm“yi both Sides by (2„r« =xp(-P ' *) -d integrating over all

space, we find by using [A5.3] that

e'
ip 'rU(r)iKr) dr = E<f>{p) [A5.ll]

V(p-p') = (2 77)
3

we see that [A5.10] reduces to

[£-*1 4>(P)
= “

2

.-i(p-P')-ry(t) dr

V(p- p')d>(p') dP'

[A5.12]

[A5.13]

which is the required Schrbdinger equation in momentum space (in a.u.). We

note that it is an integral equation for <Kp)- _ .

If the potential V(r) is central (i.e. depends only on r - |r|) the potent

t>/ _ _ D
' ) fo momentum space may be simplified by setting q P' p

performing the integral in [A5.12] in spherical polar coordinates, with the po ar
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axis in the direction of the vector q. That is,

V(p - p') = (2tt)-
3

J
drr

2

j

"
d6 sin 9

|
dcj> e*

9rcos eV(r)

= (2tt)“
2

|
drr

2
V(r)

|
dO sin 9 e

,<?rcos e

= (277
-2q)~ l

(
drr sin(^r)T(r) [A5.14]

Thus we see that when V(r) is central the quantity V is real and depends only on

q, i.e. on |p — p'|. It is worth noting that the result [A5.14] may also be

obtained by using the expansion of a plane wave in Legendre polynomials (see

[2.260]), i.e.

e‘
q r = 2 (21+ l>'to)P,(cos 9)

1=0

[A5.15]

so that [A5.12] becomes

V(p ~ p') = (2tt)
2 2 (2l + 1) i

l drr2j,(qr)V(r)
1=0

dd sin 0 Pi(cos 6)

Since

d0 sin 6 cos 9)Pr (cos 9) =
21 + 1

Sw

[A5.16]

[A5.17]

and Pq = 1, we see that all the terms of the sum on the right of [A5.16] vanish,

except the first one (for which 1 = 0). Hence V(p — p') reduces to

V(|p P'|) = (277
2)- 1

drr
2
j0{qr)V{r)

Jo

[A5.18]

which agrees with [A5.14] since j0(qr

)

= sinft/r)/qr.

For a central potential V(r) the Schrodinger equation [A5.10] admits

solutions of the form i//(r) = REj(r)Y[m(6, <t>). Similarly, if we denote by (p, 9p ,

<f>p) the polar coordinates of the momentum p, solutions of the Schrodinger

equation in momentum space [A5.13] exist of the form

<Kp) = pE,i(P)Yim(0py 4>p) [A5.19]

This may be checked directly by returning to the definition [A5.3] of <Kp),

substituting in it ip(r) = REJ(r)Ylm(9, <f>) and using the expansion of a plane
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wave in spherical harmonics (see [2.261]). Explicitly, we have

<Xp)
= (2tt)

3/2
47rX 2 YVmf6p , ^

/' = 0 m'= — r

2 it

drr
2
jr(pr)R.E,i if) d0 sin 6

'

d 4> Ytm.(0, 4>)Ylm(d, <t>)

0

[A5.20]

Using the orthonormality of the spherical harmonics, we see that [A5.20]

reduces to [A5.19], with

Fe,i(P )
_ r

2
jlipfP-E ,t(f

[A5.21]

N, being a normalisation constant. We note that FE, does not depend on the

magnetic quantum number m. The quantity \pFFJ..p)\ is called the momentum

distribution function. The probability that the absolute value of the momentum

lies between p and p + dp (independently of the direction) is given y

\PFeM2 dP and we have

P
2\Fej(P)\

2 dix^Ar- [
A5 -22l

A one-dimensional integral equation for F£,,(p) may readily be obtained from

the Schrodinger equation in momentum space [A5.13] by using LA5.19J

expanding U(|p - p'|) in Legendre polynomials. That is,

vx|p - P'l) = X T,(p,p')Pi(x)

1=0

[A5.23]

with x = p ‘ p '/pp' and

UP, p') =
21 + 1

Pi(x)V(\p - P'l) dx [A5.24]

The result is

L.- £
2

Fe,i(P)
= “

[
P'

2
KiiP, P’)Fe,i(P') dp' [A5.25]

where

Kfp, p’) = 2ir

+ i

-l
Vi[p

2 + P'
2 ~ 2pp'x]

1/2)P;
(x) dx [A5.26]

is a symmetric kernel in p and p'
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TfllTT|7TTTT

Before we examine the particular case of the Coulomb potential, it is

interesting to look at a screened Coulomb interaction which we write (in a.u.) as

a > 0 [A5.27]

Using [A5.14], the corresponding potential V in momentum space is easily

obtained,

V(q) =
Z 1

2-7T
2

q
2 + a 2

[A5.28]

where q = |p — p'|. The Coulomb potential V(r) = —Z/r (in a.u.) may be

considered as a limiting case of [A5.27] for which a —* 0. Letting a tend to zero

in [A5.28] we obtain

V(q) =
Z 1

2tt
2

q
2

[A5.29]

We note that this expression is singular at q = 0. By comparing [A5.28] and

[A5.29] we see that this singularity may be traced to the ‘infinite range’ of the

Coulomb potential, which in turn is due to the fact that the photon has zero

mass.

Using the expression [A5.29] for V(q), the kernel Kt(p, p') given by [A5.26]

becomes

Ki(P,P') = ~ 1 1

TT 2pp' J

Z 1

7T 2pp
vQ

-i (P2+ P'
2
)/2PP'

P
2

— x
P,(x) dx

-2 + p' 2

2PP'
[A5.30J

where Qt
is the Legendre function of the second kind, such that

Qi
r
+1

i

P;(x) dx
-I Z - X

[A5.31
]

The first few functions Q/C2) are given by

1 /* + 1\

qm - - iog(^n)

z (z + l\

=
r
)- 1

1 ,
/z + 1\ 3a , . , ...

Q2C2) =
^

(3z - 1) 1°g(^rT )
- y , etc. [A5.32J

Substituting [A5.30] in [A5.25], we then obtain for the case of the Coulomb
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potential the one-dimensional integral equation

— - E WeM = — P'Qt
TTP JO

P
2 + P'

2

2pp'
FEj(P') dp' [A5.33]

This equation has been solved by Fock. For E < 0 it has discrete eigenvalues

En which are of course identical to those which we obtained in Chapter 3 by

solving the Schrodinger equation in position space. By analogy with the radial

hydrogenic wave functions R„,(r), we shall denote the ‘radial’ hydrogemc

momentum space wave functions by F„i(p) instead of FHj(p)-

The ‘radial’ functions F„,(p), corresponding to the hydrogen atom, obtained

either by performing directly the Fourier transformation (see [A5.3J and

[A5.21]) or by solving the radial momentum space equation [A5.33] and

normalised according to [A5.22], are given (in a.u.) by

FJ.P) =
2 (n - / - 1)!

7r (n + /)!

1/2

m
2
2
2/+2

/!

n
l

p
l

w+i
n-l

~

0n
2
p
2 + 1 )'

.1+2

n
2
p
2

n
2
p
2 +

[A5.34]

where C%(a) denotes the Gegenbauer polynomial, defined by the relation

(1 - 2xs + s
2r“ = E C%(x)s

N
, |«|

< 1 [A5.35]

iV=0

For other hydrogenic atoms corresponding to a nucleus of charge Z the

expressions for Fnl{p) are identical, provided that p is expressed in units of Zpo-

The reduced mass effect is also easily taken into account by using ‘reduced

units such that p0 = h/a0 is replaced by /y = h/a^, with ay = a<£m/p) and p.

being the reduced mass.

Let us write down the first few radial momentum space wave functions

explicitly. Using the fact that

C0“(x) = 1,

C“(x) = 2ax,

C2
a
(x) = 2a(a + l)x

2 - a [A5.36J

we find that

2
5/2

1

Fw(p) '7v(P2 + D2

32 4p
2 - 1FM '

(4p
2 + D

3
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F2 i(P)
=

128

FM ' W«

V377 (4p
2 + l)

3

108^/2 81p
4 - 30p

2 + 1

F31(p) =

FM =

(9p
2 + l)

4

864 p(9p
2 -

1)

(9

p

2 + l)
4

5184 P
2

7157T (9P
2 + l)

4
[A5.37]

We note that in contrast with the position space hydrogenic radial functions

Rnl(r), which fall off exponentially at large r, the radial momentum space wave

functions Fn!(p) behave like inverse powers of p for large p. In particular, we see

that for s-states (/ = 0) they decrease like

p

-4
at large p, for p-states (/ = 1) they

fall off like p
-5

,
etc. More generally, since the argument of the Gegenbauer

polynomial in [A5.34] is just + 1 when p —» °°, we see that F„i(p) is proportional

to
p~'li4) when p is large.

When p tends to zero the argument of the Gegenbauer polynomial in [A5.34]

is —1 and we may use the fact that

C#(- 1) = (-1)'VC£(1)

= (-D

to deduce that for s states (/ = 0)

V (2tt + AT - 1)!

(2a - 1)!2V!

'2 \'/2

FnO(0) = (-ir‘4(- n
5/2

[A5.38]

[A5.39]

For If 0 we see from [A5.34] that Fnl vanishes in the limit p 0.

We recall that in all the expressions of Fni(p) written above the variable p is

expressed in units ofZp0 . If we want to use other units, we should simply make

the substitution p^>p/Zp0 in [A5.34] and recall that the normalisation

condition [A5.22] introduces an extra factor of (Zpt)
)~ i/2

in Fnl(p). For

example, the wave function Fw{p) then becomes

F 1°(P)
=
~JZ

(Z^o)V2
(p2 + Z2

p
2
o)

2
[A5 ' 40]

Wave functions in momentum space are particularly useful to evaluate matrix

elements involving various functions of p. For example, let us evaluate the

average value of p
2 when the hydrogenic atom is in the ground state. We then

have

(P
2
) ioo =

jo
P
2
\pFio(pf dp

= (Zp0)
2 = (Zh/a0)

2 [A5.41]
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where we have used [A5.40]. For a general hydrogenic state 4>nlm{p)
-

Fni(p)Ylm(6p , (bP ) one finds from [A5.34] that

(P\im = (Zpo/n? = (Zh/nao)
2 [A5.42]

In order to include the reduced mass effect we just have to replace a0 by ap -

a0(m/p.) = 4TT£0h
2
/pLe

2
. The average value of the kinetic energy operator

T = P
2
/2/jl is therefore given by

{T)nlm = (Zh/n<f 3 - U -

e
2 Z 2

(47re0)a^ 2

n

2
[A5.43]

in agreement with the result [3.76] of Chapter 3 and with the virial theorem

proved in Section 3.4.
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The Hamiltonian for a charged particle

in an electromagnetic field

We start from Lagrange’s equations of motion (Goldstein, 1962)

d_

dt

dL— = 0 i= 1 , 2 , . . .

dqi
[A6.1]

where q, are generalised coordinates and L is the Lagrangian function. For a

conservative system, L = T — V, where T is the kinetic energy and V is the

potential energy. Since the electromagnetic field is not conservative, a gener-

alisation is required. We have to find L such that [A6. 1] provides the equation of

motion of .a particle of mass m, charge q and velocity v in an electromagnetic

field specified by the electric field *(r, t) and the magnetic field 96 (r, t) and
subject to the Lorentz force

F = q{% + v x 96)

d\
- V<t> + v x (V x A)

dt
[A6.2J

where </>(r, t) and A(r, t) are respectively the scalar and vector electromagnetic

potentials.

This can be achieved if we take L to be

1

L = — mv~ - qif> + qv A [A6.3]

and work in a Cartesian system of coordinates, so that q\ = x, q2 = y and

qi - z. It is then easily shown that the equation [A6.1] reduces to the equation

of motion

mr = F [A6.4J

where the force F is given by [A6.2],

--The generalised momenta are defined as

dL
P, = tt [A6.5J

dq
t
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Using the Lagrangian L given by [A6.3], one finds that

^
' ^’ Pl

^ ^ “y

Pi = pz,
where px , Py and pz are the components of the vector p, give y

p = mv + qA [A6 ‘6]

The Hamiltonian H is defined by

h = i p* - r tA6J1

and in terms of p, A and d> we have

H = t— (p
— ?A)

2 + q<f>

2m
[A6.8]
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7 The Dirac equation and relativistic

corrections to the Schrodinger equation

In our discussion of atomic structure and of the interaction of atoms with

external electromagnetic fields, we have introduced various interactions which

are approximations to a complete relativistic theory and which could not be

derived, without additional assumptions, from the non-relativistic Schrodinger

equation for an atom interacting with an electromagnetic field. In this appendix,

we shall show how the spin-dependent interactions as well as other terms in the

Hamiltonian can be derived from Dirac’s relativistic theory of the electron.

Although the theory we shall discuss provides a highly accurate description of

atomic structure, it is still an approximation to a fully self-consistent relativistic

theory, because it does not allow for interactions in which the number of

particles in a system changes. These interactions are characteristic of relativistic

field theory, and are needed to provide a description of processes such as those

in which photons turn into electron-positron pairs, or the reverse process, in

which electron-positron pairs annihilate into photons.

The Schrodinger relativistic equation or Klein-Gordon equation

At the time when he was developing his non-relativistic wave equation,

Schrodinger also proposed a relativistic generalisation of it, which is known as

the Schrodinger relativistic equation or Klein-Gordon equation.

Free particle

We begin by considering the case of a free particle. The relativistic relationship

between the energy E and momentum p of a free particle of rest mass m is

E 2 = m2
c
4 + p

2
c
2 [A7.1J

Adopting for E and p the substitutions (see [2.11])

E—>ih — , p —* —ihV [A7.2]
dt

and operating on a wave function T(r, /), we obtain the Schrodinger relativistic
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equation (or Klein-Gordon equation) for a free particle, namely

_ h 2 tl = - h
2
c
2V2V [A7.3]

dt
2

It is worth noting that this is a second order differential equation with respect to

'bifX wave function ¥ is taken to have a single component, this equation

deLfbes aL p”
r,lde „,th no interna, degrees of freedom, and rs . suttable

equation for the description of a free particle of spin-zero.

Charged particle in an electromagnetic field

If the spinless particle has an electric charge q, and it is placed in an external

electromagnetic field described by a vector potential A and a scalar potential

we can make the replacements (see Appendix 6)

[A7.4]
p p - qA, E^> E - q<t>

so that [A7.1] is replaced by

(£ - qd>)
2 = tn

2
c
4 + f2(P

- [A7.5]

Using the substitutions [A7.2], we then obtain the Klein-Gordon equation for a

spinless particle of charge q in an electromagnetic held,

lh ± - = mz
c
A'¥ + c\-ihV - q\n

dt I

[A7.6]

In order to investigate the non-relativistic limit of this equation, we introduce

the new function X(r, t) which is related to ¥ bv

X(r, t) = ¥(r, t)e‘
?
imc 2t/h [A7.7]

and satisfies the equation

d
2X dX

h
2 -^-4- + 2ih(mc

2 - q<i>)—
dt

2 dt
q<t>(2mc

2 - q<t>) + iM
d<t>

Ht
x

= c\-h2V2 + jihqA V + ihq(V A) + g
2A2

JX [A7.8]

In the limit in which \q4>\<mc
2

,
\(h/2mc

2
)d(])/ dr|

«

\4>\ and\(h
2/2mc 2

)d X/dt
|

<

\hdX/dt\, this equation reduces to the non-relativistic Schrodinger equation or a

spinless particle in an electromagnetic field, namely

ih
dX

It
-i-C-iftV - qA? + <l<t>

2m
X

This is the equation we used in Chapter 4 (see [4.17]) with q

q<f>
= V(r) = - Ze 2

/(4ire0')r.

[A7.9]

-e and
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minimi

The Dirac equation

To describe a particle of spin-1/2, we require a wave function having two

components which allow for the two spin states, the a-component Sz of the spin

angular momentum taking on the values msh, where m
s
= ±1/2. However,

since all spin- 1/2 particles are associated with particles of the same mass and

spin, but of opposite charge, known as antiparticles, we expect to need a

four-component wave function. This was unknown when Dirac put forward his

equation, and it was one of the great achievements of theoretical physics that

Dirac was able to predict the existence of the positron, the anti-particle of the

electron, from his theory.

Dirac started by looking for a wave equation of the form

ih — T = H^V [A7.10]
dt

which like the (non-relativistic) Schrodinger equation [2.46] is linear in d/dt,

and not quadratic like the Klein—Gordon equation. Since in a relativistic theory

the spatial [1] coordinates (xi , x2 , x3) must enter on the same footing as x0
= ct,

the equation [A7.10] - and hence the Hamiltonian H -
is expected to be linear

in the space derivatives d/dxk (k = 1,2, 3). The wave function in [A7.10] is

assumed to contain N components 'If
,

(i = 1,2,... N) and hence may be

written in the form of a column matrix as

1*1
\

*2

WJ
[A7.ll]

Free particle

Let us first consider the case of a free particle. The Hamiltonian must then be

independent of r and t (since there are no forces) and the simplest candidate,

linear in the momentum and mass terms, may be written in the form

H = ca •

p + (3mc
2

[A7.12J

where p = -ihV according to the correspondence rule [A7.2]. The three

components (a
1

, a
2
, a

3
) of a as well as the quantity (5 are independent of r, f, p

and E, but need not commute with each other.

Substituting [A7.12] into [A7.10] and remembering that E = ihd/dl, we

obtain the Dirac wave equation

(£ - ca p - = 0 [A7.13]

[1] It is convenient to denote the Cartesian coordinates of a point by (x,, X2 , x,) in this appendix,

rather than by (x, y, z) which we have used elsewhere.
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or

ih — T = -ihca • VT + )3mc
2^

More explicitly, we may write [A7.14] as

ih - f, = -i«c 2 i 4^- % + 2
dt " k=\ dxk y=i

t = 1, 2, ... TV

[A7.14]

[A7.15]

where «»•, a2
, a| and j% form N x N matrices. The equations [A7.15] are

a set of TV coupled equations for the TV components T, of T.

We require the Hamiltonian H to be Hermitian, H = H ,
and for this reason

the matrices a 1

, a2
, a3 and (3 must also be Hermitian

/3 = j
8 t [A7.16]a = a 1

Further conditions to be satisfied by a and /3 follow from the requirement

that each component of must separately satisfy the Klein-Gordon equation

[A7.3], which we rewrite as

\E2 - p
2
c
2 - mVj'F = 0 [A7.17]

Multiplying [A7.13] on the left by 'the “operator [E + ca • p + P me 2
], we

obtain the second order equation

E 2 - c
: 2 (a

k
)
2
p
2
k + ^(akal + alak

)PkPl

*=i k ‘

(k<!)

- me 2 (a*/3 + j3a
k
)pk

*=i

- ot
2
c
4
/3
2 T = 0 [A7.18]

where pk (k = 1, 2, 3) denote the Cartesian components of p. Comparing

[A7.18] with [A7.17], we see that each component T, satisfies the Klein-

Gordon equation provided that

(a
1

)
2 = (a

2
)
2 = («

3
)
2 = P

2 =

[a
1

, a
2
]+ = [a

2
,
«3

]+ = [a
3

>
“*]+ = [A7.19]

[a
1

, fi\+ = [a
2

, /3]+ = [«
3

,
= 0

where [A, B]+ denotes the anti-commutator

[A, B]+ = AB + BA. [A7.20]

It can be shown that the minimum dimensions for the matrices a1

, a
2
, a and

8 required to satisfy the conditions [A7.16] and [A7.19] are 4 x 4 Correspond-

ingly, the wave function ’I' must have at least four components (N - 4) and in

view of our expectation that four components are required to accommodate a
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description of a particle and antiparticle each of spin 1/2, we shall assume that

N = A. The solution of equations [A7.16] and [A7.19] is not unique, but it can

be shown that any set of matrices satisfying these conditions will provide the

same physical results. A representation of the matrices a\ a2
,
a3 and f3 which is

particularly useful for studying the non-relativistic limit of the Dirac equation is

given by

a =
(0 o-\ (I °\

U o “-[o -/)
[A7.21]

where / is the unit two-by-two matrix while eri, cr2 and rji are t^ie three Pauli

two-by-two spin matrices, namely (see [2.216])

cr
i
=

Using the properties [2.217] of <r, the relations

shown to be satisfied.

[A7.16] and

[A7.22]

[A7.19] are easily

Charged particle in an electromagnetic field

To obtain the Dirac equation for a particle of charge q in an electromagnetic

field (A, 4>) we make the usual replacements [A7.4] in [A7.13] and obtain

[(£ - q<j>)
- ca-(p - qA) - (3me

2
]'!' = 0 [A7.23]

or

ifi
A. = \-ihca V - cqa A + q4> + /3mc

2
]'ir [A7.24]

dt

Upon comparison with [A7.10], we see that the Dirac Hamiltonian in the

presence of an external electromagnetic field (A, <j>) is given by

H = ca (p - qA) + q<i> + fBmc
2 [A7.25]

Adjoint equation. Continuity equation. Probability and

current densities

We have seen above that the wave function T may be considered as a column

matrix of the form [A7.ll], with four components %(i = 1, ... 4). We can

define T+ to be a row matrix with components T* ,
namely

= 'j'J) [A7.26]

Using [A7.24], [A7.25] and the fact that a, (3 and p are Hermitian, we see that

satisfies the adjoint equation

- ih — 'P+ = VfH
= (ihcT - c?A)'P+ • a + q + mc^fi [A7.27]
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The quantity

p(r, t) = 4''+4' = 2 l^il
2 [A7.28]

t=i

is clearly positive and can be interpreted as a position probability density, in the

same way that |^|
2

is the position probability density for the non-relativistic

Schrodinger equation [2.46]. By multiplying [A7.24] on the left by 4' and

[A7.27] on the right by 'P, and taking the difference of the two results, it is

found that

— + V • (f+cat) = 0 [A7.29]

dt

If we interpret the vector

j(r, t) = TVa,4' [A7.30]

as a probability current density, the equation [A7.29] takes the form of a

continuity equation,

^ + V •

j
= 0 [A7.31]

dt

and we see that cat can be interpreted as a velocity operator.

Stationary solutions

Let us assume that A and <p are time-independent. We may then look for

stationary solutions of the Dirac equation which we write as

^(r, t) = x(*)e~'
Et/h [A7.32]

From [A7.24] and [A7.32] we obtain the time-independent equation

Ex(t) = [-ihca • V - cqa A + q<t> + f3mc
2
]Xir) [A7.33]

The four-component spinor ,y(r) can be expressed in terms of two 2-

component spinors ipit) and 17(f) by writing

Using the representation [A7.21] of the matrices a and /3, the 2-component

spinors ifi and 17 are found to satisfy the two coupled equations

Eip(r) = ci-ihV - qA) ‘ <nj(r) + (?d> + me2
)<p(r) JA7.35a]

E-nit) = ci-ihV - qA) • tri^(r) + iqd>
~ mc 2

)rj(r) [A7.35b]

These equations will be used below to study the non-relativistic limit of the

Dirac equation.
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Central field. Spin angular momentum. Total angular momentum

Consider a Dirac particle in a central field (such that A = 0 and d> is spherically

symmetric). Let V(r) = q4>(r) be the corresponding potential energy. The Dirac

Hamiltonian [A7.25] is then

H = col • p + pmc2 + V(r) [A7.36]

We saw in Chapter 2 that in the non-relativistic Schrodinger theory every

component of the orbital angular momentum L = r x p, as well as L ,

commutes with the (non-relativistic) Hamiltonian H = p
2/2m + V(r) of a

spinless particle in a central field. As a result, simultaneous eigenstates of the

operators H, L2 and Lz exist in Schrodinger’s theory, with eigenvalues given

respectively by E, 1(1 + 1 )h
2 and mh. In Dirac’s theory, however, neither the

components of L, nor L2
,
commute with the Dirac Hamiltonian [A7.36].

Instead, one can readily show that

[H, l] = ihca x p [A7.37]

Let us now consider the operator

S = |
2 [A7.38]

where S = (S
1

, X
2

, X
3
), the X k being 4x4 matrices given by

0

a
[A7.39]

It follows from the properties [2.217] of the Pauli spin matrices that the three

Cartesian components of S satisfy the commutation relations [2.194]. Moreover,

for any state 'P,

S2^ = s (s + l)ft
2T, s = i [A7.40]

and the two possible eigenvalues of S,(i = 1, 2, 3) are ±fi/2. We shall therefore

refer to the operator [A7.38] as the spin angular momentum operator. We remark

that any component of S commutes with any component of L. Moreover, using

[2.217] we have

[H, S] = -iheat x p [A7.41]

where H is the Dirac Hamiltonian [A7.36]

We can now define a total angular momentum operator as the sum of the orbital

and spin angular momentum operators,

J = L + S [A7.42J

We note that the three Cartesian components of J satisfy the commutation

relations [2.223]. In addition, using the results [A7.37] and [A7.41], we see that

every component of J commutes with the Dirac Hamiltonian H given by

[A7.36]. Making use of [2.120c], we also remark that J
2 commutes with H

.

We
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shall denote the eigenvalues of J
2 by j(J + Dh

2 and those of bym£

Thus in Dirac’s theory, simultaneous eigenstates of the Hamiltonian [A7.36J

and of the operators J
2 andJ. can be found, with eigenvalues given respectively

by E, j(j + 1)h
2 and m

;
h .

The non-relativistic limit

Let us return to the system of equations [A7.35] for stationary states. In order to

investigate its non-relativistic limit, we write

E = E' + me 2 [A7.43]

Substituting [A7.43] into [A7.35], we find that

E'ip(r) = c(-ihV - qA) • o-rj(r) + r) [A7.44a]

(£' + 2mc 2
)v(r) = - qA) • «r^f) + #*?(*) [A7.44b]

This pair of equations is still exact, but in the non-relativistic limit both |£
|

and \qd>\ are small in comparison with me 2
. The equation [A7.44b] can then be

solved approximately to give

7j(r)
= — (-ihV - qA) (rtp(r) [A7.45]

2me

and we see that tj is smaller than ip by a factor of order p/mc (i.e. v/e, where v is

the magnitude of the velocity). The two-component spinors tfr and r, arc known

in this case as the large and small components, respectively.

The Pauli equation

Substituting [A7.45] into [A7.44a], we find that

E'Mr) =— U-ihV - qA) * w]
2
i//(r) + q<t»l>ix) [A7.46]

2 2m

The identity [2.218] - where A and B are vector operators whose components

commute with those of a- can be used to reduce the first term on the right hand

side of [A7.46]. That is,

— [(-ihV - qA) afi/j = - qA)
2
<p

2m

-— a- • (V x A)ip [A7.47]
2m

Now V x A = where a is the magnetic field, so that [A7.46] becomes

E'iKr) = (-ihV - qA)2 - -£ (a ») + qd>

2m 2m
iJj(t) [A7 .48]
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This equation is known as the Pauli equation. It differs from the non-

relativistic form of the Klein-Gordon equation for spinless particles in predict-

ing an interaction between the external magnetic field 98 and the spin S = ha/2

of the particle [2]. We emphasize that the Pauli equation [A7.48] is an equation

for a two-component spinor wave function ip.

To apply the Pauli equation to an electron, we put q
= —e, where e is the

magnitude of the electronic charge. We then have

£>(r)
1 cfi— (-ihV- + eA)

2 +— (a 96) - e<t>

2m 2m
<A(r) [A7.49]

The term eh(a • 98)/2m on the right of this equation corresponds to an

interaction - Jl
s

• 96 between the magnetic field 96 and an intrinsic magnetic

moment Ji
s
of the electron, due to its spin, with

Jl
s
= ~ixBa = -g

sfiBS/h = -g
s
— S [A7.50]

Here

[A7.51]

is the Bohr magneton and the spin gyromagnetic ratio g, has the valtie gs
= 2.

We see that the Dirac theory not only predicts the existence of an intrinsic

magnetic moment for the electron, but it also gives essentially its correct value

Jl
s
= ~(e/m)S (apart from very small corrections coming from quantum

electrodynamics). The Pauli equation is used in Chapter 5 to analyse the

Zeeman effect for one-electron atoms.

Higher order corrections for one-electron atoms and ions

We have shown above that to lowest order in v/c, the Dirac theory is equivalent

to the two-component Pauli theory. We shall now investigate higher order

corrections for the case of an electron in the Coulomb field of a nucleus, so that

A = 0 and q<f>
= ~ed> = V(r) = -Ze2

/(4Tre0)r. The Dirac equation can be

solved exactly in that case [see for example Messiah (1968) or Schiff (1968)] but

here we shall only display the corrections of order (v/c)
2 which are needed in our

discussion of fine structure effects in Chapter 5.

Let us return to the system of equations [A7.44]. Solving [A7.44b] for >7(r),

we obtain

1

E' + 2me 2 - V(r)
c(—iha • V)ip(r) [A7.52]

[2] We recall that the spin operator S = hi/

2

introduced in [A7.38] acts on four-component Dirac

wave functions. In order to simplify the notation we also denote by S the spin operator htr/2

acting on two-component Pauli wave functions.
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Substituting in [A7.44a], we find

£>(r) = c\iha • V) —
£' + 2mc 2 - V(r)

(ifto- • V)^(r) + V(r)ip(r)

[A7.53]

Expanding [£' + 2mc 2 - V(r)]
-1

in powers of [£' - V(r)]/2mc
2
,
we have to

lowest order

[E‘ + 2me 2 - V(r)]
1 =

so that [A7.53] becomes

1

2me 2
1
- E' - V(r)

2me 1
[A7.54]

h
2

E = 2m
1
- E' - V(r)

Imc1
{a • V)2

«A(r)

4m2
c

.
2.2 [a

• VV(r)][£r Vi/f(r)] + V(r)<Kr) [A7.55]

Now, using the identity [2.218], we have O • V)2 - V2 and

(<r W)(tr • Vifj) = (VE) • (V</0>icr • [(VV) X (V./0] [A7.56]

Moreover, since V(r) is spherically symmetric,

and

dV
W(r) = ^ r

dV di/i

(W)•(**)=*"£

2 1 dV _

to- • [(W) X (V^r)]

[A7.57a]

[A7.57b]

[A7.57c]

where we have used the fact that L = r x p = r x (-ihV) and S ha/2.

Collecting the various terms, we obtain

£'<Kr) =
h
2 _ h2 E' - V(r) ^ 1 i^LS
V2 + V(r) + 2mc 2

V +
Zm2

c
2

r dr
2m

h2 dV 9

4mz
c
2

dr dr
<Kr)

[A7.58]

Since p = -iftV and £' - V(r) - p
2/2m, the third term on the right hand side

can be written as

h2 E' - V(r) „2 = P
4

2m 2me 2 8m3
c
2

[A7.59]
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and is a relativistic correction (of order v 2
/c

2
) to the kinetic energy term -fi

2V 2
/

2m = p
2/2m. The fourth term is the spin-orbit interaction which is readily shown

to be of order v
2
/c

2 times the potential energy V(r). The last term on the

right-hand side of [A7.58] is a relativistic correction (or order v
2
/c

2
) to the

potential energy which gives rise to some difficulty because it is non-Hermitian.

The origin of the trouble is that if the original Dirac four-component wave

function is normalised to unity, namely

(t//(/, + 17^17) dr = 1 [A7.60]

then the two-component spinor ip only satisfies the normalisation condition

approximately. Darwin has shown that the normalisation of <p can be obtained

correctly by replacing the last term in [A7.58] by the symmetrical combination

(which is Hermitian)

h2 dV(r) d h2 d.V(r) d h2

Sm2
c

.2,2
4m2

c
2

dr dr )
'

\ Am2
c
2

dr dr

For a one-electron atom (ion) F(r) = —Ze 1
/(4ireo)r and we have

V2
U(r) = S(r)

V2F(r) [A7.61]

[A7.62]

so that the Darwin term [A7.61] is then given by

8w2
c
2
V2

U(r) =
7rh

2
( Ze

2mz
c
2 \47T£0

S(r) [A7.63]

and we see that it only contributes to the energy of the states with 1 = 0.

Using the above results, we may write down the final form of the wave

equation for one-electron atoms (ions), with relativistic corrections through

order (v
2
/c

2
). That is,

HiP(r) = E'iP(r) [A7.64J

where

V(r)
P
4

,

1 1 ^ L • S
8mi

c
2 2m2

c
2

r dr

7rh
2 (Ze 2

2

m

2
c
2

\ 4 77t'o

5(r)

[A7.65J

and V(r)
= -Ze2

/(47re0>- It is the Hamiltonian [A7.65] which is the starting

point of our discussion of the fine structure of hydrogenic atoms in Chapter 5.
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Q
(j Separation of the centre of mass

coordinates for an A/-electron atom

Let us consider an atom or ion containing a nucleus of massM and charge Z* and
Let us consiuei <ui <*>"

. Wp . t bv r tbe coordinates of the

N electrons of mass m and charge ( )• R R those of the

ssits:i "
interactions, the non-relati»istic Hamiltonian operator of this system given y

H _ j + y [A8.1]

where the kinetic energy operator T reads

r- ft
2

v 2 +y]-— vi
'l

[A8 - 2i

1 - m v
"- ft ' 2m "7

and the potential energy V is the sum of the Coulomb interactions between the

(^^n“r^tion of the centre of mass, we change our

coordinates from (R0 , Rh- *n) f° (R > r“ ' ' ' r
‘v) wherC

R = (MR0 + mRi + ' '
* ™Rfv)K M + Nm K

is the coordinate of the centre of mass and

r = R, - Ro, t = 1, 2, ... N [A8.4]

are the relative coordinates of the electrons with respect to the nucleus. It is

_ 1 1 r » I~1 A ~\ -

and

Hence

Vi
M

M + Nm

M ^ Vr
[A8.5]

M + Nm 1=1

m
Vp + v [A8.6]

M + Nm

2M y vR vr
+ (i V r

,)

2

[A8.7]

* M + Nm h
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!S

1P

and

Vi =
M + Nm Vi +

2m

M + Nm
V* • Vr + V* [A8.8]

Substituting the expressions [A8.7] and [A8.8] in [A8.2], we find that the

kinetic energy operator becomes in the new coordinates

h2
V2
vRT =

2(M + Nm)

h
2 N h

2

T- 2 -
-17 2v

2fl ; 1
Vf

J ;.y

[A8.9]

where

mM
m + M [A8.10]

is the reduced mass of the electron with respect to the nucleus. The Hamiltonian

[A8.1] may therefore be written as

H = -Vi
2(Af + Nm)

+ V(r 1? r2 , iv)

N a 2

2/^ j
— l

Al
t>y

[A8.ll]

The only term involving the coordinate R in [A8.ll] is the first one, which

represents the kinetic energy operator of the centre of mass. The second term

represents the sum of the kinetic energy operators of the N electrons, each of

them having their mass m replaced by the reduced mass /x because of the motion

of the nucleus. The nuclear motion is also responsible for the existence of the

third term, which is often called the mass polarisation term. We note that this

term is only present if N 5 2. Finally, the potential energy term V is readily

expressed in terms of the relative coordinates as

V(r t , r2 , . • tn) -
N

2
Ze2

(47re0>{ (47re0K
[A8.12]

with r,y = |r,-
— r

; |.

The time-independent Schrodinger equation for the spatial part of the wave

function corresponding to the total ((N + 1) particle) system reads

Hijjlot(R, rj, r2 , . . , r^) = Etot (l/tot(R, ri, r2 j
• • >

[A8.13]

where the Hamiltonian H is given by [A8.1 1] and Etot is the total energy of the

system. Since H is made up of a term involving only the centre of mass

coordinate R and other terms which involve only the relative coordinates (r,

,

r2 , . . . ,
rlV ), the Schrodinger equation [A8.13] possesses a complete set of

eigensolutions of the form

<Atot(R, r, , r2 , . . . , rN )
= f7(R)iKr,, t2 , ... ,rN ) [A8.14]

where the functions t/(R) and i/'(r
1
,r2 ,

• • , r^) satisfy respectively the
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time-independent Schrodinger equations

h
2

2(M + Nm)
V2
r U(R) = Ecm U(R)

and

t= 1 i>7

= £ i//(ri ,
r2 , . • •

[A8.15]

«A(r t 5 r2 5 • ' • Tn)

[A8.16]

with

Etot = -Ecm + E [A8.17]

Equation [A8. 15] shows that the centre of mass moves as a free particle having

a mass (Af + Nm) equal to the total mass of the system and a kinetic energy

Ecm- On the other hand, equation [A8.16] describes the relative motion, which

is the problem of physical interest in the study of atomic structure.
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Evaluation of two-centre integrals

The integrals required in the discussion of the hydrogen molecular ion can all be

obtained from the basic integral

3 =
e
-prAe

~qr B

dr
rArB

[A9.1]

where r, rA and rB are defined in Fig. 9.8.

This integral is most easily evaluated by introducing confocal elliptic

coordinates defined by (see [9.59])

€ =
^ (rA + rB), 1 « € =£ oo

T7 =
-^

(rA - rB ),
— 1 77 1

LA9.2]

and <j), the azimuthal angle about the Z axis. We recall that the quantity R which

appears in [A9.2] is the internuclear separation. The volume element dr,

expressed in terms of the confocal elliptic coordinates (£, 17 ,
is given by

d3

dr = — (£
2 — T7

2
) d£ di7 dd> IA9.3|

8

so that

'00 r + i f2-7r

dt dr, d <f>
e-af

- b "

1 J-i Jo

[A9.4|

a = —{p + q )

R
b = —{p - q)

[A9.5J
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The integral [A9.4] is now elementary and is given by

J = ^e V - t~
b
)

ab

477 1

2 ^ (.t~
qR - e“

pR
)

[A9.6]

Rp A - q
A

The other relevant integrals are obtained by differentiating the above result

with respect to p and q. That is,

K =
rA

4it I
R

dr = - —3
dq

and

L =

R I p
2 - q

2

e
-prA

e
— <?>-b jr = K

dp

-qR- +
2q

2n2
(p

- r>
(e

PR _ e-9«)

87T
/?(pe + qe

R(p2 -
<7

2
)

2

In the particular case p = q, we have

277
7 = — e~fR

P

77

-**) + 2

4^-
2
(e~ p

* - e «*)

P
2 - q

2

and

K = -j (1 + pi?)e“ p*

P

L = (l +pA +

[A9.7]

[A9.8]

[A9.9]

[A9.10]

[A9.ll]

\
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Solutions to selected problems

CHAPTER 1

1.1 (a) v = 4.55 x 10
7 m s

_1

(b) e/m = 1.65 x 10
11 C kg *.

1.3 The value of Amax is obtained by solving the equation dp(A)/dA = 0,

where p(A) is given by [1.30]. Setting x = hc/AkT, it is found that the

maximum of p(A) occurs at a value x0 of x such that x0 = 5(1 - e~*°).

This equation is conveniently solved by writing x0 = 5 - e, so that e =*

(e
5
/5 - l)"

1 = 0.03486 and x0 = 4.965. Thus Amax = hc/{4.965*), and

from the values of h, c and k given in Appendix 11 one finds b =

2.898 x 10' 3 mK.

1.4
PtOt p(A) dA = 8 rrhc K~\thc/xkT - l)

-1
dA

= 8 tThc(kT/hc)
4

x
3
(e

x -
1)

1 dx

where we have written x = hc/AkT. Thus, using the result

we get

x 3
(e

x -
1)

1 dx = 7r
4
/15,

.o

Pto, = aT4
,

_ 8tt
5

k
4

~
l5"^V

1.5 (a) A, = 5391 A
(b) Maximum kinetic energy = 3.90 eV; stopping voltage

V0 = 3.90 V.

1.7 (a) AA = A c (1 - cos 30°) = 0.00325 A
(b) 4>

= 15°

(c) T2 = 80 eV.

1.9 E
{
= 7.6 GeV.
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1.10

1.11

1.12

1.15

1.18

(a) The maximum momentum transferred to the atomic electron (of

mass m) is Ap = m(2v) where v = 2.2 x 10
7 ms 1

is the velocity of

the a particle. Thus Ap = 4.0 x 10
23 kg ms '.

(b) 0max = Ap/p = m(2v)/Mav = 2.7 10“ 4
radians.

(a) From [1.59] we have r0 = 2.3 x 10
14 m.

(b) From [A 1.25] and [A 1.30] 0 = 2 cot 16.5°.

Using [1.59], departures from Rutherford scattering occur if the CM

energy of the a particle is larger than 16.7 MeV, i.e. if its laboratory

energy E > 17.8 MeV.

AA = 1.8 A.

P2Pi = 2P lPz = 2\MZ \

d»,L(L/2 + l)

Mv 2

d®z L(L/2 + Q
~ 2^b

dz 3kT
0.078 m.

CHAPTER 2

2.1 From [2.13]

J

'po+ y

e
ipxX/h dpx

po~y

_ J±Y 2

C
sin(yx//t) ^x/h

\27r / x

Using the result

sin
2
y

dy rr.

we find C = 1 /JTy. The function \<l>(x')\ has a maximum at x - 0 and falls

to zero at x = ±irh/y. Taking \x = 2 irfi/y, and Ap x = 2y we find Ax

Ah x = 477^ so that Ax Ap x > h.
.

2.2 From the uncertainty principle Apsft/Ar. Making the assumption

Ap - h/Ar = h/r, we obtain

h
2

1

E ~
2m r

2

1

\4iT£o r

)

The radius at which E is a minimum is given by the condition dE/dr = 0,

from which we find

r =
(477-e0)fi

2

_
me

a0 .
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The corresponding lowest value is

E0 =
4

e m
(4Tre0Y2h

l
-13.6 eV.

It is interesting, but not significant, that the particular choice Ar = r

and Ap = p, together with the assumption Ar Ap = h, gives the exact

value of E0 . The correct order of magnitude would have been obtained

with any reasonable choice for Ar and Ap, with Ar Ap ^ h.

2.5 From [2.56] ifi(d/dt)<r> = <[r, H]). We take each of the Cartesian

coordinates in turn, thus

ih (x)
at

<[*, H])

Now,

[x, H] = x
h2 fjY_ jY_ d

2
\

2m \dx 2
+

dy
2 dz

2
j

(jY_ d
2

\

2m \dx
2

d

y

2
dz

2
/

JL-JL 1

2m
[

X
dx 2 dx

2

J

h
2

d

+ V(x,y, z)\

+ V(x,y, z

)

x

2.6

m dx

Since px = -ih(d/dx), we have (d/dt)(x) =
(1/m){px), and similarly

withy and z, which proves the result. The result (d(p)/df) = -(V • U)

can be proved in a similar way.

(a) From [2.65]

<D*(.A£)+¥ dr dr = (£<F)M +1P dr

2.7

= d>*Bt(At'k) dr. Hence (AB)+ = B^AY

(b) Using the result (a), we find (i) and (ii) are not Hermitian while (iii),

(iv) and (v) are Hermitian.

(a) 'P(x, 0 = -U ea
'4,ix)z-

iE 't/h + -L

(b) Probability = 1/3

(c) (x) and (px ) are time-dependent; E = (

H

> is time-independent.
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960
.10 (a) Pn = >

» odd
77

6n
6

= 0 ,
n even

(b) E = (H) = 5h
2/4ma2

2.16 Since L and S operate in different spaces all the componems of L

commute with all the components of S and hence [L , S J

j
2 _ l2 + S

2 + 2L ' S so that since L2 commutes with all the compo-

nents of L and S
2 commutes with all the components of S, one has

[L
2

, J
2
]
= [S

2
, J

2
]
= 0. Since Jz = Lz + S,, we have [L , Jz\

[S
2

,Jz\ = 0. Finally since J satisfies the commutation relations [2.223J, it

follows that J
2 commutes with all its components and [J

2
,Jz\

= °> from

which [(L ' S), Jz] = 0.
,

.17 Using the orthogonality properties of P, (cos 6) we have

2 ^ f
1

d(cos 9)e
ikrcosdPi(cos 0)

{jrn)
cMkr) *

.

Integrating by parts we find

21 + 1

Ciji(kr) =
„ikr cos

ikr

f+

1

-(cos 0)

cos 0=1

J cos 6 = —
1

Akr cos 6

d(cos 9)

dP,(cos 0)

ikrj_j irvi d(cosd)

For large r, the second term on the right-hand side is of order r (which

can be seen by integrating by parts a second time), so that

—-—W T" sin(£r
21+ 1 kr

1

ikr
W) = -A Akr (-l)'e^r

).

2.20

Hence we find ct = (2/ + l)i‘- _
(b) The first excited level is twofold degenerate with »* - U ny

n Y

0 and

= 0

llol tAV-HVU ~ ^

0, nv = 1. The determinantal equation [2.329J becomes

< 1 1 A xy 1 1 )
- Ea) <l|Axy|2>

(2|Axy|l) (2|Axy|2) - E°'

Using equation [A3.15], (l|Axy|l) = <2|AxyJ2>
= 0 and <l|Axy|2> =

<2|Axy|l) = A(2a
2
) \ where a = (;mk/h )

'
, and we find E

±A(2a2
)

-1
. Hence to first order in A the first excited level splits mtq^

two levels with energies E = 2h(k/mf
2 ± A(2a

2
)
*

2 21 Since HI (t)
= ~ U foilows from [A3. 15] that the only

non-vanSing matrix element is H[ 0 . From [2.343] and [2.344] we find

2

Pi o(t = +*)
?
2r^

2mho)
e'"'e

i/t
dt
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where co = (fe/m)
1/2

. Thus

PioU = + 30
)
= q

2% 2
0 t

2

2mhco ( T(o

)

2 + 1

CHAPTER 3

3.2 (a) r 2= 2a0

(b) Probability is lie
4 = 0.238.

3.3 (a) Yes, since i/noo? fcoo and 'Pm have even parity.

(b) Pwo = 2/7, P200 = 9/14, P322 = 1/14. For other states the probabil-

ity is zero.

(c) Using atomic units,

(H) = (2/7)En=l + (9/14)J5„=2 + (1/14)£„= 3

= -0.227

(L 2
)
= 6(1/14) = 0.43

(Lz) = 2(1/14) = 0.14.

3.4 Let us assume that the decay occurs at t = 0. At times t 0, the wave

function of the system is (in a.u.)

'P(r, t)
=

</'fs

=1
(r)e

-,B|sI

where

tltu
=
\r) = -4= e'

r

sjTT

is the ground state wave function for the tritium atom (Z = 1). At times

t 3= 0, we have

^(r, 0 = 2 c^f=2
(r) e

~ lEk ‘

k

where iAf
=2

are hydrogenic wave functions for Z = 2 (

3
He). Thus the

probability of finding the
3He ion in the state </// at t & 0 is — |cj ,

where

ck = <*?-w>
As a result, we have that

(a) Cj s = >pfs {r)4'u (r) dr = 16V2

27
and

512
As = kisl

2 =
729

= °- 702
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(b) Total probability for excitation and ionisation - 1 -Pis

to = Urvw'f.-wd'-O'25

(d) For states with 1 -f 0 the coefficients c, vanish since of.
1

'= ,pher, ‘

cally symmetric, and Pk = 0.

3 5 The perturbation H’ is the potential energy of the electron in t e

gravitational field of the proton. That is,

mMv

H ~ ~G ~

srasisstssa
perturbation theory by

AE = (lAisl^'kis)^ a
i

-2r/aJ _
GmM ,* dr

GmMr
=\
\ 477£o^

2

/Lie

On the other hand, since £ u - -(e
2
/4Trf:()

)(l/2a,J ) )
we have

= 8.B x 10~ 40
.

A£ 8ireoGm^p

CHAPTER 4

4.1 The total number of photons radiated per second are.
: total IlUlllUtl Ui *

/ IN C ^ 1A

w 5 X 10
25 (b) 5 X 10

23
(c) 3 X 10 (d) 5 x 10

The corresponding fluxes and densities are.

,, 7 1 2 XX in 1

(a)

(a) 4 x 10“ photons/(m
2

s); 1.3 x 10 photons/m

b 4 X 10
20 photons/lm

2
s); 1.3 x 10

2 photons/m

c 2 4 x 10'= photons/(tn
2

s); 0.8 x 10 photons/m

d) 4 x 10“ photons/(m
2

s); 1.3 X 10> phowns/m-

4 4 a To obtain [4.69], we assume the rad,at,on ,s

with a uniform distribution of polarisation vectors. The «c

required is

A = —
4tt

cos
2
0 dflE

where dfl f
is an element of solid angle about the direction of e.
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4.5

Taking tha to be fixed in space as axis,

A = —
477

cos
2
9 d(cos 6)

f 2 7T
]

dd> = -

0 3

(b) In considering the transition rate for spontaneous emission [4.70] or

[4.71] let us choose the Z axis to be the direction of emission of the

photon. The two independent polarisation vectors can then be taken

to be ti = x and e2 = 9, unit vectors along the X and Y axes.

The sum over polarisation directions is proportional to

tba
l

+ \e 2 r fca |

12
r6a |

2
(cos

2
9] + cos

2
0 2 )

where is the angle between tba and the X axis and 92 is the angle

between tha and the Y axis. If the polar angles of rba are 9 and </>,

cos 0\ — sin 6 cos 4>, cos 02 = sin 6 sin 4> and cos
2
9\ + cos

2
92 = sin

2
0.

We now have to integrate over all directions of emission, which is

equivalent to keeping the direction of emission fixed and integrating

over all orientations of rba . We have

dfl sin
2
9 f d(cos 0)(1 - cos

2
9)

•2 77

dd> = B7r/3

.0

from which we find the result [4.71].

We assume that each of the degenerate levels a are populated with an

equal probability, in which case the transition rate per atom for

absorption is obtained by averaging over the ga initial states and summing

over the g b final states, so that

^6a/P
%a a b

Similarly for stimulated emission, since Wab
= Wba

= wba/p
gb b a

from which, gaBba = g bB ab (the principle of detailed balance). Hence

equation [4.75] becomes,

— BabPNa = (A ab + BabP)Nb

ga

Combining this with Boltzmann’s relation, which in the case of degene-

rate levels is,

Nq _ gq_ &
h,„ba/kT

Nb . gb

and using the Planck distribution law [4.77] for p, the expression [4.79b]

for A ab is found.
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4.6 The explicit expressions for d are

d(l, m;l+ 1 , m-, 0) =
j

d(l, m-,l- *>m °) =
(4^:)

l,m±u ±1) =

4.7

a + 1)
2 m 1/2

(2

1

+ 1)(2Z + 3)

l
2 - m2

1
1/2

(21 - 1)(2Z + 1)_

(I ± m + 1)(Z ± m + 2)

2(22 + 1)(2Z + 3)

~
1/2

/ 3 \ 1/2
~(l + m)(l + m -

1)

Wl 1(2T- 1)(2 1 + 1)

1/2

v 1 a /

1

11 —m)\
2 can be performed using the

SSicTfonL'rf si 'found' in Problem 4.6. The absorption ram from

a

level (nlm) to the (2V + 1) degenerate levels (n'l'm ) is given y [ •

[4.82], as

Wha =

Now

477 / 2
Nn'

1

jm' —m 1

|
£m' m1 n'l'm' \nlm 1

1? \ 477£0 /'

477 / ^
)

\

2
rn

| * rrri m
\£m ' n’l'm' \nlm

lh2
\

_

477£0 /

r *|2 =
q I Jr

2

YUqd)

and for unpolarised isotropic light, the average of |e*| is

We have

Av|e *|
2 =

4-7T / e
1"

4tT
dfi

j

e *|
2 -

^

Wba ~
cfl

2
\ 4 tT£0 / 3 i

4 77

X \jm' —m |2

I-* n'l'm' \>nlm I

’oc

1 )
Rnr(r)Rni(j)r

} dr

\477£0 / J°

1

21 + 1

+ 1, if V =1+1
l , if l' = 1-1

which is independent of m. In the same way, it follows that the lifetime of

a level nlm is independent of m.
, . reauired

4.10 In the electric dipole approximation, the left-hand side of q

relation is

47T

left-hand side -
I^(jL) k ojJi-rJ

2
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where fuoba = (Eb - Ea ). Averaging over all directions of polarisation

gives a factor of 1/3, and using the definition of the oscillator strength

[4.111] we find

left-hand side =
47J

-2

ch

1 3ft

3 2m

Since

2 /*-= 1

the result follows.

CHAPTER 5

5.1 The wave functions for the np3/2 , np1/2 and n's 1/2 levels of atomic

hydrogen are

<A(«P3/2) = K»i(r) 2 (
1

Y
mims

2
m

)
YUm

l
Xl/2r,

«A(«Pi/2) = R„\(r) 2 (

i

l

m
/
Yl,m,Xl/2n

lA(n's 1/2)
= R„ 0 (f)X\!2m',

The selection rules require that m’
s
= m

s
. Taking the case m

s
= 1/2 the

possible transitions from the states of the np3/2 level to the n' Si/2 level and

the corresponding transition rates are given (apart from an overall

constant) in the following table

Initial states

m. ms m

1 1/2 3/2

0 1/2 1/2

-1 1/2 -1/2

Transition rate

A 2

1 1

1

2
1

2

1 1

1 2° 2

1

!

2

1

where A = CIg
n 0o,„im, C being a constant and /^-oo.nim is given by [4.85 ]

and has the same value in each case. The transition rates for the case

ms
= -1/2 are the same as for ms = +1/2, so that the total rate is 4A 1

.

For transitions from the states of the npi/2 level the possible transition
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rates are, for m, =
m's

= 1/2

Initial states

<7
W; m

s
m

0 0 1/2 1/2

-1 = 1 1/2 - 1/2 A 2

Transition rate

1 i°|
1 i

2 2

1

~~

2

A*_

3

2A 2

~T

where A has the same value as before. The total rate from both t e

m =1/2 and ms
= - 1/2 states is thus 2

A

2 and the ratio of the transition

rate «p3/2 «'

S

1/2 to the transition rate np 1/2 -» «'si/2 is

5.3 From [5.56] and [5.60] the transition rates for the tt and a lines are

(using [4-85], [4.40])

Wlii-rr) = C((v^sin
2 ©</lmO|/'m')

2A

W^for*) = C(wfca) 2(1 + cos
2 0)<Zlm + 1| l'm')A

drr
3
f?„-r(r)i?n/(r)where ^ _

2Z' + 1

^

and l
- V = ± 1.

Each of the (21' + 1) states of the initial level will be, in general, populated

eqUally, so the intensities of the tt and a lines are

'« - 2FTi ?

Hr)
hex)ba

?/' + i
2 wi^)

Using the orthogonality relation for the Clebsch-Gordan coefficients

[A4.32], together with [A4.33], we see that

2 <ZlmO|/'m')
2 = 2 (/lw + l\l'm ')

2 = s(2Z' + 1)

w' m'

It follows that with 0 - -ir/2

/(7r):I(0-
+):/(O — 2:1:1

A similar argument shows that in the anomalous Zeeman effect the average

intensity of the tt lines is twice that of the cr
+

(or cr )
lines (see

Problem 8.5).
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CHAPTER 6

6.3 The following table summarises the results (in a.u.)

‘

Zero-order
’

wave function

<C ([6-55])

Screened variat.

function [6.70]

with Z e = 27/16

Hartree-Fock

wave function

[6.85]

'Exact'

(variat.)

wave function

Energy -2.750 -2.848 -2.862 -2.904

(r\ + ri> 1.50 2.11 2.37 2.39

<«(r.)) 2.55 1.53 1.80 1.81

<S(r12)> 0.318 0.191 0.188 0.106

Note the improvement in going from the zero-order wave function i//q
0)

to

the Hartree-Fock wave function. Nevertheless, the Hartree-Fock wave

function provides a poor value (too large by almost a factor of two) of

(<5(r, 2 )). This is to be expected since the Hartree-Fock wave function is an

independent particle wave function, and S(r12) probes the region r 2 = r2

where the electrostatic repulsion term l/ri 2 is most important.

6.5 (a) Ezs2p = - 7j a .u. = -0.53125 a.u. = -14.5 eV; A = 192 A;

(b) v = 1.71 a.u. = 3.75 x 10
6 m s

-1

CHAPTER 7

*
1

7.1 H0 = ^h,, h, = -- V 3 + V (r,)

7.2

7.4

Since the angular part of V( is proportional to L,’ , we have [V
3

, L,] = 0.

Moreover, we know from Problem 2.12 that L, commutes with any

function of r,. Therefore L, commutes with hi} and hence L = X,L,

commutes with Hc .

- 1) y

^sWs - 0) -
—J=

Mis t C 1 ) “2s tC 1 )

“Is T (2) “2s T (2)

“is T (1)

“1st (2)

“2s | (1)

“2s | (2)

1 Mis i C 1 )

“isi (2)

“2s | (1)

“2s T (2)

‘f^sOVfs — 1) —
1

72
“ist(D

“Is | (2)

“2si(l)

“2s 1 (2)

(a) Z 1/3
a.u

(b) Z4/3
a.u.

(c) Z 7/3
a.u.
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7.7 From Problem 7.2, we have

t&23sC^S = 1)
—

J2

Uis-f(l) M2s t (0

Mis f (2) M2s t C2)

with ulsT = Mi s(r)a, u2s t
- “2s(0«

The coupled Hartree-Fock equations for uu(r) and u2s(r) are

1 ' 2

2 r

-1 V2 - - + Vd
2s - Ffs «is(r) FisMis(f)

and

with

-I V2 - - + Vi - VS M2s(r)
= E2s^2s(.r)

(1)

(2)

Vi(r) =

VSM/tt =

Mis(t’) r—-h «is(0 dr'

\ |r — r
|

Mi s(r)

and similar relations for Vi and Vg. Taking the scalar product of (1)

with u2s ,
we have

M ls\ = £ 1 s
<U2s |u 1s>

M2s
-I V 2 - - + Vi - V

2 r

Similarly, taking the scalar product of (2) with and using the fact that

the operators are Hermitian, we find that

m2s

2

r
-4- V2 - - + Vd

ls - Vn ttis) = F2s(M2s|mis) (4)

Subtracting (4) from (3) and remembering that

(Vf. - VSD«i, = 0, (Yi - ^Is)m2s = 0

we see that

(m2s |mi s)
= 0.

(i) 'S;
3
s

(ii)
X
P;

3p

(iii)
XD;

3D
(iv)

X
S;

XD;

(v)
2
S;

2P;

2 6

(vi)
2
P;

2D;

4
4c
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(b) (i) %; 3
S,

(ii) 'P,;
3P0 ;

3
P,;

3P2

(iii) ^2; 3D,; 3D2 ;

3D 3

(iv) ‘So; ‘D2 ;

!G4 ;

3P0 ,

3
Pl,

3Pa ;

3f2 ,

3f3,
3F4 ,

(v)
2
Si/2 ;

2
Pl/2,

2P3/2

;

2D 3/2 j

2D5/2 ;

2F5/2,
2f7/2 ;

4
Sb/2 ;

4
Pl/2,

4P3/2,
4p5/2 ;

4D 1/2 ,

4D3/2 3

4D5/2,

4
D7/2

;

4F3/2,
4F5/2,

4f7/2 ,

4F9/2

(vi)
2P 1/2 3

2P3/2j
2D3/2,

2
Ds/2 5

4
S 3/2.

7.11 (a) We have >, = 1/2, 3/2 for a p electron and j2
= 3/2, 5/2 for a d

electron. For the configuration tip nd the possible values ofJ and

terms (ji

j

2)j are then given by

iih J Terms (jij2)j

1/2 3/2 1, 2 (1/2 3/2) l5 (1/2 3/2)2

1/2 5/2 2, 3 (l/2 5/2)2 ,(l/2 5/2)3

3/2 3/2 0, 1, 2, 3 (3/2 3/2)0 , (3/2 3/2) ls (3/2 3/2) 2 , (3/2 3/2) 3

3/2 5/2 1, 2, 3, 4 (3/2 5/2),, (3/2 5/2) 2 , (3/2 5/2) 3 , (3/2 5/2)4

(b) For the configuration ( nl 3/2)
2 the only allowed values of J are

J = 0, 2 and the terms are

(3/2 3/2)0 , (3/2 3/2)2

CHAPTER 8

8.1 (a) AMy = ±1, 0 for all A and

|AJ| = A, A - 1, ... 0 with J + J' > A

For odd A the parity changes while for even A the parity does not

change.

(b) The rules forMy andJ are the same as for (a) but for odd A the parity

does not change, while for even A the parity changes.

8.4 (a) The intervals between adjacent levels are 20 cm 1 and 40 cm 1

. Thus,

ifJ is the total angular momentum quantum number of the highest

level of the multiplet, the Lande interval rule gives 40 = AJ and 20 =

A(J -
1). Hence J = 2, and the two other levels have J = 1 and

J = 0. Since J = 0 is possible, \L - S| = 0 from which L = S.

From [8.31] we then see that L = 5 = 1. The three fine structure

levels of the multiplet are therefore
3P0 ,

3
Pi,

3P2 -

(b) Since both the ground state term and the excited term are
3P

,
we have

AL = AS =0. The allowed transitions are given by AJ = 0, ± 1

,

with J = 0 —* J' = 0 forbidden. Thus there are six lines

7 = 2 to J' = 2 A = 1657.0 A
1 1 = 1657.4 A
2 1 = 1658.1 A
1 0 = 1657.9 A
1 2 = 1656.3 A
0 1 = 1656.9 A
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8.5 (a) From [8.45] the Landd factors are

2P3/25 gj
= 4/3;

2
Pi /2 , gj

= 2/3;
2
Si /2 , gj

= 2

The possible angular frequencies are &>
7 = co{ + Aw| where w/ is

the frequency in the absence of the magnetic field and

Am7 = — (gyM'j — gjMj)
n

where the prime denotes the upper level b.

For 2P1/2
-* 2

Si /2
we find separate lines in order of increasing

frequency

My Mj gjMj - gjMj Type of line (i

-1/2 1/2 -4/3 CT
+ -l

1/2 1/2 -2/3 77 0

-1/2 -1/2 2/3 77 0

1/2 -1/2 4/3 (J— + 1

For
2P 2

3/2 Si

,

2 we find
y

My My gjMj - gjMj Type of line q

-1/2 1/2 -5/3 a -l

-3/2 -1/2 -1 (7
+ -l

1/2 1/2 -1/3 77 0

-1/2 -1/2 1/3 77 0

3/2 1/2 1 (T + 1

1/2 -1/2 5/3 (J~ + 1

(b) The transition rates for 7r and cr lines are from [8.6] (compare with

[5.56] and [5.60])

Wlb{TT) = C(w ba ) sin
2 ®\{y'J’M'j\D 0\yJMj)\

2

W*ab((T-) =C(w ba)i( 1 + cos
2 &)\{y'J'Mj\D^i\yJMj )\

2

where C(wba)
= e~

2C{<aba) and 0 = tt/2 for transverse observation.

Assuming the upper levels are equally populated, the relative in-

tensities of the lines are given by [8.11], through the factors

sin
2 © \{J\MjQ\J’Mj ')\

2
for the n lines and |(1 + cos

2
0)

± \\J'Mr )\

2
for the o-

±
lines

With 0 = tt/2, we find by using Table A4.1 that

(i) the intensities of all the lines in the
2
Pi/2 -*

2
Si/2 transition are

equal

(ii) the intensities of the lines in the
2P3/2

~^
2
Si/2 transition are in the

ratios 1:3:4:4:3:1.

Note that (see Problem 5.3) the average intensity of the -n lines is twice

the average intensity of the a+
or of the a~ lines.

660



Apptndix JO

CHAPTER 9

9.1 The energies of these five levels are: 2.1 x 10~ 3
;6.3 x 10

-3
; 12.6 x 10~ 3

;

21 x 10
-3

; 31.5 x 10
-3

eV and the corresponding wave numbers are:

16.9; 50.8; 101.5; 169.2; 253.8 cm-1
. The internuclear distance is 1.43 A

or 2.71 a.u.

9.2 (a) 0.164 eV and 0.493 eV (b) 2.5 x 10" 14
s and 0.84 x 10“’ 4

s.

(c) 4.12 x 10
2 N/m.

9.3 The depth of the potential well in H 2 is De = D0 + fuo 0/2 = (4.48 +

0.26) eV and this is the same for the D2 molecule. The force constant for

the vibrational motion k is the same for H2 and D2 , hence the zero-point

energy for D 2 = 0.26 x (Mp/MD)
l/

2

= 0.18 eV (see [9.24]). Hence for

D2 , Do = 4.48 + 0.26 - 0.18 = 4.56 eV.

9.4 From [9.34], with k — k and c x
= c2 = 0, we have

dVeS
dR

- k(R - Ri) (a)

and from [9.33]

dVeff _ dV(R) h
2 + 1)

dD dR fJL R 3

Equating (a) and (b) at the point R = R0 , for which dV(R)/dR = 0 we

find

h2
J{J + 1 )

Rl =Ro + T- - p3
—

RjX R o

from which [9.35] follows on substituting for k using [9.28],

9.7 Using the reduced mass fj.
= 2.3042 X 10

_26
kg and v we calculate

the force constant k. Converting to atomic units this is k = 0.0698 a.u.

From [9.95], at R = R 0

or (_L _ rfe-*) - 0

which gives A = e
cRo

/cRo. Now

( 1 )

k = d
2E s

dR 2
R=R„

Ac 2
c

2_-c/?o
( 2 )

From (1) and (2) and using the computed value of k, we find

c = 1.837 a.u. (or 3.47 A-1
). Finally from (1) A = 98.9 a.u. (or 2692

eV) and ES(R0) = -0.142 a.u. (or -3.87 eV), giving D0 =

(3.87 - 0.02) eV = 3.85 eV.
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CHAPTER 10

10.1 The ratio is given by Boltzmann’s distribution R (gj/So)

exp(£0 - Ej)/kT where gj is the degeneracy of theJth level. Since each

rotational level is (2J + l)-fold degenerate the result follows. By dif-

ferentiating we find that Rtf) has a maximum at J - (kT/2B) . The

intensity of an absorption line is proportional to the number of molecules

in the lower level and hence is proportional to R(J).

10.2 Unlike rotational levels, vibrational levels are not degenerate so t at

R = exp[(£0 - Ev)/kT], For v = \ we have R = exp(-ha> 0/kl )•

10.3 B = 1.93 cm” 1

; R0 = M2 A; k = 1.9 x 10
3 N/m.

10 4 (a) The Deslandres table is constructed from [10.33J

‘

b) The wave number of the *' = 0 to = 0 transition is

p = uS
'

S
— 801.54cm- 1 = 102877.3cm

(c) To draw the Fortrat parabola and calculate the positions of the lines

of each branch we use [10.34] with

- v) = 1.145 J{J - 1) - 2.010 J(J + 1)

= 1.145 m(m — 1)
— 2.010 m{m + 1)

with « = 0, 1, 2, 3 . . . and (f
R - v) is given by the same formula

with m = -
1, -2, -3 ... . k_

The R( 1) line forms the band head at O + 2.2V cm )

102 879.6 cm- 1 and the band is shaded to the red.

CHAPTER 11

11.6 Starting from [11.59], we have

pL (cos 0) d(cos 0) = 72 | | (2/ + 1)(2/' + l)e’

^ dfl « i=o r=o

i( Si— Sr)

x sin Si sin Sr

+ i

PL(cos 0)P,(cos 0)P,<COS 0) d(cos 0)

Evaluating this expression with L - 0, we find

CTtot 1

= 72 S + Sin 5l

4tt k
2

i=o

Similarly, with L = 1, we have

B = —j 2 (J + 1) ^ ^ s^n cos (^f+i
_ ^

k2
1=0
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11.8

11.9

11.12

and with L = 2, one obtains

« /=o

/(/ + l)(2f + 1)

+

(21 + l)(2f + 3)

3(1 + 1)(/ + 2) .

^ sin S,

21 + 3
sin 8i sin 8i+2 cos(S/+2 — 8

t)

Proceeding as in the case of the square well [11.83], but with Uq

replaced by -U0 , we find that

S0 = ~ka + tan
-1/— tanh Ka\, K = (U0 - k

2
)
1/z

Hence, for k —* 0, we have

tan ft(A qu)
S0 = ka

A0a
- 1 Ao — VU0

and therefore, at zero energy

o'tot
= cr0 - 4ira

2
tan/t(A 0u)

\0a
- 1

As Uq —» °°, this zero-energy cross-section becomes <rtot = 4ira
2

, in

agreement with the result [11.97] obtained for the ‘hard sphere’

potential.

1
°°

(a) tan S0 = —r sin
2
(£r) U(r) dr

« Jo

= -Hi
k

U0
(b) tan S0 = -—

e““r

sin
2
(fer)

o r

sin
2
(kr)

U0 ( 4ft
2

dr = — ~tt log ( 1 +—
4k \ a

(r
2 + d2

)
2
dr

nU0

8kd 3 [1 - (1 + 2kd)e~
2*d

]

(a) /bi
- ~Uo ,2

2a

„B1 _
^tot

O"ror

(a
2 + A 2

)
2

16ttU 2
0 16ft

4 + 12« z
fe
2 + 3a4

~~T~ a\a2 + 4ft
2
)
3

2 trh
2Ul

AE~\ A =
E—+ °o 3ma4
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,
1/2

(b) /B1 = ^o^e^i/4“

Bl
tt

2UI
tot

8aA
k
2 1

BI
CTtot

~ AE
E—>oo

t/o
,

(c) /bi

[1 - e
_2* 2/ “2

]

AE~\ A =
7T

2
fe
2
L/g

16ma 4

(7?0
‘ = %irUla

6F{x)

where

1

F(X)= 4?'
1 ”^ +

1 sin 2x sin
2 x

and x = 2fea

cTtot
~ AE\ A =

E-**

-nh\AUl

4m

/ j \ , _ c
-*<

(d) /bi ~ e

of„! = [i - +
32J

4
*

Bi
^tot A£ -1

,
A =

E

TfWg
64md 4

CHAPTER 12

12.3 In atomic units <Ai(r) = e~
r
/ v'V, so that

1 1

Vn(ri) = —- + —
r i

*
r\ dr2 d(cos 02 )

-l

f 277

dd>2 e
-2r2

.

FI - t2 \

Taking ri as the polar axis for the integration over r2 ,
and expanding

1
co l

I

-7 = 2 7TT P/C0S ^
Fi - r2 |

/— o r •
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where r< and r> are respectively the lesser and greater of rx and r2 , we find

1

r\
Vuin) = + 4 rje 2r2 — dr2

1 4— + — I r2 e
r\ n Jo

2 “ 2ri dr2 4- 4 r 2 e
“ 2r2 dr2

The integration is elementary and we find

Vn(ri) = -fl + exp(—2rx)

12.4 Using the approximate wave function for helium

Z \

«A(r2 , r3)
= — exp[—

Z

e(r2 + r3 )], we have

Un(n) = — +

z
7T

z^

IT

/

3 \ 2

1

+

dr2
|

dr3 exp[-2Z,(r2 + r3 )]

1

l

r
i
- r2 |

|ri
- r3

|

Proceeding as in Problem 12.3, we find

1

12.5 Using fs
= - 1

277

Vn(ri) = -2 Z, + —
)

exp(-2Z/ 1 )

e'
A ’r

Vn(r) dr

with Vu equal to the static potential obtained in Problem 12.4 we find

8Z? + A2

f,
= 4

L(4Z
2 + A2

)

2

For the polarisation potential, we have

/po
‘ 2 tt

77(2

“
4d

T
.

2\2
2(r

2 + d2
)

dr

,-dA

The total amplitude in the Born approximation is / — /* + /po i
and the

cross-section is dcr/dfl = |/|
2

. On substituting the numerical values

comparison can be made with the data shown in Fig. 12.4.
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CHAPTER 13

13.1 (a) £r = 0.247 eV (b) ©R = 0.97 x 10
4 m/s

13.2 Making the approximation Ej = 0, j ± 0, we have

E(2\R) = 4- 2 <*o|V|*y><^M*o>
E0 rfo

where the sum over j runs over all excited states of the two hydrogenic

systems centred at A and B. The sum can now be extended to cover the

ground state term (j = 0), since, as in [13.13], the ground state matrix

element (<//0 jV
r

|t/'o) vanishes. This allows us to use the closure relation

= 1> giving

E(2\R) = (>po\V
2
\ipo)

Eo

and from [13.9]

Em(R ) = (<Po\x\aX
2
2B + ^lA^B + 4*!a*2bI^0>A \

all other terms vanishing because 4>o is spherically symmetrical. It follows

immediately that

E(2\R) =

with

Cw " 6 (
4wY rVisO)!

2 dr

\ 3 / 0

= 6 a.u.

This may be compared with the exact value of Cw - 6.499 a.u.

13.3

From [13.38]

or = 2 tt
j

g(s)l j
A\ 2/s

(\_

e

1 + 2/s

de

2/s

a-2/s~ 27T8(s)
[eJ [l)

0*

(since the scattering is concentrated at small angles, the contribution

from the upper limit of the integral can be neglected).

Now g(6)
= — 1577

~16

1/3

, so that

ctt(E, 6q)
— w

15i
1/3
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13.4 Proceeding as in the MO case, the equation comparable to [13.62] is

dr [ (/>, s(rB)e
li:i

s

'e
- Iv r/2

e
\

H - i—j*(r, t) = 0

J
dr[ i//ls(rA)e

_i£ ’*t
e
+,v‘r/2e“ i* 2,/8 - i ^j

¥(r, i) = 0

A little calculation shows that the unperturbed functions satisfy

l{<Ais(rA ;
B)e“

,£liI
e
±,v -r/2

e-
,

'

I’2!/8

}
= 0

[A]

-I V2 -^
2 rA)B dt J

d
i —

[B]

Using this result we find, from [A], coupled equations for the amplitudes

a(b, t) and c(b, t):

i[a(b, t) + Nc(b, i)] = Pa(b, t) + Qc(b, t)

t‘[A7*a(i, t) +c(b, 0] = Qa(b, t) + Pc(b, t)

where

1 1

N(t)
= «Ais(rB)^is(rA)e

,v -r dr

P(t) =

Q(0 =

3(0 =

l l

I«Au('-b)I
2 b - dr =

I

l^s(rA)|

2

b - -) dr
R rA

lAls(rB) (/
,ls(rA)e

'V r
I

4- "— Id1

</'h(rA)f/'is(rB)e

R rB

'bbldt

Using [13.48], it is easy to show that N = N* and Q - Q* - Q, and the

equations [B] can be written in the form

ia(b, t

)

ic(b, t)
=

P - NQ
1 - N2

Q- NP
1 - N2

a(b, t) +

a(b, t) +

Q - NP
1 - N 2

P - NQ\
1 - TV

2

j

c(b, t )

c(b, t)

A solution with a(b, t = — °°) = 1, c(b, t
— — 00

)
— 0, can now be

obtained, and the charge exchange probability is given (compare with

[13.70]) by

Pce =
|

c(b, t = + °°)|
2 = sin

2 Q - NP
1 - N 2

dt

667



Appendix 10

CHAPTER 14

14.4 (a) From [1.19], Amax = 4830 A ...
(b) The fraction of the sun’s energy radiated in the visible range is

f A2

A~ s[exp(hc/AkT) - 1]
1 dA

A
5[exp(hc/AkT) - 1]

1 dA
.0

where A, = 4000 A and A2 = 7000 A. Writing x = hc/AkT, we have

f
x

3
(e

x - l)'
1 dx

x
3
(e* - 1)

1 dx
.0

with Xi = 3.426 and x2 = 5.995. The denominator is exactly 7t
4
/15

and the numerator can he evaluated by numerical integration,

yielding the result /— 0.38.
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Fundamental constants, atomic units and

conversion factors

The physical constants listed in Table All.l are mainly taken from ‘The 1973

Least-Squares Adjustment of the Fundamental Constants’ by E. R. Cohen and

B. N. Taylor, in J. Phys. Chem. Ref. Data 2, 663 (1973) and from ‘The 1973

Table of the Fundamental Physical Constants’, by E. R. Cohen, in Atomic Data

and Nuclear Data Tables, 18, 587 (1976), where critical discussions of errors may

be found.

We recall that the quantities e0 and mo are related by the formula

eo/J-oC
2 = x2 [All.l]

where c is the velocity of light in vacuum and k is a coefficient depending on the

system of units. In the rationalised MKSA (SI) units used in this book one has

k = 1, fi0 = 4 -it x 10” 7 H nT 1

,

e0 = ——r = 8.85419 x 10
12 F m" 1

[A11.2|
Moc

The Gaussian (mixed) system of units uses electric units of the electrostatic CGS
system, and magnetic units of the electromagnetic CGS system. In the Gaussian

system of units one therefore has

k = c, eo = —, Mo = 4n- [A 1 1 .3

1

477

The quantum mechanical equations of atomic and molecular physics are

considerably simplified if Hartree’s atomic units (a.u.) are used. These units are

defined in Table A 11.

2

We note that since m = e— h = a0 =] in a.u., while a = 1/137.036 is

dimensionless, one has in particular (with k = 1)

c - a
-1

a.u. = 137.036 a.u.

e0 = 1/477 in a.u.

Mo = 47t/c
2 = 47ra

2
in a.u.

We also give in Table A 11. 3 a few important conversion factors.

[A 1 1.4]



Table All. I Fundamental constants

Quantity
Symbol

Planck’s constant h

h

2it

Velocity of light in c

vacuum
Elementary charge (absolute e

value of electron charge)

Permeability of free space Mo

Permittivity of free space

i

£o 2

MoC

Gravitational constant G

Fine structure constant a
ATTEfflC

Avogadro’s number

Faraday’s constant

Boltzmann’s constant

Gas constant

na

F = NAe

k

R = NAk

a.m.u. = — Mi 2c
12Atomic mass unit

Electron mass m or me \

Proton mass Afp

Neutron mass M„

Ratio of proton to Mp/m

electron mass

Electron charge to
\e\/m

mass ratio

Compton wavelength

of electron

Classical radius

h
A c
= —

me
e
2

r
° 4 VE0mc

2
of electron

Bohr radius for
47Te0 fi

2

aO ~ 2meatomic hydrogen

(with infinite nuclear mass)

Non-relativistic
/!?(“) -

Srreoaoionisation potential

of atomic hydrogen

for infinite nuclear mass

Rydberg’s constant for
me

k{x) ~
8elhh

‘
infinite nuclear mass

Rydberg’s constant Rn
for atomic hydrogen

Bohr magneton “ 2^
eh

Nuclear magneton lMp

Electron magnetic

moment
Proton magnetic Mp

moment
Neutron magnetic Mn

moment

670

Value

6.62618 x 10
34

J s

1.05459 x 10
34

J s

2.997 92 x 10
8 m s“‘

1.60219 x 10
19 C

4rr X 10“ 7 H m 1

= 1.25664 x 10~ 6 H m 1

8.85419 x 10
12 F m 1

6.672 x 10“ 11 N m2 kg“ 2

_! = 7.29735 x 10
“ 3

137.036

6.022 05 x 10
23 mol 1

9.64846 x 10
4 C mol' 1

1.38066 x 10~ 23
] K'

1

8.31441 J moF
1 K 1

1.66057 x 10” 27 kg

9.10953 x 10~ 31 kg

= 5.48580 x 10“ 4 a.m.u.

1.67265 x 10“ 27 kg

= 1.007276 a.m.u.

1.67492 x 10" 27 kg

= 1.008665 a.m.u.

1836.15

1.75880 x 10” C kg
1

2.42631 x 10“ 12 m

2.81794 x 10' 13 m

5.29177 x 10“ n m

2.17991 x 10“ 18
J

= 13.6058 eV

1.09737 x 10
7 m 1

1.09678 x 10
7 m" !

9.27408 x 10
24

J T
1

5.05082 x 10
27

J T
!

9.28483 x 10“ 24
J T

1

= 1.001 16 fj.B

1.41062 x 10
26

J T
'

= 2.79285 nN
-0.966 30 x 10

26
J T

= -1.91315 Mn
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Table All.2 Atomic units

Quantity Unit Physical significance Value

Mass m or me
Electron mass 9.10953 x 10

31 kg

Charge e Absolute value of

electron charge

1.60219 x 10 '»C

Angular momentum h Planck’s constant

divided by (2 jr)

1.05459 x 10
34

J s

Length <*0 Bohr radius for atomic

hydrogen (with infinite

nuclear mass)

5.29177 x 10
11 m

Velocity v0 = occ Magnitude of electron

velocity in first

Bohr orbit

2.18769 x 10
6 m s

'

Momentum po = mvo Magnitude of electron

momentum in first

1.99288 x 10
24 kg m s

'

Bohr orbit

Jime a0 Time required for electron 2.41889 x 10
17

s

~~
in first Bohr orbit to

travel one Bohr radius

Frequency

Energy

Wave number

Vo

2 Too

Angular frequency of 6.57968 x 10
15

s
1

electron in first Bohr

orbit (v0/a0 ) divided

bv (2tt)

4trfoao

Twice the ionisation 4.35981 x 10
ls

J
mc ^

potential of atomic = 27.2116 eV

hydrogen (with infinite

nuclear mass)

— = 2 /?(*) Twice the Rydberg 2.19474 x 10
7 m 1

constant, i.e. twice the

wave number corresponding

to the ionisation potential

of atomic hydrogen

(with infinite nuclear mass)
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Table A11.3 Conversion factors

1 A (angstrom) = 0.1 nm - 10
1 m 10 cm

1 fm (femtometer or Fermi) = 10
b nm = 10

K m

A (in A)x i (in cm' 1

)
= 10

s (from Aj> = 1)

a0 = 5.29177 x 10' n m = 0.529177 A

al= 2.80028 x 10
21 m

2

7rflo
= 8.79735 x 10

21 m2

1 Hz = Is'
1

1 electron mass (me )
= 0.511003 MeV/c

1 proton mass (Afp)
- 938.280 MeV/c

1 a.m.u. = -hM Uc = 1.660 57 x 10' 27 kg = 931.502 MeV/c2

i J
= 10

7
erg = 0.239 cal = 6.241 46 x 10

18 eV

1 cal = 4.184 J
= 2.611 x 10

ly eV

leV= 1.60219 x 10
19

J = 1-60219 x 10' 12
fN(g

\

1 MeV = 1.60219 x 10
13

J = 1.60219 x 10' 6 erg

1 eV corresponds to:

a frequency of 2.41797 x 10
14 Hz (from E = hv)

a wavelength of 1.23985 x 10
6 m= 12398.5 A (from £- Ac/A)

a wave number of 8.06548 x 10
5 m ’ = 8065.48cm (from E - hcv)

a temperature of 1.16045 x 10
4 K (from£ — kl )

lcm' 1 corresponds to

an energy of 1.23985 x 10

4

eV

a frequency of 2.99792 x 10
10 Hz

1 atomic unit of energy = 27.2116 eV corresponds to

a frequency of 6. 57968 x 10
15 Hz

a wavelength of 4.55633 x 10
s_m = 455.633 A

a wave number of 2. 19475 x 10
7 m'‘ = 219475 cm'

a temperature of 3.15777 x 10
5 K

1 a.m.u. corresponds to an energy of 931.502 MeV = 1.49244 x 10
10

J

kT= 8.61735 x 10
5 eVat T= 1 K

he = 1.23985 x 10' 6 eV x m = 12398.5 eV x A

he = 1.97329 x 10' 7 eV x m = 1973.29 eV x A

AE (in eV) x At (in s) = 6.582 18 x 10' 16 eV x s (from \E\t = h)
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Index

A10 molecule, 439

absorption cross section, 495

absorption in scattering, 494-6, 513

absorption of radiation, 155, 161-3

absorption spectra, 27, 362, 434-5, 584

cross-section for, 162

in the dipole approximation, 167-8

by many electron atoms, 355-8

transition rate for, 161-3

alkali metals

alkali halides, 420

and bonding, 418-20

energy levels and spectra, 359-64

fine structure, 363-4

alkaline earths-'energy levels and spectra,

368

allowed transitions, 167

alpha particles, 24-6

ammonia maser, 567-71

ammonia molecule NH 3 ,
421

inversion spectrum of, 455-9, 567

Anaxagoras, 1

Angstrom unit, 28

angular momentum
addition of, 95-6, 104, 615-17

in the Bohr model ,31,34
general properties of, 612-20

and magnetic dipole moments, 41-2, 209

and the Stern-Gerlach experiment, 44

total, 42, 46, 95-6, 104

vector model of, 45, 88

see also orbital angular momentum, spin

angular momentum, total angular

momentum
angular momentum operators

general, 95-6, 612-20

orbital, 82-4, 87-8, 614

spin, 44-5, 91-6

anharmonicity constant, 392

antibonding orbital, 402, 413

anti-Stokes line, 437-8

antisymmetry see Pauli exclusion principle

antisymmetrisation operator, 322

associated Laguerre polynomials, 137-8, 144,

610-11

associated Legendre functions, 85-6

astrophysics, topics in, 583-9

asymmetric top, 421

atomic mass unit, 27

atomic nucleus see nucleus

atomic number, 23

and X-ray spectra, 39, 40

atomic sizes, 23

atomic units, 32-3, 669, 671

Auger effect, 151,286,520, 548

autoionisation, 286-8, 366, 444, 519-20

average value see expectation value

Avogadro, A., 2

Avogadro’s number, 2, 3, 23, 670

Back-Goudsmit effect, 376

Balmer, J. , 28

Balmer series, 28-9, 205

Balmer’s formula, 28

Band
degradation, 442

head, 442

progression, 440

sequence, 440

spectra, 434, 438-44, 585

Barkla, C.G., 18, 19

baryon, 151

basis set, 69

change of basis, 69-71

benzene molecule, 425-6

Bernoulli, D., 1

beryllium ground state, 333-4

Beth, R.A., 176

Bethe, H.A., 231

Bethe integral, 508

Beth’s experiment, 176-8

biaxial theorem, 615

black body, 9

black body radiation, 9-15

universal, 583

Bless, A.A., 22

Bohr, N., 15, 29

Bohr frequency relation, 30

Bohr magneton, 41 , 209, 670



Index

I

I

Bohr model

for atomic hydrogen, 29-35

and magnetic moments, 40-1

for one-electron atoms, 36

Bohr radius of hydrogen, 32, 133

Bohr’s angular frequency, 112

Bohr’s correspondence principle, 82

Boltzmann, L., 1, 9

bonding

covalent, 407

directional nature, 423

ionic, 408

orbitals, 402

and pairing, 414-15

Born, M., 53, 58

Born approximation for electron scattering,

507-10, 514-8, 520-1

for atom-atom scattering, 549-52

Born approximation in potential scattering

for a Coulomb potential, 492-3

for phase shifts, 477

for scattering amplitudes, 489-92

for a Yukawa potential, 491-2

Born-Oppenheimer separation, 386-9, 399,

420,528

Born series, 488-90

Bose-Einstein statistics, 106, 233

bosons, 106, 233, 452

Bothe, W., 22

Boyle, R., 1

Brackett series, 29

Bragg, W.L., 19

Breit-Wigner formula, 483, 523

bremsstrahlung, 578-9

de Broglie, L., 38, 46, 53

de Broglie wavelength, 46-8, 54

de Broglie relations, 46-7, 53-4

Brown, R., 2

Brownian motion, 2

Bunsen, R.G., 584

Byron, F.W., 275, 285

C 2 molecule, 414

CH4 molecule see methane molecule

C 2H 2
molecule, 424-5

C 2H4 molecule, 424

C 6H6 molecule see benzene molecule

caesium atom and time standard, 373—4

carbon atom, fine structure of, 348

cathode rays, 4

central field approximation, 263-4, 290-300

central forces, 96-9

centre of mass, motion of, 102-4

centre of mass system of coordinates, 463, 465,

600-7, 642-4

centrifugal barrier, 98, 130

centrifugal distortion, 393-4

channels in scattering, 462-4, 504

charge exchange, 540-7, 549

chemical bond, 423

chemical laws, 2

chemical scale, 2

chemical shifts, 561

classical mechanics of scattering, 593-9

classical trajectory, 594

Clausius, R., 1

Clebsch-Gordan coefficients, 615-17

Cleeton, C.E., 459

close coupling approximation, 510-11, 513,

524

closure relation, 60, 67

Codling, K., 287

collision broadening, 187, 584

commutators, 63

algebra of, 73

for angular momentum operators, 95,

612

complete sets, 66

of commuting observables, 73

Compton, A.H., 18

Compton effect, 18-22

Compton equation, 22

Compton shift, 20

Compton wavelength, 22

configuration see electron configuration

configuration interaction, 274, 339

confocal elliptic coordinates, 404, 645

conservation of probability, 62, 468

controlled thermonuclear fusion, 572-832

choice of reaction, 574-5

diagnostics, 582

impurity reactions, 578-80

inertial confinement, 576-7

magnetic confinement, 576-7

neutral beam injection, 580-2

reactor design, 575-6

Tokamak machine, 576-8

Zeta machine, 578

correlation diagrams, 412-3, 416-7

correlation energy, 338-9

Coulomb integral, 280, 409

Coulomb potential, 128

scattering by, 26, 492-3, 597-9

covalent bonding, 407

critical angle, 534

Crookes, W., 5

Crookes dark space, 4

cross-section

for absorption of radiation, 162

for atomic scattering, 464-5

in classical mechanics, 595-7

for photoionisation, 192-3

for scattering with absorption, 494-6

for scattering by a hard sphere, 479-80

for scattering near a resonance, 483

for stimulated emission, 163

total, 468, 596, 607

see also differential cross-section

crossed-beam experiment, 465, 500-1
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Dalton, J. , 2

Darwin term, 196, 200-1, 641

Davisson, C.J., 47

deflection angle, classical, 534, 595

deflection function see deflection angle

degenerate levels, 64-5

in the central field model, 296, 300

in diatomic molecules, 396

and the Einstein A and B coefficients, 170

in one-electron atoms, 134

and exchange, 259, 280, 295

and permanent electric dipoles, 222-3

and the Stark effect, 220-4

and the Zeeman effect, 210, 214, 217, 375-7

degenerate perturbation theory, 109-1

1

Deslandres formula, 440

Deslandres table, 440

delta function see Dirac delta function

Democritus, 1

density matrix, 327

density of states, 115, 165, 309-10

detailed balancing, 163, 170

deuterium, 35, 149

diatomic molecules

Born-Oppenheimer separation for, 386-9

electronic spectra of, 438-48

and the Heitler-London method, 408-10

heteronuclear, 415-20

homonuclear, 412-14, 452-5

and LCAO method, 400-7

and MO method, 405

and nuclear spin, 452-5

rotational motion, 389-90, 393-4, 428-30

rotational spectrum, 431-2

and spin coupling, 448-52

symmetry properties of, 395-7

tables of constants for, 392-3

and valency, 414-15

vibrational motion, 389-94

vibrational-rotational spectrum, 432-6

see hydrogen molecular ion, hydrogen

molecule

differential cross-section, 25, 465, 467

in the Born approximation, 490

for charge exchange, 546

for Coulomb scattering, 26, 493, 599

in classical mechanics, 595-7

for elastic atom-atom scattering, 532-8, 546

for electron scattering by H, 504-5, 516-7,

521

in laboratory and centre of mass coordinates,

600-7

partial wave expansion of, 473

for scattering near a resonance, 483

diffuse series, 362

dipole polarisability, 227, 512, 529

Dirac, P.A.M., 53

Dirac delta function, 59-60

Dirac equation, 195-6, 201, 633-7

a and 0 matrices, 633-5

Dirac’s method of variation of constants,

111-16

Dirac notation, 67, 87, 617

direct integral, 280, 324, 415

direct potential, 327, 506, 511

displaced terms, 371

dissociation energy, 392-3

for H2 , H2 , 41

1

dissociative state, 444

Doppler broadening, 187-9, 229, 572, 587-8

Doppler shift, 187-8, 587

doubly excited states, 286, 371, 519-20, 522-5

Dyson, F.J., 231

Eckart, C., 284, 285

effective charge, 40, 263-4, 284-5, 403-4

effective potential, 98, 130, 144, 292-3, 359,

474, 528

see also optical potential

Ehrenfest’s theorem, 63

eigenfunction, 64

of parity, 98-9

of spin, 91-2

of total angular momentum, 96

see also wave function

eigenvalues of operators, 64

degenerate, 64

Einstein, A., 15, 16, 17, 29, 155, 168, 572

Einstein A and B coefficients, 168-70

elastic scattering, 462, 596, 603-7

and absorption, 494-6

of atoms by atoms, 532-8, 546

of electrons by atomic hydrogen, 505-13

by a hard sphere, 479-80

by a potential, 465-93

resonances in, 480-4

by a square well, 477-9

electric dipole moment, 167, 222-3, 356-7,

431-3

of alkali halides, 420

of diatomic molecules, 393

permanent, 222-3, 431

electric dipole transitions, 135, 166-8

and selection rules, 170-3, 355-8

electric quadrupole moment, 233, 244-5, 374

electric quadrupole transitions, 167, 178-9

electrolysis, 2

electromagnetic field equations, 156

electromagnetic potentials, 156

electromagnetic radiation

energy density of, 157-8

and plane waves, 156-7

polarisation of, 157

pulse of, 158

transverse nature of, 156

electromagnetic spectrum, 19

electron, 3-8

charge of, 7-8

discovery of, 4-8

mass of, 8
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electron affinity, 306

electron configuration, 265, 298-300

electron diffraction, 47-9

electron gas, 308-13

electron gun, 499

electronic band spectra see band spectra

electronic energy of a diatomic molecule,

general form of, 389-90

electronic spectra of molecules, 438-47

and nuclear spin, 452-5

electronic wave equation, 388

electron scattering by atoms

Born approximation for, 507-10, 514-19,

520-1

close coupling approximation for, 5 10-11

experimental arrangement for, 499-501

static exchange approximation for, 505-7

theoretical principles of, 501-5

and ionisation, 519-21

and resonance phenomena, 522-5

and the Bethe approximation, 518

and the optical potential, 511-13

and the two-state approximation, 513

at high energies, 507-10, 514-19

by the positive helium ion, 523-4

electron spin, 44-5, 91-4, 173

see also spin angular momentum

electron spin resonance see paramagnetic

resonance \

e/m, measurement of, 4-6

emission of radiation, 155, 163-6

emission spectra, 27, 362, 438-9, 584

Empedocles, 1

energy level spectrum

of alkali metals, 359-64

of an electron gas, 308-13

and the Franck-Hertz experiment, 36

of a free particle, 100

of an infinite square well potential, 74-6

of a linear harmonic oscillator, 79

of a molecule, 383-6

of one-electron atoms, 133-6, 197-203,

242

of one-electron atoms in the Bohr model, 32

of a rigid rotator, 91

of two-electron atoms, 255-8

energy operator, 55

eigenvalues spectrum of, 64-6

see also Hamiltonian operator

energy, and the uncertainty principle, 57-8

equilibrium distance in a diatomic molecule,

389-94, passim

equivalent electrons, 299-300, 344-6, 351

exchange degeneracy, 259, 280, 295

exchange force, 266

exchange integral, 281, 324, 409, 415

exchange potential, 327, 507, 511

exclusion principle see Pauli exclusion

principle

exotic atoms, 150, 247

expectation values, 60-1

time variation of, 63

of r" in hydrogen, 145-6

Fabry, C., 232

Fano-Lichten model, 548

Faraday, M., 3

Faraday cup, 501

Faraday’s constant, 3

Faraday’s laws of electrolysis, 3

Fermi contact interaction, 238

Fermi-Dirac statistics, 106, 233

Fermi electron gas see electron gas

Fermi energy, 310

Fermi sphere, 312-13

Fermi surface, 313

fermions, 106, 233, 452

Fermi’s golden rule, 116, 165, 286

Feynman, R.P., 231

fine structure

in alkali spectra, 363-4

of many-electron atoms, 346—52

of one-electron atoms, 195-207

fine structure constant, 33, 670

fine structure multiplets, 201-7, 346-9

inverted multiplets, 349

regular multiplets, 349

finite nuclear mass, correction for, in the

Bohr model, 34-6

fluorescence, 444-5

flux of particle beam, 464, 466, 595

Fock, V., 320, 626

forbidden transitions, 167

form factor for atoms, 508, 515

Fortral parabola, 441-2

Franck, J. ,
36

Franck-Condon factor, 444

Franck-Condon principle, 442-4

Franck-Hertz experiment, 36-8

Frankowski, K., 278

Fraunhofer, J., 28, 584

Fraunhofer lines, 584

free particle, 99-101

relativistic, 631-2, 633-5

fundamental series, 362

gauge invariance, 156

Gay-Lussac, J.L., 2

Gay-Lussac’s law, 2

Geiger, H., 22, 23, 24, 26, 40

generalised oscillator strength, 516-18

generating functions

for associated Laguerre polynomials, 138

for Gegenbauer polynomials, 626

for Hermite polynomials, 81, 608

for Laguerre polynomials, 136, 610

for Legendre polynomials, 84

gerade states, 397, 399-415 passim

Gerlach, W., 40
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Germer, L.H., 47

g factor see Lande factor

golden rule, 116, 165, 286

Goudsmit, S., 44

Green’s function for a free particle, 484-8

Grotrian, W., 229

Grotrian diagram

for beryllium, 372-3

for calcium, 365

for helium, 365

for hydrogen, 180

for lithium, 360

for sodium, 361

gyromagnetic ratio, 42, 44, 209, 639

H;T see hydrogen molecular ion

H2 see hydrogen molecule

H20 molecule see water molecule

HCL molecule, 385, 418, 431-2, 435

He7 molecule, 414

hadronic atoms, 151-2

half-life see lifetime

Hallwachs, W., 15

halogens, 306, 418-9

Hamiltonian, classical, 101

for a charged particle in an electromagnetic

field, 629-30

Hamiltonian operator, 61, 64-5

for an atom in a magnetic field, 207-10

for central potentials, 97

for charged particles, 158-60

for many-electron atoms, 291-4, 339-41

for one-electron atoms, 129

with relativistic corrections, 196, 633, 635,

641

for a rigid rotator, 91

for a several particle system, 101

for two-electron atoms, 250

for a two-particle system, 102-3

Hansch, T.W., 572

Hartree, D.R., 292, 320

Hartree equations, 337-8

Hartree-Fock approximation, 320-37

for Be, 333-5

Hartree-Fock equations, 325-7

and Koopman’s theorem, 330

for Ne, 335-7

self-consistent field, 328

Harvard classification, 585

Heisenberg, W., 38, 53, 58, 282

Heisenberg equations of motion, 72, 166

Heisenberg uncertainty principle, 56-8, 124,

184, 187, 384, 484, 532, 648-9

and zero-point energy, 76, 79

Heitler, W„ 408

Heitler-London method, 408-10

helicity, 176

helium atom see two-electron atoms

discovery of, 584

Helmholtz, H., 3, 4

Herzberg, G., 278

Hermite polynomials, 79, 81, 608-10

Hermitian operators, 65

Hertz, G., 36

Hertz, H„ 15

homonuclear molecules, 396-7, 412-14, 431,

452-5

Hund-Mulliken method see molecular orbitall

Hund’s cases of angular momentum
coupling, 448-52

Hund’s rules, 346, 348

hybrid orbital, 417-18, 423-5

hybridisation, 418, 423-5

hydrides, 417-8

hydrogen atom see one-electron atoms

hydrogen concentration in galaxy, 588-9

hydrogen isotopes, 35, 149

hydrogen molecular ion, structure of,

399-405, 412-13

hydrogen molecule, 106, 383, 438, 452-5

structure of, 405-1

1

hydrogenic ions, 36, 128, 149, 183

Hylleraas, E.A., 273, 284

Hylleraas trial functions, 273-4

Hylleraas-Undheim theorem, 122, 285

hyperfine structure, 134, 232-45, 371-4

hyperfine structure constant, 372

and the Zeeman effect, 245, 376-7

hyperonic atoms, 152

identical nuclei and molecular spectra, 452-5

identification of terms, 368-71

impact parameter, 474-5, 594

independent particle model, 258-67, 292, 320

indistinguishable particles, 104-6

inelastic cross-section, 495

for electron scattering, 513-18

for atom-atom scattering, 550

inelastic scattering, 462, 513-18, 527-8,

549-52

infinite square well, 74-6

infra-red spectra, 28-9, 385-6, 432-5

in astronomy, 583

integrals containing hydrogenic wave

functions, 610-1

1

integrals containing oscillator wave functions,

608-10

integrals containing spherical harmonics, 618

intensities see line intensities

interchange operator, 104-6

intercombination lines, 255, 366

intermediate coupling, 341

interstellar medium, 589

intersystem crossing, 446

interval rules, 241, 349, 368, 373

inversion spectrum of ammonia, 455-9

ion-atom collisions see scattering of atom* by

atoms

ionic bonding, 408, 418-20
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ionisation, 464

by electron impact, 519-21

ionisation potential, 32, 148-53, 302-6, 411

iso-electronic sequence, 362

isotopes, 27

of hydrogen, 35, 149

isotopic shift, 35, 232, 245-7

Jansky, K., 583

Jeans, Sir J., 11

j-j coupling, 341, 349-52

Joachain, C.J., 275, 285

Jordan, P., 53

K series, 39, 380

K shell, 40, 139, 300

kaonic atom, 152

kinematics of scattering, 600-7

kinetic energy, relativistic corrections to,

196-8, 641

kinetic theory of gases, 1, 2

Kinoshita, T., 274

Kirchhoff, G.R., 9, 27, 584

Klein-Gordon equation, 631-2 \

Koopman’s theorem, 330

Li 2
molecule, 414 \

LiH molecule, 417-18

A-doubling, 396, 451-2

A quantum number, 395

laboratory system of coordinates, 463, 465,

600-7

Lagrange multipliers, 118, 324

Laguerre polynomials, 136-8

Lamb, W.E., 207, 229-32

Lamb-Retherford experiment, 229-32

Lamb shift, 134, 195, 207, 229-32, 572

Landau levels, 248

Lande g factor, 217, 234-5, 243, 375-6

Lande interval rule see interval rule

Laporte’s rule, 358

Larmor angular frequency, 42

Larmor frequency, 211, 555

lasers, 155, 158, 164, 562-7

gas, 565

ruby, 565

and spectroscopy, 571-2

tunable, 571

Lassettre, E.N., 522

von Laue, M., 19

Lawson criterion, 576-9

LCAO method, 400, 422

Legendre polynomials, 84-6, 615

Lenard, P., 5, 15

Lennard-Jones potential, 532, 535

leptons, 149

Leucippus, 1

level shifts, 525

level widths, 183-7, 523-5

natural width, 187

Levinson’s theorem, 479

lifetimes of atomic levels, 183

and level widths, 184-7

line broadening, 187-9, 229, 572, 587

line intensities, 180-2, 205-7

and the identification of terms, 360-71

line shapes, 183-6, 588

line widths, 183-9

line spectra of atoms, 27-9

linear harmonic oscillator, 76-82

and the virial theorem, 148

Lo Surdo, A., 219

logarithmic derivatives, 476

London, F., 408

long-range interaction between atoms, 528—32

Lorentz triplet, 211

Lorentzian distribution, 185-8, 483

Loschmidt, J., 2

L-S coupling see Russell-Saunders coupling

L series, 39, 380

L shell, 40, 139, 300

Lummer, O., 10

Lyman series, 28, 204

Madden, R.B., 287

magnetic broadening, 588

magnetic dipole moment
anomalous, 243

in the Bohr model, 40-1

and magnetic resonance, 554-61

of the nucleus, 233—5

orbital, 41, 209

and spin, 44, 209

magnetic dipole transition, 167, 178-9

magnetic quantum number, 84, 134

magnetic resonance see paramagnetic

resonance, nuclear magnetic resonance

magneton see Bohr magneton, nuclear

magneton

many electron atoms, 290

and the central field approximation,

292-300

corrections to the central field model,

239-52

effective potential in, 292-5

fine structure of, 346-52

Hartree-Fock model of, 320-37

hyperfine structure of, 37 1-4

and ionisation potentials, 302-7

and the periodic table, 300-7

Schrodinger equation for, 291-2

the Stark effect in, 377-9

Thomas-Fermi model of, 313-20

the Zeeman effect in, 374-7

Marsden, E., 23, 24, 26, 40

maser, 164, 243, 459

ammonia, 567-71
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mass polarisation, 250, 277, 643

matrix

diagonal, 71

equations of motion, 72

Hermitian, see Hermitian operators

unitary, 70

matrix elements of operators, 67, 69-71

matrix representations, 69-71

for spin, 93

matrix representation of angular momentum
operators, 612-14

Maxwell, J.C., 1, 9, 155-6

Melvill, Th., 27

Mendeleev, D.I., 39, 306

meson, 151

metastable levels, 183

quenching of, 224-5

metastable state, 484

methane molecule, 383-4, 421, 423

Michelson, A., 232

microwave spectra, 386, 432

Millikan, R.A., 7, 17, 18

Millikan’s oil drop experiment, 7-8

minimum principle for the energy, 119

mole, 2

molecular orbitals, 405

and atom-atom scattering, 543-9

for H2 ,
405-8

for heteronuclear molecules, 415-20

for homonuclear molecules, 412-14

notation for, 413, 416

molecular structure, 383

general nature of, 383-6

see also diatomic molecule, polyatomic

molecule

molecules see diatomic molecule, polyatomic

molecule

moment of inertia of a molecule, 385, 430

momentum operator, 55

momentum space wave functions, 55, 57

hydrogenic, 621-8

momentum transfer, 490, 515

momentum and the uncertainty principle,

57-8

Morse, P.M., 391

Morse potential, 391-4

Moseley, H., 38, 39

Moseley’s law, 39

Moseley’s plot, 39

M shell, 139, 300

multiplet see fine structure, hyperfine

structure, Stark effect, Zeeman effect

multiplicities see spectral terms

multipole moments, 233

see also electric dipole moment, electric

quadrupole moment, magnetic dipole

moment
muon, 149-50, 247

muonic atoms, 150-1, 247

muonium, 149

NaCl molecule, 418-20

N2 molecule, 396, 452

NH3 molecule see ammonia molecule

NO molecule, 397

negative hydrogen ion, 249, 257-8, 260,

270, 273, 275

see also two-electron atoms

neon ground state, 335-7

von Neumann-Wigner non-crossing rule see

non-crossing rule neutron, 26-7

neutron stars, 248

Newton, Sir I., 9, 27

noble gases, 306

non-crossing rule, 398-9, 412

non-linear optics, 572

non-localised bonds, 425-6

normal modes, 421

normalisation of wave functions, 58-60, 66

nuclear magnetic resonance, 560-1

nuclear magneton, 234

nuclear moments, 233-4

nuclear spin, 94, 233-45 passim, 452-5

nuclear wave equation, 388

nucleus

discovery of, 23-6

size of, 26

spin of, 233-4

02 molecule see oxygen molecule

Cl quantum number, 449

observables, 65

commuting, 72-3

old quantum theory, 38, 136

one-electron atoms

in the Bohr model, 29-36

energy levels of, 133-6

and expectation values of r", 145-7

field ionisation of, 227-9

fine structure in, 201-7

hyperfine structure of, 232-45

and parity, 144-5

radial distribution function for, 142-4

photoionisation of, 189-93

Schrodinger equation for, 128-33

and the Stark effect, 219-27

wave functions for, 131-3, 136-41

and the Zeeman effect, 207-19

spectrum of, 133-6, 179—80

wave functions in momentum space,

621-8

operators in quantum mechanics, 55, 61, 63,

64-5, 66-73

Oppenheimer, J., 228

optical potential, 511-13

optical theorem, 468, 474, 496

orbital angular momentum, 82-4, 87-8, 614

commutation relations, 82

eigenfunctions of, 84-90, 614

operators for, 82, 614
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in polar coordinates, 83-4

quantum number, 84

raising and lowering operators, 87, 614

spectroscopic notation for, 90

orbitals, 141, 264, 294

Ornstein, Burger and Dorgelo sum rule,

369-70

ortho hydrogen, 454

orthogonality relations

for associated Legendre functions, 85

for Legendre polynomials, 85

see also orthonormality

orthonormality, 60, 66

for harmonic oscillator wave functions, 81

for spherical harmonics, 86, 614

oscillator strengths, 181-2

generalised, 516—18

oxygen molecule, 383, 397, 414, 438, 452—3

77 bonds, 425-6

77 lines, 211, 213-14

pairing, 414-15

P-branch, 433-5, 441

parity, 76, 82, 98—9, 144—5, 171, 178, 202,

220-2, 233, 296, 358

see also gerade states, ungerade states

para hydrogen, 454 \
paramagnetism, 554

paramagnetic resonance, 554-61

Rabi apparatus for, 558-9

Rabi formula for, 558

in solids, 559-61

partial wave cross-section, 473

partial wave expansion, 468-75, 488

Paschen-Back effect, 214-15, 375

Paschen series, 29, 205

Pauli, W., 233, 246, 296

Pauli equation, 638-9

Pauli exclusion principle, and antisymmetry,

106, 251, 254-5, 291, 296, 299, 307,

310, 406, 414, 415, 452

Pauli spin matrices, 94, 635

Peierls, Sir R.E., 246

Pekeris, C.L., 278, 284, 285

periodic system, 300-7

periodic table, 39, 306-7

permutation operator, 105-6, 250-1

Perot, A., 232

Perrin, J., 3

perturbation theory

for an atom in an electromagnetic field,

160-1

of atom-atom interactions, 529-32

and corrections to the central field

approximation, 339-41, 349-51

and correlation energy, 339

for fine structure, 197-201

of hyperfine structure, 235-40

and Raman scattering, 436-8

for scattering see Born approximation

of the Stark effect, 219-23, 225-7, 377-8

time-dependent, 111-16

time-independent, 106-11

of two-electron atoms, 258-71, 280-3

of the Zeeman effect, 214-19, 374-7

Pfund series, 29

phosphorescence, 446-8

phase shifts, 472-7

absolute definition of, 476

complex, 494-6

computation of, 476

for a hard sphere potential, 479

integral equation for, 476

near a resonance, 480-3

photoelectric effect, 15-17, 188-93

Einstein’s equation for, 17

and Millikan’s experiments, 17-18

photoionisation, 188-93

photons, 15, 17, 21, 155, 157, 159

absorption of, 164

and the Compton effect, 20-2

and the electromagnetic spectrum, 18-19

emission of, 163-66

parity of, 178

and the photoelectric effect, 17

spin of, 173-8

photosphere, 584

pionic atom, 152

Planck, M., 12, 29

Planck’s distribution law, 14, 169, 586

Planck’s constant, 13, 14, 670

plane waves, 54, 100-1, 156-7, 466, 485,

504

polarisability see dipole polarisability

polarisation

circular, 174-6

linear, 157

in the Zeeman effect, 212-14

polarisation potential, 512-13

polarisation vector, 157, 173

spherical components of, 170

population inversion, 564-6, 568

polyatomic molecules

electronic structure of, 422-6

rotational motion of, 430-1

vibrational motion of, 421

positron, 149, 151, 633

positronium, 149

Poynting vector, 157

predissociation, 444

pressure broadening, 187, 588

principal quantum number, 133, 295

principal series, 362

Pringsheim, E., 10

probability amplitudes, 66, 542-6

probability conservation, 62

probability density, 58, 141

probability current density, 62, 467

Proust, J.L., 2
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Q-branch, 436, 441

quadrupole coupling constant, 245

quantisation

of angular momentum, 31, 44-6

of the electromagnetic field, 17, 155

quantum defects, 360-2

quantum theory, 53, 123

and photons, 17, 155

of Planck, 12—15

Rabi, I.I., 558

Rabi flopping formula, 558, 571

radial density function, 336

radial quantum number, 133

radial Schrodinger equation

for central potentials, 97

for a free particle, 99

for nuclear motion, 389, 429

for one-electron atoms, 129

for potential scattering, 469

in the Hartree-Fock method, 332-5

radial wave functions

for a free particle, 100

for one-electron atoms, 136-9

for potential scattering, 469-73

radiofrequency spectra in astronomy, 583

rainbow angle, 535

rainbow scattering, 538-9
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